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Abstract: There is a great limitation to improving the quality and productivity of nanofibers through
the conventional single-needle method. Using needleless electrospinning technology to generate
multiple jets and enhance the productivity of nanofibers has attracted lots of interest for many years.
This study develops a novel linear flume spinneret to fabricate nanofibers. Multiple jets with two
rows can be formed simultaneously on the surface of the spinneret. The solution concentration
has a significant impact on the average nanofiber diameter compared with applied voltage and
collection distance. The effects of different spinning process parameters on the productivity of
nanofibers are investigated. High-quality nanofibers with small nanofiber diameter and error can be
fabricated successfully. The average nanofiber diameter is 108 ± 26 nm. The average error is 24%.
The productivity of nanofibers can reach 4.85 ± 0.36 g/h, which is about 24 times more than that of
the single-needle method. This novel linear flume spinneret needleless electrospinning technology
exhibits huge potential for mass production of nanofibers in the field of industrialization.
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1. Introduction

Nanofibers have attracted much attention for many years because of their outstanding properties.
Compared with traditional fibers, nanofibers exhibit many advantages, such as high specific surface
area, high porosity and controllable nanofiber diameter [1]. Nanofibers have been widely applied in
many fields, such as filtration materials [2,3], sensor [4], tissue engineering scaffolds [5,6], sensors [7]
and energy storage materials [8]. It is common knowledge that electrospinning is a simple and
convenient method to prepare nanofibers. Nevertheless, some problems need to be addressed for
further practical applications, such as improving the productivity of nanofibers and enhancing the
quality of nanofibers [9]. The productivity of nanofibers with the conventional single-needle method is
very low. How to improve the productivity of nanofibers is a significant research topic.

Many methods have been attempted to improve the productivity of nanofibers. A simple
approach was to increase the number of needles to develop a multi-needle electrospinning setup [10,11].
Although the productivity of nanofibers could be improved in this way, some shortcomings of the
multi-needle electrospinning setup still existed, such as difficulty in needle cleaning and the occurrence
of corona discharge between the needles. Therefore, needleless electrospinning technology has been
paid much attention as a new kind of method to produce nanofibers. The key issue was to design a
spinneret that could simultaneously generate multiple jets for needleless electrospinning. All sorts
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of spinnerets were developed and investigated from 2004 up to present. Yarin and Zussman first
proposed needleless electrospinning to form multiple nanofibers, and they used a two-layer system
to generate steady vertical spikes on the upper layer of a polymer solution [12]. However, we found
that this method produced less nanofiber from its typical optical image. A rotating cylindrical roller
was developed to generate multiple jets for improving the productivity of nanofibers [13]. Currently,
this electrospinning equipment named “Nanospider” has been reported and commercialized by the
Elmarco company. In the following years, many electrospinning spinnerets were presented, such as
rotary cone [14], metal roller [15], bubble [16,17], cylinder [18], disk [19], spiral coil [20], conical
wire coil [21], stepped pyramid-shaped [22,23], multiple-ring [24], twisted wire [25], metal dish [26],
needle-disk [27], and sprocket wheel disk [28]. Some important common issues were still found when
these spinnerets were used to produce nanofibers, such as large area solvent volatilization, thick
nanofiber diameter, and broad nanofiber diameter distribution. These problems have significantly
impacted on the process of electrospinning and the quality of nanofibers. Therefore, a new spinneret
still needs to be developed and investigated to overcome these problems. In recent years, our research
group developed the annular spinneret, reducing solvent volatilization and making use of polymer
solution [29,30]. Molnar used a shear-aided annular needleless electrospinning method to generate
nanofibers, and the shearing effect could decrease the shear-thinning solution, which made it easy to
form jet initiation [31]. These research works provided some novel ideas for further study to improve
the optimization of the needleless electrospinning spinneret.

