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Abstract: The existing studies indicate that the application of piezoelectric polymers is becoming
more and more extensive, especially in the analysis and design of sensors or actuators, but the
problems of piezoelectric structure are usually difficult to solve analytically due to the
force—electric coupling characteristics. In this study, the bending problem of a piezoelectric
cantilever beam was investigated via theoretical and experimental methods. First, the governing
equations of the problem were established and non-dimensionalized. Three piezoelectric
parameters were selected as perturbation parameters and the perturbation solution of the
equations was finally obtained using a multi-parameter perturbation method. In addition, the
relevant experiments of the piezoelectric cantilever beam were carried out, and the experimental
results were in good agreement with the theoretical solutions. Based on the experimental results,
the effect of piezoelectric properties on the bending deformation of piezoelectric cantilever beams
was analyzed and discussed. The results indicated that the multi-parameter perturbation solution
obtained in this study is effective and it may serve as a theoretical reference for the design of
sensors or actuators made of piezoelectric polymers.

Keywords: multi-parameter perturbation method; piezoelectric polymers; experimental
verification; cantilever beam; force—electric coupling characteristics

1. Introduction

Piezoelectric polymers have been widely used in sensors, actuators, electronic information and
intelligent structures because of its great force—electric coupling characteristics [1-6].The
piezoelectric polymers usually participate in the work of piezoelectric instruments in the form of
piezoelectric sheets which usually are simplified to a piezoelectric cantilever beam [7-9].The
problems of piezoelectric cantilever beams are usually difficult to be solved analytically due to the
existence of the force—electric coupling constitutive relation. It is known that the design of
piezoelectric instruments often requires the analytical expression of the problem of piezoelectric
cantilever beams as a theoretical reference. Therefore, it is necessary and meaningful to find an
efficient analytical method for solving the problem of piezoelectric cantilever beams and giving their
analytical solutions.

In the past twenty years, many researchers have studied the problem of piezoelectric cantilever
beams and obtained some corresponding solutions. Wang and Chen [10] obtained a general solution
of the control equation for the three-dimensional problem of transverse isotropic piezoelectric
material by means of a set of new potential functions representing displacement component and
potential function, and solved the problem of spatial piezoelectric material under the action of
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concentrated transverse shear force. Lin et al. [11] derived the analytical expressions of displacement,
potential, and stress distribution of piezoelectric beams which were simply supported at both ends
under a uniform load. According to the plane stress problem, Mei and Zeng [12] directly derived the
equation of state of piezoelectric beams from the piezoelectric physical equation, and on this basis,
the exact state equation solution of electromechanical coupling effect of simply supported
piezoelectric beams at both ends under a uniform load was given. On the basis of three-dimensional
constitutive equations and their simplified equations of elastic piezoelectric materials, Zhu [13]
derived the analytic solution to a piezoelectric cantilever beam with concentrated force at the free
end in terms of displacements and voltage. For the orthotropic piezoelectric plane problem, Ding et
al. [14-16] solved a series of piezoelectric beam problems and obtained the corresponding exact
solutions with the trial and error method on the basis of the general solution in the case of three
distinct eigenvalues, and expressed all displacements, electrical potential, stresses, and electrical
displacements by three displacement functions in terms of harmonic polynomials. Yang and Liu [17]
investigated the bending of transversely isotropic cantilever beams under an end load, and derived
the simplified linear elastic equations of piezoelectric cantilever beams according to the characters of
the problem. Pang et al. [18] manufactured a typical Li- and Ta/Sb-modified, alkaline niobate-based,
lead-free piezoelectric ceramics by two-step sintering and investigated the sintering condition
dependence of dielectric constants and piezoelectric properties. Zhu et al. [19] studied the active
vibration control of piezoelectric cantilever beams, where an adaptive feed forward controller (AFC)
was utilized to reject the vibration with unknown multiple frequencies. Peng et al.[20] presented
time-delayed feedback control to reduce the non-linear resonant vibration of a piezoelectric elastic
beam and examined three single-input linear time-delayed feedback control methodologies:
displacement, velocity, and acceleration time-delayed feedback. Liu and Yang [21] studied the
bending problem of a cantilever beam made of a transversely isotropic piezoelectricity medium
under uniformly distributed loads. Shi et al. [22-23] studied the analytical solution of a density
functionally gradient piezoelectric cantilever under axial and transverse uniform loads and applied
DC voltages and then, solved the force—electric coupling plane strain problem of simply supported
beams under a uniform load by the inverse method. Wang et al. [24] dealt with the vibration analysis
of a circular plate surface bonded by two piezoelectric layers, based on the Kirchhoff plate model.
Recently, Lian et al. [25] studied the problem of a functionally graded piezoelectric cantilever beam
under combined loads, but non-dimensionalization was not considered in solving the problem.
There is still a lot of research performed in this field, which will not be elaborated here. The
summation of results of existing research shows that there are still some unsolved problems. First,
non-dimensionalization was not considered in the existing research. We know that piezoelectric
materials have not only mechanical properties, but also electrical properties. So, there are both
mechanical units and electrical units to be solved, which may lead to computational errors. Second,
the existing research basically provides theoretical solutions, but there are a few related
experimental verifications. Therefore, the reliability of theoretical solutions cannot be guaranteed.
Besides, there has been no unified and effective method for solving the problems of piezoelectric
structure.

