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Abstract: Novel fluorinated polyhedral oligomeric silsesquioxane (POSS) acrylic copolymers were
synthesized by the radical solution polymerization. The superhydrophobic coating was prepared
using a one-step breath figure method. Chemical constitution, morphology, hydrophobicity,
and anticorrosion ability of as-prepared coatings were investigated by the corresponding equipment.
The addition of proper fluorinated POSS can synchronously promote the formation of the micro-nano
convex structure and the enrichment of fluorinated groups on the surface. Compared to commercial
acrylic coating, the fluorinated POSS coating presented enhanced anticorrosion performance.
The impedance was the highest and the corrosion current density was the lowest for superhydrophobic
coating with 25 wt % fluorinated POSS.

Keywords: fluorinated POSS acrylic copolymers; superhydrophobic coating; one-step breath figure
method; chemical constitution; morphology; hydrophobicity; anticorrosion performance

1. Introduction

Researches on superhydrophobic surfaces with a water contact angle (WCA) of more than
150◦ [1] have been widely investigated due to its great potential application in the areas of corrosion
protection [2,3], self-cleaning [4,5], oil/water separation [6,7], etc. Water repellency is dependent on
the microstructure and chemistry of the surfaces. For a flat surface, theoretical calculation shows that
the highest contact angle of water could reach 120◦ [8,9]. It is well known that creating appropriate
roughness on a hydrophobic surface or modifying a rough one by low-surface-energy materials are
two main routes to obtain super-hydrophobic surfaces [10].

The porous structure is a typical topological structure with greater roughness than the flat film.
The breath figures (BF) method is a self-assembly template technology and has been widely employed
to form porous polymer films because of a reduction in the production time and costs [11]. The water
contact angles of different honeycomb porous films fabricated with PS [12], acrylate copolymers [13]
and other polymers via BF method range from 110◦ to 130◦. According to the reported literatures, there
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are three strategies to obtain the superhydrophobic property from the honeycomb porous structure
fabricated by the BF method. The first one is peeling off the top layer to provoke the fracture of the
pillars in pins and form a pincushion-like structure. Yabu et al. [14] prepared fluorinated acrylate
copolymer films with honeycomb porous structure using the BF method, and the superhydrophobic
behaviour was achieved by surface peeling with a maximum contact angle of 170◦. Super-hydrophobic
nano-needle arrays were simply fabricated by removing the top portion of the honeycomb films and the
maximum water contact angle was 150◦ [15]. The second one is implementing another surface texturing
on the ordered honeycomb surfaces. Brown et al. [16] introduced cross-linking and surface texturing
by CF4 plasmachemical fluorination on the polybutadiene honeycomb surfaces with the contact angle
increasing to 170◦. The porous PS/SiO2 films were furthermore modified by chemical vapour deposition
(CVD) of chlorotrimethylsilane on the film surface under 100 ◦C for 2 h to achieve the superhydrophobic
behaviour [12]. Reducing the pore size and rim width under controllable conditions is the third
viable strategy to obtain the desired film. A superhydrophobic honeycomb-patterned film with 300
nm pores and 200 nm rim was prepared with the wet film thickness of 100 µm on a glass substrate
modified by ultra-ozone treatment, immersion in perfluorooctylchlorosilane solution and baking at
120 ◦C [17]. However, these strategies for fabrication of porous structure with superhydrophobic
behaviour contain severe conditions, such as surface peeling, second surface texturing, and complex
multi-step processing, limiting their practical application.

Over the past decades, inspired from nature self-cleaning surface, a lot of surface structures have
been proposed to be superhydrophobic, such as hierarchical stripes [18], hemispheroid [19], spikes [20],
interlaced Noodles or refibres [21–23] and random stacking nano-particle [24–27]. The characteristics
of the convex sections contacting with water droplets on these structures almost are nano-micro
hierarchical and discrete. Meanwhile, the discreteness spikes pattern structure was proved to be highly
hydrophobic in spite of low roughness, compared with shallow cavities and stripes [28]. Therefore,
a hierarchical and discrete rim structure of the porous film prepared via controllable BF method might
further enhance the water repellency. In the traditional BF process, the formation of honeycomb
structures required that the condensed water droplets can be stabilized by an end-functional polymer
or by particles added to the polymer solution [29]. Coalesce action occurred when the condensed
water droplets were not very stable during the BF process [30]. However, it is difficult to control
the coalesce action to break the rim into discrete structure and there are no reports related to the
formation of hierarchical and discrete rim structure depending on the fusion of water droplets during
the BF method.