In this study, we presented a linear flume spinneret to fabricate nanofibers. Multiple jets could
be formed on the top of the linear flume spinneret. Finite element analysis software was adopted to
simulate the electric potential and the electric field distribution profiles. Both the electric potential
value and the electric field intensity around the linear flume spinneret were also investigated. Later
on, we further examined the effects of different spinning process parameters on the morphology and
nanofiber diameter. The results demonstrated that small diameter and narrow distribution nanofibers
could be achieved by adjusting the spinning process parameters. The average nanofiber diameter
was 108 ± 26 nm. The average error was 24%. The productivity of nanofibers reached 4.85 ± 0.36 g/h,
which was about 24 times more than that of the single-needle method. This linear flume spinneret has a
great advantage to improve the quality and productivity of nanofibers. Moreover, this electrospinning
setup has a significant potential for realizing the industrialization of nanofibers.

2. Experiment Details

2.1. Materials

Polyacrylonitrile (PAN) with a molecular weight of 75,000 g/mol was purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). N,N-Dimethylformamide (DMF) was purchased
from Shanghai Lingfeng Chemical Reagent Co., Ltd. (Shanghai, China). PAN powder was dissolved
in DMF to form polymer solution with three different concentrations (10 wt %, 11 wt %, 12 wt %).
The PAN solutions were stirred on a magnetic stirrer for 24 h to form a homogeneous light-yellow
transparent solution.

2.2. Needleless Electrospinning Apparatus

The apparatus of needleless electrospinning consisted of a linear flume spinneret, control pump,
polymer solution, collector and a high voltage electrostatic generator, which are showed in Figure 1A.
The polymer solution was transported to the linear flume spinneret. The solution flow rate of the
polymer solution was accurately controlled by the control pump. The collector rotating at the speed
of 70 r/min was used to collect generated nanofibers. Figure 1B shows the linear flume spinneret
spinning process. Two rows of jets were formed simultaneously on the surface of the spinneret.
An electrospinning video can be seen in the Supplementary Materials. The number of multiple jets
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was 2–3 jets/cm. A SEM image of nanofibers is showed in Figure 1C. We found that small and uniform
distribution nanofibers could be fabricated successfully.
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Figure 1. (A) Schematic of the multiple-jet needleless electrospinning setup, the shape of spinneret at
the top right corner, (B) photograph of the linear flume spinneret spinning process, enlarged picture of
multiple jet formation at the top right corner, (C) SEM image of nanofibers.

2.3. Characterization and Measurement

A scanning electron microscope (SEM, Quanta-250, Hillsboro, Oregon, USA) was used to observe
the morphology of nanofibers. One hundred nanofibers in the SEM image were selected to measure
the nanofiber diameter and diameter distribution using Image J software (v1.8.0, NIH, Bethesda, MD,
USA). The productivity of nanofibers was weighted using electronic balance (FA2004A, Shanghai
Jingtian Electronic Instrument Co., Ltd, Shanghai, China). The electric potential and the electric field
distribution of the linear flume spinneret were simulated using the finite element analysis software
entitled COMSOL Multiphysics 5.0 (COMSOL company, Stockholm, Sweden). A geometric model was
established according to the actual size of the electrospinning setup. Mesh generation could be carried
out with self-contained procedures. Electric potential and electric field distribution were displayed in
the form of the contour.

3. Results and Discussion

3.1. Electric Field Simulation of the Linear Flume Spinneret

The electric field of the needleless electrospinning spinneret played an important role in the
formation of multiple jets during electrospinning. Therefore, we adopted finite element analysis
software to simulate the electric potential and electric field intensity of the linear flume spinneret.
Figure 2A–D shows the electric potential and electric field of the linear flume spinneret. It is obvious
that intuitive changes in electric potential and electric field are found from the contour and curve.
Figure 2A presents the electric potential contour of the linear flume spinneret with the applied voltage
of 60 kV. The distance between spinneret and collector was 20 cm. The linear flume spinneret showed
the highest electric potential, and then the electric potential gradually decreased. This situation can
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be seen clearly from the changes in color. The relationship between the surface of the linear flume
spinneret and the electric potential was investigated, which is visualized by using curve mode in
Figure 2B. Two peaks of the electric potential curve are found around 150 mm, which represent the
two points of the highest electric potential, about 6 × 104 V. In fact, the two points are two lines for
the linear flume spinneret in three-dimensional space. The polymer solution was stored in the flume.
Two rows of jets could be formed from the two peak lines of the spinneret when the electric force
exceeded the join forces of surface tension force and viscosity resistance. Figure 2C shows the electric
field distribution contour of the linear flume spinneret. The electric field intensity along the surface of
the linear flume spinneret is examined in Figure 2D. We found that the two peak values of electric field
intensity were 1.2 × 107 V/m from the curve of the electric field intensity.
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Figure 2. Electric potential and electric field of the linear flume spinneret. (A) The contour distribution
and (B) curve of electric potential, the inset picture is an enlarge picture of the contour distribution
of electric potential, (C) the contour distribution and (D) curve of electric field, the inset picture is an
enlarge picture of the contour distribution of electric field. All black dotted lines represent the top of
the linear flume spinneret.