Parameter perturbation method is a general analysis method for solving approximate solutions
of non-linear mechanical problems. It has been successfully applied to various fields of non-linear
structural analysis, such as non-linear bending and post-buckling, and has become a powerful tool
for solving non-linear problems of structures. Generally speaking, the perturbation method is based
on a selected small parameter. In order to solve the problem of parameter selection, Chen and Li [26]
put forward the concept of free parameter perturbation method, that is, there is no need to point out
the physical meaning of perturbation parameters during perturbation, which provides a new idea
for solving the parameter selection problem of parameter perturbation method. Lian et al. [27]
solved the Hencky membrane problem without a small-rotation-angle assumption by the
single-parameter perturbation method. The successful application of perturbation method depends,
to a large extent, on the reasonable choice of small parameters, but the selection of perturbation
parameters does not have a set of step-by-step procedures, which can only rely on deep
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understanding and multiple attempts. To avoid the difficulty in the selection of perturbation
parameters, researchers can select multiple parameters, that is, the so-called "multi-parameter
perturbation method". For multi-parameter perturbation method, Nowinski and Ismail [28] solved
the cylindrical orthotropic circular plate problem under a uniform load by using the two-parameter
perturbation method. The application of the multi-parameter perturbation method in beam problem
was proposed by Chien [29] in 2002, the classical Euler-Bernoulli equation of bending beams was
solved by using load and beam height differences as perturbation parameters. Later, He and Chen
[30] simplified the bending moment by using the quasi-linear analysis method, so that the parameter
perturbation process was directly aimed at the algebra equation rather than the integral equation,
and the two-parameter perturbation solution of the large deflection bending problem of a cantilever
beam was obtained, and the integrity of the two-parameter perturbation solution was analyzed.
Recently, He et al. [31-32] comprehensively analyzed the large deflection problem of beams with
height difference under various boundary conditions, put forward the so-called "two-parameter
perturbation method", and successfully applied this method to the solution of bimodular
von-Karman thin plate equation. But so far, the perturbation method of three or more parameters
has only a few reports.

In this study, we will derive the theoretical solution of the bending problem of piezoelectric
cantilever beams by the multi-parameter perturbation method. The whole paper is organized as
follows. In Section 2, the mechanical model of the problem solved here will be established, and the
governing equations will be given and dimensionless. In Section 3, the three piezoelectric
parameters will be selected as perturbation parameters, and the dimensionless governing equations
will be solved by the multi-parameter perturbation method. The solution presented in this paper
will be compared with the existing analytical solution from Yang and Liu [17] in Section 4. Next, in
Section 5, we will show the related experiments of the piezoelectric cantilever beam, compare the
experimental results with the solution presented here, and also discuss the effect of the piezoelectric
properties on the deformation of piezoelectric cantilever beams. According to the results mentioned
above, some main conclusions will be drawn in Section 6.

2. Mechanical Model and Basic Equations

In this study, the mechanical model of the transversely isotropic piezoelectric cantilever beam
is established by using two-dimensional elastic beam theory and neglecting shear deformation. As
shown in Figure 1, an transversely isotropic piezoelectric cantilever beam is fixed at its right end
and subjected to a uniformly distributed load g on its upper surface, a concentrated force P and
a bending moment M at its left end, in which I, b, and & denote the length, width, and height
of the beam, respectively, and O denotes the origin of the coordinates. A rectangular coordinate
system is introduced with the upper and lower surfaces of the beam lying in z=-h/2 and
z=h/2.

Figure 1. Scheme of a piezoelectric cantilever beam.
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Supposing that the polarization direction is the forward direction of the z-axis, let us take a
microelement in the piezoelectric cantilever beam, and from the balance of the force, we may obtain,
by neglecting the body force

0o, Ot 0

ox oz

0r. do ! (1)
2 +—=2=0

ox 0z

where o, o, and 7 are the stress components. The equation of Maxwell electric displacement
conservation is

oD oD
ox oz

==0, @

where D_ and D, are the electric displacement components. The constitutive equations of

piezoelectric polymeric materials considered are
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where ¢ , ¢, and y_ are the strain components; and E_and E, are the electric field intensity

components. The geometric equations of the piezoelectric cantilever beam are
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where u and w are the displacement components. From Equation (4), the strain consistency

equation is obtained as follows:
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The relationship between electric field intensity and electric potential are

0 0
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where ¢ is the electric potential function. By introducing the Airy stress function U(x,z), the stress

components can be expressed as
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The boundary conditions of the problem of the piezoelectric cantilever beam are
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o*u o*u
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ox ox0z
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_’/ZDdeZO,at x=0 and x=1, (11)
EZ:%=0,at z=%h/2, (12)
0z
and
ow
u:O,w:O,a—:O,at z=0 and x=1. (13)
X

Substituting Equations (3), (6), and (7) into Equations (2) and (4), we may obtain two equations of
the stress function U(x,z) and the potential function ¢

ou . ou U 34 . ¢
o ozd e otoz  ° oxez = g-’- & o (14
and
o' o'tu  otu |, & . )
o oz* (28 +5u) ox*0z% s ox* = g+d33 ox*oz ~ths ox*oz (15)

Equations (14) and (15) are usually called governing equations. Let us introduce the following
dimensionless quantities:
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From Equation (16), Equations (14) and (15) can be transformed into
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The boundary conditions can be transformed into
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3. Multi-parameter Perturbation Solution

Equations (17) and (18) are two partial differential equations which are usually difficult to
solve analytically. Here, we use the multi-parameter perturbation method to solve them. The
piezoelectric coefficients are usually very small [33], thus, they can be selected as perturbation
parameters to meet the requirement of convergence in perturbation expansions. From the point of
view of the perturbation idea, if the cantilever beam without piezoelectric properties is regarded as
an unperturbed system, the piezoelectric cantilever beam can be looked upon as a perturbed system.

