

3D bioprinting of novel biocompatible scaffolds for endothelial cell repair

Yan Wu¹, Lamia Heikal², Gordon Ferns², Pietro Ghezzi², Ali Nokhodchi¹,⁴*, Mohammed Maniruzzaman⁵ and *

- Department of Pharmacy (Chemistry), School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 90I
- ² Brighton and Sussex Medical School, Falmer, Brighton, BN1 9RH
- ³ Faculty of Pharmacy, Department of Pharmaceutics. Alexandria University, Egypt
- ⁴ Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Iran
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas, 78712, USA
- * Correspondence: M Maniruzzaman: M.Maniruzzaman@austin.utexas.edu; M.Maniruzzaman12@gmail.com, and A. Nokhodchi: A.Nokhodchi@sussex.ac.uk

Supplementary Data:

Supp. Fig. 1: Syringability tests of prepared bioinks containing (a-b) PLA/PEG.

Supp. Fig. 2: Texture of the prepared homogenous bioinks in high magnification (F127/drug).

Supp. Fig. 3: Fold change in VEGF gene expression in cell lysates after treating rat aortic endothelial cells with standard DMOG solution added in a concentration of $100~\mu M$.