3.2. Effects of the Spinning Process Parameters on the Morphology of Nanofibers

Figure 3 shows the effects of spinning process parameters on the morphology of nanofibers when
the collection distance is 15 cm. Three different solution concentrations and three different applied
voltages were selected to fabricate nanofibers. Nine SEM images were obtained to compare the features
of nanofibers. Figure 3A–C presents the effects of different applied voltages on the morphology of
nanofibers when the solution concentration was 10 wt %. It is obvious that finer nanofibers could be
fabricated. The reason was that the solution concentration of 10 wt % was relatively low. Some bead
nanofibers can be seen in Figure 3C when the applied voltage is 65 kV. This was because a higher
electric force acted on the low concentration spinning solution to bring more solution volume within a
certain time. Meanwhile, the greater solution volume did not have enough time to form nanofibers
under the condition of the higher electric force. Meanwhile, the travel time to the collector was now
shorter, hence less evaporation time. Thus, bead nanofibers might be produced during electrospinning.
Figure 3D–F shows the effect of different applied voltages on the morphology of nanofibers when the
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solution concentration was 11 wt %. The morphology of nanofibers became coarse compared with the
solution concentration of 10 wt %. We found that no bead nanofibers could be fabricated successfully.
Figure 3G–I exhibits the effect of different applied voltages on the morphology of nanofibers when the
solution concentration was 12 wt %. The morphology of nanofibers became thicker compared with the
solution concentration of 11 wt %. Therefore, it is very important for us to select the suitable solution
concentration and applied voltage for preparing the desirable morphology and diameter of nanofibers.
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Figure 3. SEM images of nanofibers under different conditions of the spinning process. (A) 55 kV,
10 wt %; (B) 60 kV, 10 wt %; (C) 65 kV, 10 wt %; (D) 55 kV, 11 wt %; (E) 60 kV, 11 wt %; (F) 65 kV, 11 wt %;
(G) 55 kV, 12 wt %; (H) 60 kV, 12 wt %; (I) 65 kV, 12 wt %. Scale bar = 5 µm.