Selecting d31, d33 and d s as the perturbation parameters, the ® and U can be expanded as

O =) +Did, +Did, +Did_+D(d,) + D) (d,,)

+@)(d. ) +®d, d, +Did,d_+Dd d_ (@)
and

U=0+Ud, +Ud,, +Usd,, + U (d,) +U“(d33)

+Uld, ) +Uld,d, +Uld, d,. UgE dy, 20)

4731

where @) and flg, ®; and ljll (i=1,2,3), and @ and ljlz.” (i=1,2,.,5,6 ) are unknown

functionsof X and Z.
First, we solve the zero-order perturbation equations. Substituting Equations (25) and (26) into

Equations (17) and (18) and comparing the coefficients of (331 ), (333 )’ and (315 )°, we may obtain

the zero-order perturbation equations

— 0’0y 0’0
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The corresponding boundary conditions are
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and

oD,
oz

=0,at Z=+1/2. (32)

Suppose,
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_ 2 , 33
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where g?(Z) and ff(Z) (i=1,2,3) are unknown functions of Z which can be determined by

Equations (27) and (33), please see Appendix A.
Next, let us solve the first-order perturbation equations. Comparing the coefficients of

(331)1 , (333 )" and (315 )", we may obtain the first-order perturbation equations as follows,

for term (d,,)':
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The corresponding boundary conditions are
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Ul
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otut Ul
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o’ ou!
=0 ooy~ = 12,3) at Z=-1/2, (39)
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oP!
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J-l/z _6258 _8@‘3)dZ=0
-2t gZzoX  oX
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o'
—=0(i=1,2,3),at Z=+1/2. 41
S 0i=1,2,3), at Z=21/ @)

Similarly, suppose
CI): = ng;i—Z (Z) + Xg;i—l (Z) + g;z (Z)

= X2 1 1 1 (Z = 1’2’ 3) 4 (42)
u, = 7f3i_2 (2)+Xf5, (D) + f5:(2)

where ¢/(Z) and f'(Z) (i=1,2,3,..,9) are unknown functions of Z which can be determined by
Equations (34)—(36) and (42), please see Appendix A.

Then, we solve the second-order perturbation equations. Comparing the coefficients of (d,,)?,
@), (dy), dyd,, d,d, and d,d,., we may obtain the two-order perturbation equations as
follows,

for term (d,,)*:

o’u;, - oo +azc1>;‘
VAR VAE) G

a4ﬁll 641711 64L_IH a?;q)l 4 (43)
—L+(25,+5,,) L L= !
Z* ox*ezr ¥ oxt  oz°
for term (d)’:
o°u, _7 D) +azq>1;
oX*oz ¥ oz72  ox?
a4L_IIl 641,_1“ 64311 aSq)l 4 (44)
7 B tSu) gt e o Ty
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(47)

(48)

(49)

(50)
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(52)

(33)

(54)

where ¢'(Z) and f'(Z) (i=1,2,3,..,18) are unknown functions of Z which can be determined

by Equations (43)—(48) and (54), please see Appendix A.
Thus, we can obtain



Polymers 2019, 11, 1934 10 of 25

® =B +d, [X*(- ——z2 = — P)+ 1 ~qZ* - 1 —q7°
133 47, ,133 2b/133 2(4,) 4(1,)
25, +S _ 325 +S -
( 44)qz4+_9 MZZ——( 15 44)ﬁzz+B;]+d33[——l Gzt +—=—q27*
2/1 b/133 204, 2 44, (55)
1 P 1
-—=7GZ+B +d X —=X+—7gZ° +—7Z ' ——— 77>+ B!
2/13361 Jl+dl- q 2 2133(7 2/13361 e q 18]
+(d,,)’ B} +(d,,)’ By, +(d,,)* By +d,,dy,By, +d,,d By +d, 3153;2
and
X2 3.7 2 - 3 (28

— _ — +S,,)_ 2 —
U="(202°+=79Z-1)+ X(-=PZ’ +=PZ +CY)+ 8“4 575 Z MZ®
2( 92" +50 2) ( > o7 s) 92" +=

10

25.+S —
—%EZ3+C%Z+C&+d31(XCé+Ci12+C{2)+d (XCyy +C,Z+Cy,)
- 25, +S
4, (XCl, +CLZ+Cl )+ (@, PIXC! +—L 754 PutOu)azs 1
10( ) 10133 20(4s) . (56)
—(2513+S )_Z3 CIIZ—i—CII]—i—(d )? (XCH +CHZ+CH)+(d )? (XCH +CHZ+CH)
202] 33 15
< 5 1 1
+d, d (XCY ——=7q2° + +CLZ+C. +d d XCo +—4q2° ———q2°
315 (XCyy 51 q 10/1 47 i) 5( 5133‘7 107, q
+CLZ+Ch)+d., 15(XCII +CHZ+CII )