Polyhedral oligomeric silsesquioxane (POSS), the smallest hybrid particle of silica [31], is a
cube-octameric molecule with an inner inorganic Si-O-Si structure that is externally covered by organic
substituents [32,33]. In the past decades, POSS-incorporated polymer materials have attracted increasing
interest due to the using in the construction of the multifunctional nanohybrids and nanocomposites
with tunable hierarchical structures and unparalleled properties [34–36]. Several different POSS
fluorinated acrylates were synthesized and applied for hydrophobic honeycomb-patterned porous
films through the breath figure (BF) method [37,38]. It has been proved that the addition of POSS was
propitious to from the honeycomb structures during the BF process. However, the reported POSS
fluorinated acrylates are incapable of controlling the coalesce action of water droplets during the
BF process.

Here, a fluorinated POSS with seven fluorine-containing groups connected with the Si atom was
synthesized and used to tune the amphipathic property of POSS-based polymer. Then, we proposed a
one-step BF process for the fabrication of a superhydrophobic surface with the fluorinated POSS-acrylate
random copolymer solution. The hierarchical and discrete convex structure of the superhydrophobic
surface was constructed by taking advantage of the self-assembly of the fluorinated POSS in the forming
process of BF pattern. The variation of surface topographies and wettability as a function of fluorinated
POSS content was investigated. The electrochemical behaviours of the fabricated superhydrophobic
surface were discussed in detail. The resultant superhydrophobic surface exhibits a remarkable marine
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anticorrosion ability. We believe this one step BF process may supply great convenience for constructing
the superhydrophobic surface and extending its potential functional applications.

2. Materials and Methods

2.1. Materials

3,3,3-trifluoropropyl trimethoxysilane (TFP-TMS) and 2-Perfluorohexyl ethyl methacrylate
(PFHEMA) were purchased from Qinba Chemical Co., Ltd., Shanghai, China. Methylacrylatepropyl
trichlorosilane (MAPTS) was supplied by Gelest. Methyl methacrylate (MMA) and butyl acrylate (BA)
were obtained from BASF Chemical Co., Ltd., Tianjin, China. Acrylic acid (AA) was purchased from
Damao Chemical Reagent Factory, Tianjin, China. Azobisisobutyronitrile (AIBN) was supplied by
Kemiou Chemical Reagent Co., Ltd., Tianjin, China. Triethylamine, tetrahydrofuran, butyl acetate,
xylene, 1,1,2-trifluorotrichloroethane, chloroform and sodium hydroxide were obtained from China
National Medicines Co., Ltd. Calcium hydride was purchased from Aladdin Reagent Co., Ltd.,
Shanghai, China.

2.2. Synthesis of Methylacrylatepropyl Hepta(3,3,3-trifluoropropyl) POSS (7F-MAP-POSS)

Methylacrylatepropyl hepta(3,3,3-trifluoropropyl) POSS was prepared through a typically two-step
reaction (Figure 1). First, hepta(3,3,3-trifluoropropyl) tricycloheptasiloxane trisodium silanolate,
7F-T7-(ONa)3, was synthesized using the method reported by Fukuda et al. [39]. 3,3,3-trifluoropropyl
trimethoxysilane (50.0 g, 0.23 mol), THF (250 mL), deionized water (5.25 g, 0.29 mol) and sodium
hydroxide (3.95 g, 0.1 mol) were charged to a flask equipped with a reflux condenser and a magnetic
stirrer. After refluxed in an oil bath at 70 ◦C for 5 h, the reactive system was cooled down to room
temperature and held for 15 h with vigorous stirring. All the volatile components were removed
by rotary evaporation and the obtained white solids were dried at 40 ◦C in a vacuum for 24 h to
yield the 7F-T7-(ONa)3 as a white powder (38 g) in a quantitative yield. Second, 7F-MAP-POSS was
prepared by following the method reported by Ke Zeng et al. [40]. 7F-T7-(ONa)3 (10.0 g, 8.8 mmol)
and triethylamine (1.3 mL, 8.8 mmol) were charged to a flask equipped with a magnetic stirrer,
200 mL dry THF were added with vigorous stirring. The system was immersed into an ice-water bath
and purged using highly pure nitrogen for 1 h. Then, Methylacrylatepropyl trichlorosilane (2.91 g,
10.56 mmol) dissolved in 20 mL dry THF was slowly dropped within 30 min. After immersed in
the ice-water bath for 4 h, the reactive system was taken out and held at room temperature for 20 h
with vigorous stirring. The resultant precipitate was removed by centrifugal separation, and the
supernatant fluid was concentrated by a rotary evaporator to obtain a crude product. The obtained
7F-MAP-POSS was washed 3 times with 50 mL methanol and dried in vacuum at 40 ◦C for 24 h,
and 7.6 g of product was obtained. 29Si NMR (CDCl3, 400MHz) δ −67.61 (s, 1Si, Si–CH2CH2CH2-),
−69.94 (s, 3Si, Si–CH2CH2CF3), −69.44 (s, 1Si, Si–CH2CH2CF3), and −68.95 (s, 3Si, Si–CH2CH2CF3).
1H NMR (CDCl3, 400MHz) δ 0.62 (s, 2H, Si–CH2CH2CH2O–), 0.92 (m, 2H, Si–CH2CH2CF3), 1.18
(s, 2H, Si–CH2CH2CH2O–), 1.86 (s, CH3-C), 6.03 (s, 1H, C=CH2), 2.13 (s, 2H, –CH2CF3), 4.06 (s, 2H,
Si–CH2CH2CH2O–), 6.03 (s, 1H, C=CH2), 5.50 (s, 1H, C=CH2).
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Figure 1. Synthesis of 7F-Methylacrylatepropyl (MAP)-polyhedral oligomeric silsesquioxane (POSS).