3.3. Effects of the Spinning Process Parameters on Nanofiber Diameter

The spinning process parameters including solution concentration, applied voltage and collection
distance had a direct influence on the nanofiber diameter. Figure 4 shows the experiment results.
Figure 4A presents the effects of the different solution concentrations (10, 11 and 12 wt %) on the
nanofiber diameter. In order to investigate the nanofiber diameter more accurately, three different
applied voltages (55, 60 and 65 kV) were used to fabricate nanofiber membranes for each solution
concentration. As shown in Figure 4B, the average nanofiber diameter and average error could be
calculated according to three different nanofiber membranes by using three different applied voltages
for each solution concentration. The average nanofiber diameters were 108 ± 26, 170 ± 39 and 210 ± 55
nm, and the average errors were 24%, 23% and 26% for solution concentrations of 10, 11 and 12 wt %,
respectively. We found that the average nanofiber diameter gradually increased with the increasing of
solution concentration. A high solution concentration led to more macromolecular chain entanglement,
so the nanofiber diameter increased. Here, the average error was an important index to evaluate the
dispersion degree of nanofibers, which could reflect the quality of nanofibers. Low error represented a
small dispersion degree, which demonstrated a high quality of nanofibers. The results showed that
the average error increased with the higher solution concentrations. Therefore, it was very important
for improving the quality of nanofibers to adjust to an appropriate solution concentration. Figure 4C
shows the effect of applied voltage on the nanofiber diameter under the condition of three different
solution concentrations. As for each applied voltage, we found that the nanofiber diameter gradually
increased with the increasing of solution concentration. Figure 4D presents the results of average
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nanofiber diameter and average error with the increasing of applied voltages. The average nanofiber
diameters were 164 ± 37, 171 ± 45 and 153 ± 26 nm, and the average errors were 23%, 26% and 17% for
applied voltages of 55, 60 and 65 kV, respectively. We found that the average nanofiber diameter first
increased and then decreased with the increasing of applied voltage. This may be explained by the
interaction between electrostatic force and viscous resistance. The results indicated that the applied
voltage had a different impact on the nanofiber diameter compared with the solution concentration.
It should be noted that the average error first increased and then decreased with the increasing of
applied voltage. The error was only 17% when the applied voltage was 65 kV. This result proved
that a feasible method to improve the quality of nanofibers was to use a higher voltage to fabricate
nanofibers. The effect of collection distance on nanofiber diameter under the condition of three different
applied voltages is showed in Figure 4E. For each collection distance, the nanofiber diameter first
increased and then decreased with the increasing of collection distance. Figure 4F exhibits the results of
average nanofiber diameter and average error with the increasing of collection distances. The average
nanofiber diameters were 108 ± 26, 152 ± 35 and 167 ± 41 nm, and the average errors were 24%, 23%
and 25% for collection distances of 15, 20 and 25 cm, respectively. It was found that the average
nanofiber diameter gradually increased with the increasing of collection distance. The reason was
that increasing the collection distance weakened the electric field intensity between the linear flume
spinneret and collector. Those jets were not adequately stretched, therefore, the nanofiber diameter
became thicker. The average error for nanofiber diameter showed little change with the increasing
of collection distances. The error was only 23% when the collection distance was 20 cm. Except for
solution concentration and applied voltage, collection distance was also an important parameter and it
should be considered during needleless electrospinning.
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3.4. Effects of the Spinning Process Parameters on the Productivity of Nanofibers

Compared with the single-needle electrospinning setup, the linear flume spinneret needleless
electrospinning approach could significantly enhance the productivity of nanofibers. We investigated
the effect of different spinning process parameters on the productivity of nanofibers. Figure 5A
shows the influence of solution concentration on the productivity of nanofibers. It is obvious that the
productivity of nanofiber increased with the increasing of solution concentration. The reason was
that increasing the nanofiber diameter improved the productivity. The productivity of nanofibers
reached 3.91 ± 0.35 g/h. The impact of the applied voltage on the productivity of nanofibers is
showed in Figure 5B. The productivity of nanofibers also increased with the increasing of applied
voltage. This was because that more jets could be formed under the higher applied voltage. We also
examined the effect of collection distance on the productivity of nanofibers. In contrast with solution
concentration and applied voltage, the productivity of nanofibers decreased dramatically with the
increasing of collection distance. The increase in collection distance caused the lowering of the
electric field intensity of the linear flume spinneret, which could reduce the number of multiple jets.
In addition, the increased collection distance also led to more nanofibers being able to drift away in
the air. Therefore, the productivity of nanofibers decreased with the increasing of collection distance.
The spinning time also played an important role in improving the productivity of nanofibers. Figure 5D
presents the influence of the spinning time on the productivity of nanofibers. The productivity of
nanofibers was 4.85 ± 0.36 g/h when the spinning time was 14 min, which was about 24 times more than
that of the single-needle method. Compared with the single-needle electrospinning setup, the spinning
efficiency could be greatly improved with the linear flume spinneret needleless electrospinning setup.
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4. Conclusions

In this study, we developed a novel linear flume spinneret to produce multiple jets and fabricate
nanofibers by needleless electrospinning technology. Multiple jets with two rows were generated
from the surface of the linear flume spinneret. The electric potential and electric field intensity of the
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linear flume spinneret were investigated. The effects of different spinning process parameters on the
nanofiber diameter and error were examined in detail. The productivity of nanofibers was calculated
with the different spinning process parameters. The average diameter of nanofibers was controlled
between 108 and 210 nm, and the average error of nanofibers was controlled between 17% and 26%.
The productivity of nanofibers reached 4.85 ± 0.36 g/h, which was about 24 times more than that of
the single-needle method. Therefore, high-quality nanofibers could be fabricated by adjusting the
spinning process parameters, and this novel linear flume spinneret has great potential for producing
high-quality and high-productivity nanofibers.
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