Finally, from Equations (55) and (56), we can obtain the expression of displacement components,
stress components, and electric displacement components. The detailed derivation is shown in
Appendix B. Thus, the bending problem of a piezoelectric cantilever beam under combined loads is
solved. It can be seen from the derivation above that the piezoelectric effect is not shown in the
zero-order perturbation solution, that is, the zero-order perturbation solution is the solution of the
cantilever beam without piezoelectric properties which is regarded as the unperturbed system. The
piezoelectric properties are only shown in the first-order and second-order perturbation solutions.
In other words, the mechanical meaning of the first-order and second-order solutions is the
influence of piezoelectric properties on the deformation of piezoelectric cantilever beams. This
phenomenon is consistent with the basic idea of perturbation method.

4. Comparison of the Solution Presented Here and the Existing Solution

The theoretical solution for a piezoelectric cantilever beam under combined loads is given in
this paper by a new method which is usually called the multi-parameter perturbation method. The
validity of the theoretical solution should further be verified. For this purpose, we compare the
solution presented here with the solution given in reference [17].

Before the comparison, we need to make a degradation of the solution presented here. In
reference [17], only the concentrated force is considered. In this paper, however, the concentrated
force, bending moment, and uniformly distributed load are all considered. Thus, for the
convenience of comparison, we let the bending moment and uniformly distributed load equal to
zero, that is, let

g=0, M=0. (57)

Substituting Equation (57) into Equations (B13) and (B14), the displacement components can be
transformed into
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d..d d.d
=( 33731 —513)6—123622 _( 31731 _Sll)z_lzxs
/133 bh 133 bh (58)
(d31d3l _ ) (d31d31 ) 4P 3
Ay " bh3 Ay " bh3
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d.d d.d d.d
( 31731 _511) 6P x 7 ( 33731 _513 —544 15 31) Z3
233 b’ 133 /133 b’ 59
dydy 6P ddy 3P &9
(=8 5z (——+s,) z
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Similarly, substituting Equation (57) into Equations (B15), (B16), and (B17), the stress components
can be written as

12P
=— Xz, 60
S (60)
o =0, (61)
and

6P 2 3P
- 62
TZX bh?, th ( )

Substituting Equation (57) into Equations (B18) and (B19), the expressions of electric displacement
components are

A d

D =(d 1131 2__
o= (st )(bh 200 (63)

and
D.=0. (64)

By comparing Equations (58)—(64) with the expressions of displacement components, stress
components, and electric displacement components in reference [17], it can be found that they are
exactly the same, which indicates that the solution obtained here is correct. It should be mentioned
that the structures studied in this paper and in reference [17] are both piezoelectric cantilever beams,
but the structure in this paper is subjected to combined loads and the structure in reference [17] is
subjected only to a concentrated force. In addition, non-dimensionalization is considered, the
relevant experiments are carried out, and a new method called the multi-parameter perturbation
method is given in this paper. These differences mentioned above constitute the advancements of
this paper, compared with reference [17].

5. Experimental Verification

To further verify the validity of the theoretical solution presented here, we carry out the
relevant experiments of piezoelectric cantilever beams. The mechanical model of the theoretical part
is shown in Figure 1, it can be seen that it is a piezoelectric cantilever beam subjected to three kinds
of loads. In the experiment, it is very difficult to apply these three kinds of loads at the same time.
Therefore, we apply only the concentrated force at the cantilever end to carry out the experiments,
that is, this experiment corresponds only to the case where the bending moment and the uniformly
distributed load in the theoretical solution are zero. The details of the experiments are as follows.
The main experimental equipments include a non-contact laser displacement sensor (ZSY Group
Ltd, London, UK), a bench clamp (a cantilever beam clamping device), weights, and the ZLDS10X
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measuring software (ZSY Group Ltd, London, UK). The measuring range of the non-contact laser
displacement sensor is 1m, the accuracy is 0.01%, and the sampling frequency is 2kHz. The
experimental specimens consist of two groups of PbZrTiOs-5 (Generally abbreviated as PZT-5)
piezoelectric ceramic sheets in which one group has piezoelectric properties and the other group
has no piezoelectric properties. The size of the experimental specimens is 60 mm x 10 mm x 1 mm.
The experimental specimen and non-contact laser displacement sensor are shown in Figure 2, the
experimental device is shown in Figure 3, and the material constants are shown in Table 1.

¥
(@) (b)

Figure 2. Scheme of experimental specimens and measuring instruments: (a) PbZrTiOs-5 (Generally
abbreviated as PZT-5) piezoelectric ceramic specimens. (b) The non-contact laser displacement
sensor.