2.3. Synthesis of the 7F-MAP-POSS-Acrylate Copolymers

The 7F-MAP-POSS-Acrylate copolymers were prepared by the radical solution polymerization
(Figure 2). The reaction solvent (15 g), butyl acetate/dimethylbenzene (v/v, 1:1), was placed into a
flask equipped with a reflux condenser and a magnetic stirrer at 85 ◦C. Then the system was purged
using highly pure nitrogen for 30 min. A mixture of MMA (4.4 g), BA (1.45 g), AA (0.02 g), AIBN
(0.06 g) and the reaction solvent (1 g) was slowly dropped within 1h. After about 1h, the amount
of the solution (1 g), trifluorotrichloroethane (3 g), 2-Perfluorooctane ethyl methacrylate (1.5 g) and
AIBN (0.02 g) was added into the flask. After about 1h, the mixture of 7F-MAP-POSS (0, 0.82, 1.84 and
2.46 g for Samples 1–4 correspondingly), the reaction solvent (0, 3.28, 7.36 and 9.84 g for Samples 1–4
correspondingly) and AIBN (0, 0.001, 0.018, 0.025 g for Samples 1–4 correspondingly) was added into
the flask. After about 1 h, AIBN (0.015, 0.016, 0.018 and 0.020g for Samples 1–4 correspondingly) and
the reaction solvent (2 g) were added into the flask. After being stirred for another 4 h, the reactants
were concentrated by a rotary evaporator. The resulting production was precipitated in cool methanol
and dried under vacuum at 40 ◦C for 24 h. The obtained samples 1–4 (6.3, 6.9, 7.8 and 8.4g) were
named as FAC, FPOSS10-FAC, FPOSS20-FAC and FPOSS25-FAC with the 7F-MAP-POSS content of 0,
10, 20 and 25 wt %, respectively.
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Figure 2. Synthesis of 7F-MAP-POSS-Acrylate copolymers.

2.4. Preparation of the Superhydrophobic 7F-MAP-POSS-Acrylate Copolymer Coatings

Firstly, the Q235 steel sheets were cleaned by successively wiping the surface with absolute ethanol
and chloroform and dried under atmosphere. Then, 7F-MAP-POSS-Acrylate copolymer solutions of
fixed volume in chloroform were directly cast onto the Q235 steel substrates. The wet coatings were
blown by the humid air (relative humidity ~85% at room temperature) containing micro ultrasonic
atomized water droplets using the assembled equipment shown in Figure 3. The flow velocity was
approximately 0.8 m/s. The solidified film was then dried at room temperature.
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2.5. Characterizations

Fourier transform infrared (FT-IR) spectrum of F-POSS and F-POSS-Acrylate copolymer were
measured by a TENSOR 27 FT-IR spectrometer (Bruker, Karlsruhe, Germany) from 400 to 4000 cm−1.
The samples were prepared by following the KBr pellet method. 29Si NMR and 1H NMR spectrum of
7F-MAP-POSS before and after copolymerization process were recorded on a 500MHz AVANCE III
spectrometer (Bruker, Karlsruhe, Germany) using CDCl3 as a solvent. A gel permeation chromatography
(GPC) system (Agilent, Palo Alto, CA, USA) was calibrated with narrow molecular weight polystyrene
standards. The resulting calibration curves were used to estimate the molecular weights and
polydispersity (PD) of 7F-MAP-POSS-Acrylate copolymers. THF was introduced as the mobile



Polymers 2019, 11, 1953 6 of 19

phase at a flow rate of 1.0 mL/min. The concentrations of samples were 5.0 mg × mL−1, and the
injection volume was 100 µL for each analysis. The columns and detector were maintained at 40 ◦C.
Contact angles (CA) were measured using SL200KS contact angle analyzer (KINO, Boston, MA, USA)
that had a CCD camera equipped for image capture.