(@) (b)

Figure 3. Scheme of experimental device: (a) The cantilever beam device.(b) The integral measuring

device.
Table 1. Physical properties of PZT-5 materials [33].
Elastic Constant Piezoelectric Dielectric
(10-2m2-N-) Constant(10-2C-N-) Constant(108F-m1)
0 0 0 0 0 0 0 0 0 0
S 5p 513 533 Sy dy, day dys Ay A

164 -574 -722 188 475 -172 374 584 1.505 1.531
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The clamping length of the experimental specimens is 10 mm, therefore, the length of the
piezoelectric cantilever beam is 50 mm. The deformations of the free end of piezoelectric cantilever
beam are measured at the applied load 0.49 N, 0.98 N, and 1.96 N. The measured experimental data
and theoretical calculation results are shown in Tables 2 and 3, respectively. It should be noted that
the self-weight of the piezoelectric cantilever beam is 0.0367 N, and the ratio of the self-weight to the
minimum applied load is 0.075, which indicates that the self-weight of the piezoelectric cantilever
beam is very small and thus may be ignored.

From Table 2, it can be seen that the theoretical results are in good agreement with the
experimental results, and the relative errors under every level load are less than 15% allowed in
engineering. This indicates that the analytical solution presented in this paper is reliable.

Table 3 shows that the deformation of the piezoelectric cantilever beam is smaller than the
cantilever beam without piezoelectric properties. This means that the piezoelectric properties have
a certain effect on the deformation of the piezoelectric cantilever beam, and its effect is, to a certain
extent, hindering the deformation of the cantilever beam. This phenomenon can be explained by
energy conservation. For piezoelectric cantilever beams, part of the work done by external forces is
transformed into the elastic strain energy of piezoelectric cantilever beams, while the other part is
transformed into the electric energy due to the existence of piezoelectric properties. For cantilever
beams without piezoelectric properties, the work done by external forces is basically transformed
into the elastic strain energy of cantilever beams. Therefore, the deformation of cantilever beams
without piezoelectric properties is larger than that of cantilever beams with piezoelectric properties.
The phenomenon mentioned above is commonly known as the piezoelectric stiffening effect
peculiar to piezoelectric materials and structures.

Table 2. Comparison of experimental data and theoretical calculation results.

The Deformation of the Cantilever End

Loads(N) Experimental Data Theoretical Results Relative Errors
(mm) (mm) (%)
0.49 0.4069 0.3545 12.87
0.98 0.7527 0.7089 5.82
1.96 1.6072 1.4178 11.79

Table 3. Comparison of deformation test results between piezoelectric cantilever beam and
cantilever beam without piezoelectric properties.

The Deformation of the Cantilever End

Loads(N) Piezoelectric Cantilever Beam without )
Cantilever Beam Piezoelectric Properties Difference
(mm) (mm) (mm)
0.49 0.4069 0.5351 0.1282
0.98 0.7527 0.8463 0.0936
1.96 1.6072 1.9796 0.3724

6. Conclusions

In this study, we used a multi-parameter perturbation method to solve the bending
deformation problem of piezoelectric cantilever beams under combined loads. And we compared
the solution presented here with the existing solution from Yang and Liu [17] to validate the
rationality of the presented solution. In addition, we carried out the related experiments of the
piezoelectric cantilever beam, and compared the experimental results with the theoretical solution
presented here, and also investigated the influence of the piezoelectric properties on the
deformation of piezoelectric cantilever beams. The following main conclusions can be drawn.
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(i) The theoretical results are in good agreement with the experimental results, which means
that the analytical solution given in this paper is correct and the multi-parameter perturbation
method is effective.

(if)From the perturbation expansion, it is easy to find that the zero-order perturbation solution
is a pure mechanical solution, in which the piezoelectric effect has not been incorporated. From the
first-order, second-order, and higher order perturbation solutions, the piezoelectric effect is
gradually reflected. This structural form of the multi-parameter perturbation solution presented
here is beneficial to the analysis and understanding of the solved problem.

(iii) The deformation magnitude of a piezoelectric cantilever beam is smaller than that of a
cantilever beam without piezoelectricity, due to the well-known piezoelectric stiffening effect.

Unfortunately, the numerical simulation for the physical system studied here has not been
carried out in this study. In our previous study [34], we used ABAQUS software to simulate the
problem of functionally graded piezoelectric cantilever beams with different properties in tension
and compression. Similarly, the problem studied here may also be simulated by ABAQUS, which is
our follow-up research. In summary, the multi-parameter perturbation method presented in this
paper provides a new way to solve complex non-linear structural problems. The analytical solution
of the bending problems of piezoelectric cantilever beams under combined loads can provide a
theoretical basis and reference for the analysis and design of sensors or actuators made of
piezoelectric polymers.
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Appendix A

(1) The unknown functions g(Z) and f(Z) (i=1,2,3):
From Equations (27) and (33), we can obtain the unknown functions g?(Z) and ff(Z)
(i=1,2,3),

8)(Z)=B)Z+B]

95(Z)=B,Z+B, (A1)
1 1

0 Z :—TBUZ3—_—BOZ2+BOZ+BO

83( ) 32/33 1 233 2 5 6

and

0 1 073 1 072 0 0
f(2)=2CZ + 5 7+ G2+ C
fD)=3CZ 4 Q7+ CZ4C]

, 1 (A2)
£(2)= _E(ZS” +5,,)C)Z° —ﬂ(zs13 +5,)CZ"

1 1
+gC§Z3 +ECSOZ2 +Cy,Z+C?,

where B? (i=12,3,..,6 ) and Cf) (i=1,2,3,..,12) are undetermined constants which can be

determined by Equations (28)—(32),
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C’ =-127,C0 =0,C° :gq,Cf :—1,C§ = —E,Cg =0,
2 2 b (A3)
3P 12M 3 -
G =205 1@ tSWi =0 ‘
B=0,B=0,B°=0,B=0. (Ad)

(2) The unknown functions g¢;(Z) and f/(Z) (i=1,2,3,..,9):

From Equations (34)—(36) and (42), we can obtain the unknown functions g: (2) and fl.l (2)
(i=1,2,3,...,9),

¢(2)= 4/% C°Z* + BIZ+B!
33
8 (Z)= 2,1T CZ*+B.Z+B!
33
25.+S
§ @)=tz Lz Lz @ntS) oz
24(2,,) 317, T 247,
25.+S
AEe ez gz Bz (45)
33 33
o '
¢2)=-—2 Bz Lz Lz
37, oy 247,
C C?
+6/TZ Z’+—=2-7"+B,Z+B,
33 33
o S C?
§Z)=-—s B Lpz Gz S Sz ipgp
3 2'33 2/33 24 2’33 6 133 33
g(Z)=B}, ,Z+B,(i=4,5,7,8), (A6)
I 1 1 3 1 1 2 1 I /-
fl(@)=2Cyy 20+ Cy 72 +Cl Z+C(i=1,2,4,5,7,8) (A7)
and
33
+%C;Z3 +%CiOZZ +C,Z+C,,
f6I (Z) - _ (2513 + S44) Ci3z5 _ (2513 + S44) C;4Z4 + l BSZ4
120 24 12 (A8)
+%C§123 +%C;2Z2 +C,Z+C,,
25, +8,,) (25, +S,,) B
IZ:_( 130w ol g5 ER Vel B W
L@ 120 ® 24 12
1 1
+gC;3Z3 +EC;4ZZ +CyZ+Cy,

where B; (1=1,2,3,..,18) and CIl (1=1,2,3,..,36 ) are undetermined constants which can be

determined by Equations (37)—(41),
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C'=0,C! =0,C! =0,C! =0,C! =0,C! =0,C! =0,C! =0,C!, =—— B,
127,
BI: Cg Bl:_ C? Blzcg BI:_ Cg BIZC?O_'_ Cg
1 = = _ e _

2/1331 ’ 48133I ’ /133, ! 242 o 2_’33 8(/7_'33)2

1

CiS :O'Ch = O’C;S = O’Cié = 0,Ci7 :O'Cis = O'Ci9 = O’Cil :O’C;Z - _EB?,
1 1 1 1 1 CS
B, =0,B;, =0, B, :O’Bl[] =0,B, ==,
Ay
BO

Cés :O’Céé :O'C; :O’C;S :O/C; =O,C;O :O’C;I =0,C;3 :O'C;4 :ﬁ/

G

77717 81

33

B, =0,B, =—4iscf—%c° B, =0,B —icg—c" B, =

37 P15 16 —

(3) The unknown functions g; (Z)and f'(Z) (i=1,2,3,..,18):

16 of 25

(A9)

(A10)

(Al1)

(A12)

(A13)

(Al14)

From Equations (43)-(48) and (54), we may obtain the unknown functions of g;I(Z) and fl.”(Z)

(i=1,2,3,..,18),

1

g¢"(Z)=B"_Z+B'(i=4,5,7,8,16,17)

7

{g?(Z) =K,Z*+B! Z+B'(i=1,2,10,11,13,14)

C! 25.+S
33 33 33 33
25, +S
P 1 gz i gz
64, 3(4;) 24,
géI(Z):—BTlB;‘ZS—%Bé‘zz+24lz Ci3Z4+6ﬂ1T c;4z3+2/1T C.Z% +B'Z+B"
33 33 33 33 33
C! C!
§U(2) =~ BLZ — L7 L7 -2 7 2 7 Bl 7 B
34, A 247, 64, 2.,
CI
gh(Z)y=——-2-27"- L B;;z3—_i3;gzz+L_c;z4+;cgz3+écgzz
24(/133) 3133 233 242/33 6133 2 33
25.+8S 25.+5
Bz Btz ez Bz B
33 33 33 33
G, 2S.+S 25, +S
D= B 7 g B Bz ez B taey 7
33 33 33 33 33
C! C! C!
L AT W N S N A NN Y AY )
31, 21,7 241, 61, 24,
C! C! C!
$ ()= BN Z - BNz B gy Sk gy w g
34, A 247, 64, 24,
C S g Cup Cuppigp
241, 6L, 24,

(A15)

(A16)
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1 1
"(Z)=—Cl Z°+-C! ,Z*+Cl Z
.fl ( ) 6 4i-3 2 4i-2 4i-1 , (A17)
+Cill.(i =1,2,4,5,7,8,10,11,13,14,16,17)

(Z)= _ (255 +54) c'z _ (25 +5y) C,Z" - C; AR L B Z*
120 24 12004, 127,
25, +S 25.+S
AEn Doz Bz laz Loz cizacy
33 33
6II(Z) —_ (2513 + 544) CiézS _ (2513 + S44) CELZAL _,’_iB;ZAI
120 24 12
+2CLZ 4 CLZ +ChZ4C,
25, +S 25, +S
()= 20t 5u) bz wenzs B tou) o weyz —%3;24