Scanning electron microscopy (SEM) images and energy dispersive spectrum (EDS) were taken
using a JSM-6700F scanning electron microscope (JEOL, Tokyo, Japanese). The surface morphology of
the films was observed after gold was sputtered onto the surfaces.

2.6. Electrochemical Tests

All the electrochemical tests were performed with AMETEK PARSTAT 4000 by immersing the
specimens into a 3.5% NaCl aqueous solution. In a typical process, a standard three-electrode system
equipped with a saturated calomel reference electrode, Pt plate as a counter electrode and specimen as
the working electrode were employed. The electrochemical impedance spectroscopy (EIS) was carried
out at open circuit potential (OCP) in the frequency range of 105 Hz–10−2 Hz. Prior to electrochemical
tests, the specimens with 1 cm2 area exposure were immersed in 3.5% NaCl aqueous solution for
more than 30 min to stabilize the system. All of the EIS data were fitted and analysed through
ZSimpWin software. The polarization curves were recorded at a scan rate of 0.5 mV/s in the applied
potential range from −250 to 250 mV. Corrosion potential, Ecorr, current and icorr, were derived from
the potentiodynamic polarization curves after Tafel extrapolation.

3. Results and Discussion

3.1. Chemical Characterization

The chemical composite and structure of 7F-MAP-POSS and 7F-MAP-POSS acrylate copolymers
were characterized by NMR and FTIR. As shown in Figure 4, the 29Si NMR spectroscopy was used
to demonstrate the formation of an octameric silsesquioxane cage. The resonance at −67.61 ppm is
assignable to the corner silicon atom connected to methylacrylatepropyl group [41], while the signals of
resonance at −69.94, −69.44 and −68.95 ppm are ascribed to the other silicon nucleus of silsesquioxane
with different distances from the corner silicon atom. In terms of the ratio of integration intensity of
the resonance [28], it is confirmed that the octameric silsesquioxane was formed.
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The chemical structure of 7F-MAP-POSS acrylate copolymer is confirmed by comparison of its
1H NMR spectrum in Figure 5B with the one of 7F-MAP-POSS in Figure 5A. Except for the typical
resonance at 0.92 (–Si–CH2CH2CF3) and 2.13 (–CH2CF3) for 7F-MAP-POSS [42], the appearances
of the methylene group at 3.62 ppm corresponding to CH3O– were found indicating the successful
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polymerization of MMA. The signal at 3.80–4.15 ppm from –CH2CH2O– and 2.26 ppm assigned
to –CH2CH2–CF2– can confirm the successful polymerization of PFHEMA. The polymerization of
BA can be proved by the signal at 3.80–4.15 ppm (–CH2CH2O–), 1.25–1.81 ppm (–CH2CH2–CH2–)
and 0.84 ppm (–CH3). Unfortunately, the polymerization of AA cannot be confirmed from the 1H
NMR spectrum because of the minimal addition. The FT-IR spectrum of MAP-TS, 7F-T7-(ONa)3,
7F-MAP-POSS and as-prepared copolymers were shown in Figure 6. In the curve of 7F-MAP-POSS,
the peak at 1120 and 1230 cm−1 are attributed to Si-O-Si and C-F groups, respectively. The appearance of
the MAP group in the structure of 7F-MAP-POSS can be proved by strong vibration bands at 1730 cm−1

(C=O) and 2960 cm−1 (CH3). Meanwhile, the peaks in the range of 3400–3600 cm−1 (OH) in spectra
of MAP-TS and 7F-T7-(ONa)3 are disappeared in 7F-MAP-POSS due to the complete corner-capping
reaction between MAP-TS and 7F-T7-(ONa)3. For the copolymers, the characteristic bands at 1737 cm−1