+2CLZ' 4+ ChZ+ CAZC

1) (25, +5,,) g (25, +5,,) oz L opg, c (A18)
120 24 122, 601,
CO
bo BT 4 B2+ CLZ o CLZ +ChZCl
33
(Z)=— (25, +5,) chzo - (25, +5,,) clzi - 1_ Bl.Z' - Ci 75
120 24 127, 601,
CO
o2 - BZ 4 ChZ S CLZ 1 ChZ e
33
(2S,.+8,,) (2S,.+8,,) 1 )
1181(Z) - _ 1i20 44 Cng5 _ 1324 44 CéIZZ4 +EB;3Z4
- BZ 4 CLZ 4 ChZ 4 CAZCl
and
C, C, C C, C, C,
K= =g K =g K=o Ke =K =7 (A19)
33 33 33 33 33 33

where B;I (i=1,2,3,..,36) and C;l (i=1,2,3,..,72) are undetermined constants which can be

determined by Equations (49)—(53),

C'=0,C) =0,Ch =0,C} =0,C) =0,C) =0,C!' =0,
i1 0 25e+Su) o on L1 (25545,) . (A20)
Y402, 404, V0 122, ' 242,

33

B! = C_; ,B) =— C;_ ,B;I=€_Q,Bf=— C;’_ , ;‘=C_—;°+ 9 =, (A21)
2133 48 133 133 24]’33 233 8(133 )

C;=0,C, =0,C.=0,Cp; =0,C;;, =0,Cp, =0,C,, =0,C}, =0,C,, = —% B, (A22)

Cl
B; =0,By =0,B; =0,B,, =0,B ===, (A23)
33
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Cl =0,CL =0,C =0,CL =0, =00 =0,Ch =0Ch =0,Ch =B, (a2
1 1 1 C!
BH :O,BH :__Cl __Cl ,BH :O,BH :__CI _CI ,BH _ _26 , (A25)
13 14 48 25 2 27 15 16 24 29 31 17 8133

Cl =0,Cl =0,C =0,Cly =0,Cl =0,Cl =0,Cl =0,
n_ C? )i 1 B Cg 1 B! ’ (A26)

7007, %127,

33

7244, 1277

poSup o Coop G G op G G G )
2133 48 /133 133 24133 133 133 8( /133 )

Ciy =0,CH =0,C}, =0,Ch =0,C} =0,Ch =0,C} =0,
o1 B c o1 . , (A28)

CII — L — ol + 2 L=
7204, * 124, ° 244, 127
BY — C_;s B =_C_i_C_;_ C;_5 il =€_;0
o2, * 48 2 481, 7 A4,
1 CI CI CI CI 4 (A29)
By=——Ci-C,——2- By ==2+—2_1+2
®oo24 7 7 242,77 2, 8(4,) 84,
Cl, =0,C}, =0,C}, =0,C}, =0,Cl, =0,Cl, =0,C}, =0,
1 1 , (A30)
Ch =0,Ch =~ B+ B}
and
B} =0,B, =~ Cl, -~ Cl, B =0,
A31)
CI CI (
Bl =5y Cl Gl Bl = 2 it
33 33
Appendix B

From Equations (3)-(4), (16), and (55)—(56), we have
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ow , oU ou - od
z naz e Ty

_ 3(25, +S
=—6sl3§XZZ—1bTZsBPXZ+2(25B+s )S.,GZ° — %smﬁz
_ _ 2(2S,, +S 3(25, +S
V126 iz, @, gzt + 20 ) s 8 oy SPntu) Ly,
b (/133 ) 133 10(2’33 ) 10}’33 (B])
_ 3 4 _ 3 _ s 3. 7
+5, d31 33( 7 qZ3 qZ)+S s (ﬂ_,_q 7’ —-—= qZ)—2533qZ3+ES33qZ—533%
33 33 33
_ 2(25,, +S _
Aa Loz 2 bxze 2 gz L g7 2 Puetougs 12 gy
/133 by (Zs) 2(Ay) A b,
3(28 )_ — =2 _ 3, 1 _ oo 1, 2 3 _
——1632 = ] d33d33[ I_qZ3+ZZ qZ__ZZ q]—d d [I_q +Z_qZ3 2/1 qZ]
33 33 33 33 33
and
o _ou, , o'u 5 o
(3X aZz 13 5X2 31 6Z
3(25, +S
:—6ﬁX2Z—EPXZ+2(2S +5,)72° + 12 5z - g— +(dy)[
b b 10 ( 33)
2(2S, +S 3(28
Rt Y A R R G ST /oW AR 2 /)
T 10(Z,,)? 102, T 51,
— = 4 3 3 7 --. 6 (B2)
+d31d15(z—ﬁz3— - ﬁZ)—ZSBﬁZ3+2S G2-8, 7~ d31d31[—z—qX2Z
33 33 33
_ 2(25,, +S _ 325, +S
2z 2 gp L g7, 26 0 12 gy 3050 40) 0,
b, (1) 2(%,,) Ty b, 102,
— = 2 _ 31 _ 1 .2 3 _
—d31d33[—I—qZ3+7qZ—7q]—d d [Z_q +Z_qZ3_ZZ qZ]
33 33 33 33 33
Integrating Equations (B1) and (B2) respectively, we may obtain
S.+S _ . 3(25,+S
W= —%5131»(22 %smqf +§5;13Mz2 —(+0+44)513§ZZ -35,,GX°7*
25, +S 3(25,+S
#5,(@ 'l 1 gz Butoulgs 3 gz 3etou)s
(2/33 ) 2133 20(133 ) 20}’33
- 1 3 3 S
+S..d ——gZ' +——737*)+S —gZ' ——g7")-2g7*
13831055 ( PRI ) (336/ 0% )1
_ (B3)
3¢ =2 q 77 3 a2 6 50 1 74 _ 1 _,
+28,G22 =S, ~Z~d d, [-—GX*Z> ———DPXZ* + 7z
7, b, 2(%, ) 47,,)
25, +S _ ., 3(2S
B Bu)ppe 0 e MBut8u)azy g g 1 g
2/1 b, 207, 27,
3 1 — =1 1 3
+—77% - az d [—=7Z* +—=77" ———77°]+G, (X
4,133q 2/133‘7 2l dy 15[2/133‘7 2/133‘7 47, 721+ Gy (X)