is assigned to the carbonyl group in MMA, PFHEMA, BA, AA and 7F-MAP-POSS units, while the
bands at 1240 cm−1 are attributed to C-F group. The peak at 1141 cm−1 is due to the combination of
stretching vibration of C-O-C and Si-O-Si. The NMR and FTIR analysis verified the successful synthesis
of 7F-MAP-POSS and FPOSS-FACs.
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On the other hand, the molecular weights and their polydispersity (PDI) of FAC and
7F-MAP-POSS-Acrylate copolymers are calculated from GPC curves (Table 1). With the increasing
of 7F-MAP-POSS content, the molecular weights are increased from 28,215 g·mol−1 for FAC to
31,378 g·mol−1 for FPOSS20-FAC with a little wide PDI of 1.9–2.0. However, the molecular weights
were decrease to 29,415 g·mol−1 for FPOSS25-FAC when the 7F-MAP-POSS. Therefore, the obtained
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results indicate that 7F-MAP-POSS is successfully reacted with the other acrylate monomers to form a
7F-MAP-POSS-Acrylate copolymer.Polymers 2019, 11, x FOR PEER REVIEW 8 of 19 
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Table 1. Molecular Weights and distribution of acrylate polymer with different F-POSS contents.

Sample FPOSS (wt %) Mn (g/mol) Mw (g/mol) PDI (Mw/Mn)

FAC 0 14,293 28,215 1.974
FPOSS10-FAC 10 15,435 30,669 1.987
FPOSS20-FAC 20 16,106 31,378 1.945
FPOSS25-FAC 25 15,640 29,415 1.881

3.2. Morphology and Superhydrophobicity of the Superhydrophobic 7F-MAP-POSS-Acrylate
Copolymer Coatings

The 7F-MAP-POSS-Acrylate copolymer coatings cast from chloroform under a flow of humid air
were investigated via SEM. As shown in Figure 7a, the FAC coating without 7F-MAP-POSS showed
a relatively ordered sunk structure, and the WCA value was the lowest at 115◦. The highly ordered
porous structure displayed in Figure 7c demonstrates that the use of 7F-MAP-POSS can assist the pore
formation process from droplet nucleation through to chloroform evaporation and drying. The WCA
value was about 131◦, presenting a significantly hydrophobic property. The smaller surface tensions
of FPOSS10-FAC solution due to the addition of fluorinated POSS means that during film formation,
a bigger portion of the spherical water droplets may penetrate inside the solution before motion
freezing and film hardening [43]. However, when the content of 7F-MAP-POSS increased up to 20 wt %,
the increasing hydrophobicity of the copolymer derived from the fluorinated POSS would reduce the
stability of condensed water droplets. Subsequently, the growth of water droplets would be enhanced
and unstable, which led to the attenuation of the rim between two pores. An obvious coalescent of two
water droplets begins at the middle of the rim as marked by the red arrows. Finally, a disorder and
discrete convex rim structures were obtained as a result of the fusion indicated by two neighbouring
holes sharing a sunken part of the pore wall, as marked by the blue arrow. The WCA increases up to
143◦ because of the reduced surface of FPOSS20-FAC film in contact with the water. As the content
of 7F-MAP-POSS increased up to 25 wt %, the further enhanced hydrophobicity of the copolymer
would encourage the pores fusion and provoke the more fracture of the rim with the formation of
micro-nano convex structures shown in Figure 7g. The superhydrophobic film was obtained with the
WCA increasing up to 153◦.
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EDS was performed to analyse the elemental chemistry of the as-prepared surfaces and the result
was shown in Figure 7. From Figure 7b,d,f,h, we can see that the Si and F contents on the surfaces
increase with the 7F-MAP-POSS content. Therefore, the increasing WCA values can be explained by
the lower surface energy and the higher appropriate roughness. To investigate the migration behaviour
of 7F-MAP-POSS, the theoretical contents of Si and F elements were calculated and compared with the
measured values. As shown in Figure 8, the measured Si and F contents on the surfaces prepared from
the 7F-MAP-POSS acrylate copolymers were higher than the calculated ones due to the migration and
enrichment of PFHEMA and 7F-MAP-POSS onto the surface.Polymers 2019, 11, x FOR PEER REVIEW 11 of 19 
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To investigate the roughness of FPOSS-FAC film with different 7F-MAP-POSS contents, AFM was
performed on the surfaces, and the results were shown in Figure 9. For the FPOSS10-FAC, the copolymer
area was relatively smooth, and the Ra value was 279 nm by measurement. However, the Ra value
decreased with the addition of 7F-MAP-POSS. When the 7F-MAP-POSS content increased to 25 wt %,
the Ra value reduced to 228 nm and the copolymer area was rough. These results were inconsistent
with the WCAs. The grey scale analysis method by imaging software was applied to the SEM images
under 2000×magnification of the FPOSS-FAC film (Figure 10a,c,e). The convex sections of the surfaces
were separated and displayed as black areas in Figure 10b,d,f. For FPOSS20-FAC and FPOSS25-FAC,
the convex sections presented an obviously discrete distribution. If the convex sections were equivalent
to the independent circular structure, the sizes and numbers of the discrete sections could be obtained
using imaging software. As shown in Figure 11, the numbers of convex sections with the equivalent
diameter less than 1.0 µm on FPOSS25-FAC film was larger than that for FPOSS20-FAC film and the
total number was twice as many as the one for FPOSS20-FAC film. These results demonstrated that a
remarkable micro-nano structure was fabricated by the one-step BF method from the FPOSS25-FAC.



Polymers 2019, 11, 1953 11 of 19

Polymers 2019, 11, x FOR PEER REVIEW 11 of 19 

 

 
Figure 8. Theoretical and measured Si and F elements contents of as-prepared coatings. 

To investigate the roughness of FPOSS-FAC film with different 7F-MAP-POSS contents, AFM 
was performed on the surfaces, and the results were shown in Figure 9. For the FPOSS10-FAC, the 
copolymer area was relatively smooth, and the Ra value was 279 nm by measurement. However, the 
Ra value decreased with the addition of 7F-MAP-POSS. When the 7F-MAP-POSS content increased 
to 25 wt %, the Ra value reduced to 228 nm and the copolymer area was rough. These results were 
inconsistent with the WCAs. The grey scale analysis method by imaging software was applied to the 
SEM images under 2000× magnification of the FPOSS-FAC film (Figure 10a,c and e). The convex 
sections of the surfaces were separated and displayed as black areas in Figure 10b,d and f. For 
FPOSS20-FAC and FPOSS25-FAC, the convex sections presented an obviously discrete distribution. 
If the convex sections were equivalent to the independent circular structure, the sizes and numbers 
of the discrete sections could be obtained using imaging software. As shown in Figure 11, the 
numbers of convex sections with the equivalent diameter less than 1.0 μm on FPOSS25-FAC film was 
larger than that for FPOSS20-FAC film and the total number was twice as many as the one for 
FPOSS20-FAC film. These results demonstrated that a remarkable micro-nano structure was 
fabricated by the one-step BF method from the FPOSS25-FAC. 

 
Figure 9. AFM morphologies and surface roughnesses of FPOSS10-FAC (a), FPOSS20-FAC (b) and 
FPOSS25-FAC (c). 

Figure 9. AFM morphologies and surface roughnesses of FPOSS10-FAC (a), FPOSS20-FAC (b) and
FPOSS25-FAC (c).

Polymers 2019, 11, x FOR PEER REVIEW 12 of 19 

 

 

Figure 10. SEM images under 2000× magnification and corresponding grey analysis results of 
FPOSS10-FAC (a,b), FPOSS20-FAC (c,d) and FPOSS25-FAC (e,f). 

According to Cassie’s law [44]: 

𝐜𝐨𝐬𝜽∗ = ∅𝒔 𝟏 + 𝒄𝒐𝒔𝜽𝒆 − 𝟏  

where 𝜽∗ is the superficial contact angle; 𝜽𝒆 represents the contact angle of the flat film; ∅𝒔 denotes 
the fractional flat geometrical area of liquid–polymer interface beneath a water droplet. As shown in 
Figure 7, the surface area fractions of the films (∅𝒔) were calculated. By using the Cassie’s equation, 
the theoretical contact angles were calculated from the obtained ∅𝒔 and the WCAs on the flat films. 
From the Figure 12, we can see that the WCA increases with the 7F-MAP-POSS content increases and 
all the measured values of the copolymers containing 7F-MAP-POSS were higher than the calculated 
ones. Notably, the highest WCA was measured to be 153° with the biggest difference compared to 
the theoretical value when the fluorinated POSS content increases up to 25 wt %. This is because the 
convex structures were mountain-like shapes with uneven distribution in the high direction. Thus, 
the real contact area is smaller than the calculated value from the image above.  

Figure 10. SEM images under 2000× magnification and corresponding grey analysis results of
FPOSS10-FAC (a,b), FPOSS20-FAC (c,d) and FPOSS25-FAC (e,f).



Polymers 2019, 11, 1953 12 of 19Polymers 2019, 11, x FOR PEER REVIEW 13 of 19 

 

 

Figure 11. Equivalent diameter distribution of the convex structures of FPOSS20-FAC and FPOSS25-
FAC. 

 

Figure 12. Theoretical and measured contact angles of FPOSS10-FAC, FPOSS20-FAC and FPOSS25-
FAC. 