and
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B 3(2S,, +S,,
g:_qu3z—§PXZZ+2(25w WIXZ + lb_ZMXZ %_XZ

= 2(2S,, +S 3(2S_ +S
+(d31)2[ —2 ﬁXZ3 + ( 1i+ u) ﬁXZB' - :i - GXZ - ( 13;"
s oy 10(Z,) 107,

4 3
TXZ)+ —GXZ° —-—=-GXZ)-25,,5XZ°
qXZ)+ (/1 q 0 )—25,,q

33

44)ﬁXZ]

, (B4)

+§Sl3ﬁXZ—Sl3 Ix-a,d,1-= qX3Z—LPX Z+ 2 GXZ' - —2 73X

2 2 7, i, (7o) 27,)

+ 2(2813 44) —Xz3 _1_2 MXZ _ 3(2513 44) X
7, b/lss 102,

3 1
+Tq
27, 27, /1 ,1

XZ]-d, d 3[-%5X23

33

From Equations (5) and (16), one has

-27)(3+_ d, d31qX3—§PX2 E/6T d31d31_X2+1sz]\7IX+%SBﬁX+£S 7X

3 33

wé)

d,d, gX ———=
) 19X Y

254413__3 4P+ a1

=[=S,P+

@‘O\/\

where A is an undetermined constant. From Equation (B5), we have

4Gy (X)
aX

~127 - 2 A LTI+ P -, T, PIXC +- 2 M-8, 25,7
33

O
|
=2
|
]
N
S
|
E&I
|
=]
N
+
H
I\)
|

1 - = -
—— q+—= q——= q+=—d,d, M+d, d X+ A
5(/133)2 31 31q 10133 52’33 bﬂ, 31731 15q] . (B6)

dG(Z) 6. 6.~ 6

_ — 1
_10( )z 2013 31 33‘7_Td31d15‘7+Td31d31M+5 155 71X° + AX+B

GI(Z)=[?SI313+?S44I3——d d,P+==d, d, P|Z’

Thus, we can finally obtain
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From Equations (16), (B10), (B11), and (B12), Equations (B8) and (B9) can be transformed into
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+ dd.g—z"— dg—z"+—=gq—z"+—d d. g—x"z
/133811 3154 e 10&33 B 31 15qh 4 qh /133 334514 e
6 P il A 1 6 M
+@d33d31h—3x22—2( 1)2 33 31‘7 4(11)2 d33d31 Z ? bﬂ“ss 33 31h_3Zz
(25 ) 1, 3(25 ) 1 1,
e TV R e o - ATV +——d d g—
20,5, 339314 E z 2045, 3 31qhz 27, 1973 %
3 1 1
—d.d 2+ —dgdgz———dgd g—2" ———dd g—z"
4 /133 33’7 2 /133 334 2 /133 15‘7 2 X, 335 e
1 1 2P 2 P.1 (B13)
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Similarly, the expression of stress components can be obtained
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2(255+54) ;2 1 ; J12M 3(2513+s44) 1
+—bB % —d.d e
ey )t 133511 g 15qh3] % 10s, T - (B19)
3 1 3(2s,, +5,,) 1 3 1 3
/11 — 31) —44( 31) Z 1 d31d33qh s d31d15‘7E]Z
10 11( ) 10233( 11) 5 33711 5 33 11
2 3
o __h_gfzuz_zz % (B16)
and
r 28,2 31, 6P » 3P (B17)
= 2k bh? 2bh
The expressions of electric displacement components are
Aydy 69 5 3q 6r ,
D =@, +12Y)(—xz" ——x+——2z" ———
.= i )(h3 X2 XS 2bh) (B18)

and



Polymers 2019, 11, 1934 24 of 25

22, 2(2513 +5,,) 5 1 4 1 22,,d,9

D ———d —
LAy 11(/133) ( 31) 3 ’133( 11) ( 31) L w AssSiy o n A, h3
—d31d31d15qi3_ 2d1355/123 + d31[ 3/11 ( 31) 1 M( 31) . (B19)
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