Although the procedure is simple, the formation mechanism of BF arrays is very complicated. 
According to the above analysis, the formation mechanism of micro-nano structure with low surface 
energy using the one step BF method was deduced and illustrated by Figure 13. Above all, the as-
prepared copolymer dissolved in chloroform is cast onto a substrate and then exposed to humid air 
flow. The temperature decreases quickly due to the endothermic evaporation of chloroform. In the 
following period, water condenses in the form of heterogeneous droplets on the partial surface. Then, 
compared with a tight and organized arrangement formed in the traditional BF process, disordered 
water droplets array was formed and resulted in the attenuation of the water droplets. Meanwhile, 
the condensed droplet can sink into the solution. The migration and enrichment of PFHEMA and 7F-
MAP-POSS onto the surface occurred in the whole process. After the chloroform and water droplets 
completely evaporated, the micro-nano structures with low surface energy were obtained. 
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and FPOSS25-FAC.

According to Cassie’s law [44]:

cosθ∗ = Os(1 + cosθe) − 1

where θ∗ is the superficial contact angle; θe represents the contact angle of the flat film; Os denotes
the fractional flat geometrical area of liquid–polymer interface beneath a water droplet. As shown in
Figure 7, the surface area fractions of the films (Os) were calculated. By using the Cassie’s equation,
the theoretical contact angles were calculated from the obtained Os and the WCAs on the flat films.
From the Figure 12, we can see that the WCA increases with the 7F-MAP-POSS content increases and
all the measured values of the copolymers containing 7F-MAP-POSS were higher than the calculated
ones. Notably, the highest WCA was measured to be 153◦ with the biggest difference compared to
the theoretical value when the fluorinated POSS content increases up to 25 wt %. This is because the
convex structures were mountain-like shapes with uneven distribution in the high direction. Thus,
the real contact area is smaller than the calculated value from the image above.
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Although the procedure is simple, the formation mechanism of BF arrays is very complicated.
According to the above analysis, the formation mechanism of micro-nano structure with low surface
energy using the one step BF method was deduced and illustrated by Figure 13. Above all,
the as-prepared copolymer dissolved in chloroform is cast onto a substrate and then exposed to
humid air flow. The temperature decreases quickly due to the endothermic evaporation of chloroform.
In the following period, water condenses in the form of heterogeneous droplets on the partial surface.
Then, compared with a tight and organized arrangement formed in the traditional BF process, disordered
water droplets array was formed and resulted in the attenuation of the water droplets. Meanwhile,
the condensed droplet can sink into the solution. The migration and enrichment of PFHEMA and
7F-MAP-POSS onto the surface occurred in the whole process. After the chloroform and water droplets
completely evaporated, the micro-nano structures with low surface energy were obtained.
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3.3. Anticorrosive Performance

Tafel curves and EIS data are two main methods for the evaluation of material corrosion
situation [45]. For comparison, acrylic resin films without the 7F-MAP-POSS were prepared by casting
commercial acrylic resin (YP2226, Shanghai yoo-pont chemical industry Co., LTD., Shanghai, China)
solution with the same volume and concentration onto a clean Q235 iron plate under atmosphere
condition. After 7 d immersion, the Tafel curves and electrochemical parameters of the substrate,
commercial acrylic resin film (AC) and as-prepared specimens containing 7F-MAP-POSS (FPOSS10-FAC,
FPOSS20-FAC and FPOSS25-FAC) were depicted in Figure 14 and Table 2, respectively.

Obviously, the Tafel curves of these coating systems shifted to the positive direction compared
with Q235 steel, suggesting that the coatings as a shield could effectively restrain the corrosion of
Q235 steel [46]. In the meantime, with the exception of the base substrate, the commercial acrylic
coating presented the lowest Ecorr (−0.424 V) and the highest icorr (4.43 × 10−7 A cm−2), which indicated
the fluorinated coating could obviously enhance the Ecorr and reduce the icorr values. Especially,
for the FPOSS25-FAC specimen, the icorr value was 1–2 orders of magnitude lower than that of other
coatings. This could be explained by the highest water repellency due to the formation of micro and
nanostructures. Furthermore, the inhibition efficiency (IE) was consistent with the evolution of icorr

value, the result of which were 96.44% (AC), 99.22% (FPOSS10-FAC), 99.83% (FPOSS20-FAC) and
99.98% (FPOSS25-FAC), suggesting the addition of 25 wt % 7F-MAP-POSS produced the best shielding
effect for Q235 substrate.
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Table 2. The electrochemical parameters of the substrate and the coating systems.

Sample Ecorr (V) icorr (A cm−2) IE%

Substrate –0.598 1.25 × 10−5 -
AC –0.424 4.43 × 10−7 96.44

FPOSS10-FAC –0.371 7.20 × 10−8 99.42
FPOSS20-FAC –0.318 2.11 × 10−8 99.83
FPOSS25-FAC –0.320 2.01 × 10−9 99.98

The EIS data of Q235 substrate and as-prepared specimens was shown in Figure 15. For Nyquist
image, two capacitive loops were observed for all specimens after immersion for 1 d (Figure 15a,c,e,g).
Meanwhile, the capacitive loop of all specimens displayed a contractive trend as the increase of
immersion time, indicating a decline in corrosion resistance. However, the radii of the capacitive loop
were increased by the addition of 7F-MAP-POSS and the improvement degree was the largest for
FPOSS25-FAC coating. For Bode plot, the impedance modulus at low frequency |Z|0.01 Hz was broadly
used to evaluate the barrier ability of coating [47]. The higher the |Z|0.01 Hz is, the more outstanding the
anticorrosion ability is [48]. It can be seen that the |Z|0.01 Hz decreased with the increased of immersion
time for all coatings, which was because of the permeation of corrosion medium. The |Z|0.01 Hz of the
commercial acrylic coating was about 4.51 × 104 Ω cm2 during the initial stage of immersion (24 h) and
then decreased to 1.43 × 104 Ω cm2 after 7 d immersion (Figure 15b). For 7F-MAP-POSS-containing
coatings, the initial |Z|0.01 Hz of FPOSS10-FAC, FPOSS20-FAC and FPOSS25-FAC specimens were
4.07 × 105, 4.74 × 106 and 5.71 × 107 Ω cm2, respectively, implying a significant protective function for
bare substrate (Figure 15e,h,k). After 7 d immersion, the |Z|0.01 Hz of FPOSS10-FAC, FPOSS20-FAC
and FPOSS25-FAC specimens was reduced to 2.75 × 105, 1.07 × 106 and 2.16 × 107 Ω cm2, respectively.
In addition, the |Z|0.01 Hz of FPOSS25-FAC specimen with the super-hydrophobic surface at different
immersion time was evidently higher than other coatings, manifesting the best anticorrosion property.
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For further investigations, combining the EIS data with its suited electrical equivalent circuits,
we could compare the electrochemical behaviour of various coatings. These components, such as Rs,
Rc, Rct, Cc and Cdl, represent the solution resistance, pore resistance, charge transfer resistance, coating
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capacitance and double-layer capacitance, respectively (Figure 16a). Among them, the Rc value was
often chosen to assess the barrier effect of the specimen. Rct value was selected to reflect the corrosion
degree between coating and substrate [49,50]. By calculation, the Rc and Rct values for different coating
systems in 3.5% NaCl solution were shown in Figure 16b,c. In terms of Rc value, the commercial acrylic
coating presented the lowest Rc value than other coating systems and its Rc decreased from 1.30 × 105 to
1.28 × 103 Ω cm2 after the immersion of 7 days. FPOSS25-FAC coating with superhydrophobic surface
exhibited the highest Rc value of 1.32 × 107 Ω cm2 at the initial immersion and then maintained at
1.62 × 106 Ω cm2 after 7 days immersion. For Rct value, the evolution of Rct values for different coating
systems showed a similar tendency as R. The barrier ability of the coating system was sharply enhanced
and the corrosion rate of Q235 steel was significantly reduced with the addition of 7F-MAP-POSS,
especially forFPOSS25-FAC coating system.Polymers 2019, 11, x FOR PEER REVIEW 17 of 19 
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Figure 16. Electrical equivalent circuit models (a) and Rc (b) and Rct (c) of the coating systems at
various immersion times under 3.5% NaCl solution.

4. Conclusions

A superhydrophobic coating was successfully fabricated by BF method using an acrylic
copolymer containing fluorinated POSS (P(MMA-BA-AA-PFHEMA-7F-MAP-POSS)). The enhanced
hydrophobicity of the copolymer synchronously promoted the coalescence of the droplet to form
the micro-nano convex structure and the enrichment of fluorinated groups on the surface to reduce
the surface energy. The as-prepared superhydrophobic coating owned the lowest the lowest icorr

(2.01 × 10−9 A cm−2), the highest Ecorr (−0.320 V), the highest |Z|0.01 Hz (2.16 × 107 Ω cm2), the highest
Rc 1.62 × 106 Ω cm2 and the highest Rct (1.26 × 107 Ω cm2) after immersion of 7 d in 3.5% NaCl
solution. In summary, this experimental study proposed a facile one-step breath method to prepare
the superhydrophobic coating using a fluorinated POSS acrylic copolymer, which has a potential
application in the anticorrosion area.
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