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Abstract: A novel poly-geminal dicationic ionic liquid (PGDIL)-TiO2/Au composite film electrode
was successfully prepared by electrochemical polymerization of 1,4-bis(3-(m-aminobenzyl)
imidazol-1-yl)butane bis(hexafluorinephosphate) containing polymerizable anilino groups in
the electrolyte containing nano-TiO2. The basic properties of PGDIL–TiO2/Au composite films
were studied by SEM, cyclic voltammetry, electrochemical impedance spectroscopy, and differential
pulse voltammetry. The SEM results revealed that the PGDIL–TiO2 powder has a more uniform
and smaller particle size than the PGDIL. The cyclic voltammetry results showed that the catalytic effect
on electrochemical oxidation of hydroquinone and catechol of the PGDIL–TiO2 electrode is the best,
yet the Rct of PGDIL–TiO2 electrode is higher than that of PGDIL and TiO2 electrode, which is caused
by the synergistic effect between TiO2 and PGDIL. The PGDIL–TiO2/Au composite electrode presents
a good enhancement effect on the reversible electrochemical oxidation of hydroquinone and catechol,
and differential pulse voltammetry tests of the hydroquinone and catechol in a certain concentration
range revealed that the PGDIL–TiO2/Au electrode enables a high sensitivity to the differentiation
and detection of hydroquinone and catechol. Furthermore, the electrochemical catalytic mechanism
of the PGDIL–TiO2/Au electrode was studied. It was found that the recombination of TiO2 improved
the reversibility and activity of the PGDIL–TiO2/Au electrode for the electrocatalytic reaction of HQ
and CC. The PGDIL–TiO2/Au electrode is also expected to be used for catalytic oxidation and detection
of other organic pollutants containing –OH groups.
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1. Introduction

Poly ionic liquids (PILs) are a kind of functional polymer material that contain at least one ion center
in a polymer chain and a repeating unit similar to a common ionic liquid (IL) structure; they combine
the properties of polymers and ionic liquids, and show are in the foreground of applications for ionic
conductors, adsorption and separation, dispersants, and catalysts [1–4]. Therefore, the research on
the preparation and performance of PILs has aroused wide interest and concern in recent years [5,6].

The dicationic ionic liquids (DILs) are considered to be a combination of three structural moieties:
(1) cationic head groups; (2) a linkage chain (also called a spacer); and (3) counter anions. DILs can be
classified as either homoanionic or heteroanionic, which can further be categorized as symmetrical or
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asymmetrical. Homoanionic dicationic ionic liquids are typical DILs that consist of a dication and two
identical anions. Symmetrical or geminal dicationic ILs (GDILs) can be synthesized by joining two of
the same cations, such as imidazolium or pyrrolidinium, and may contain a cyclic or aliphatic chain via
either a rigid or a flexible spacer. A common spacer is an alkyl chain [7,8]. Armstrong et al. [9] studied
the relationship between the structure and properties of DILs by synthesizing 39 imidazolium-based
and pyrrolidinium-based DILs. The head groups were linked with an alkyl chain (from three to 12
carbons long), and hence reacted with four different traditional anions. The thermal stability of these ILs
was found to be in the range of−4 to > 400 ◦C, which is greater than that of most traditional monocationic
ILs. GDILs have more unique physical and chemical properties and solvation characteristics, and can
be used as separation materials [10], surfactants [11], and catalyst candidates [12,13], although they
have not yet been studied heavily [14,15]. The same is true of poly-GDILs (PGDILs).

As is known, nano-TiO2 has better chemical properties and photon characteristics due to its good
absorbability and lower electron/hole recombining rate, and can be used as a new kind of electrical
catalyst material [16–18]. There have been many reports on the application of nano-TiO2 composite
polymers in the electrocatalysis of organic materials [19], including a study by the present research
group [20]. Aniline is a kind of monomer that is easy to polymerize. Polyaniline is an important
conductive polymer [21–23] that can be used as anode or cathode material with electrocatalytic function
due to its excellent electrical and electrochemical properties [24]. The combination of polyaniline
and nano-TiO2 can not only effectively inhibit the agglomeration of TiO2 nanoparticles, but also improve
the physical and chemical properties of composites, and may be widely applied in the electrochemical
catalysis field [20,25,26].

Hydroquinone (HQ) and catechol (CC) are important phenolic compounds that are widely used
as basic raw materials in the organic chemical, agriculture, and medicine industries, among others [27].
They are typical and important electro-active molecules in fundamental electrochemical research.
Therefore, it is of great significance to establish a high-sensitivity detection method for HQ and CC in
the fields of environmental monitoring and food inspection. Moreover, the chemical structures
and the physicochemical properties of HQ and CC are very similar, and they are, therefore,
difficult to distinguish [28]. Current methods for the determination of HQ and CC include
fluorescence [29], the electrochemical method [30], the photometric method [31], and high-performance
liquid chromatography [32]. The electrochemical method is highly valued because of its versatility,
simple operation, easy automation, and environmental compatibility. In electro-catalytic reactions, in
which an electrode is an electrical catalyst, different electrode materials can change the electrochemical
reaction rate by different magnitudes, so new and efficient catalytic electrode materials have always
been a focus of related research.

The present research group previously successfully synthesized 1,4-bis(3-(m-aminobenzyl)
imidazol-1-yl)butane bis(hexafluorinephosphate) ([C4(m-ABIM)2][PF6]2), which is a novel GDIL
containing anilino groups, and poly-[C4(m-ABIM)2][PF6]2 (PGDIL) with a polyaniline-like structure
was prepared by electro-polymerization [33]. In this study, a novel PGDIL–TiO2 composite was
prepared via electrodeposition on an Au electrode surface, and the electrochemical redox behaviors
of HQ and CC were respectively investigated via the cyclic voltammetry (CV) and differential pulse
voltammetry (DPV) methods. It was expected that the PGDIL–TiO2 composite film would have
the advantages of both PGDIL and TiO2.

2. Experimental

2.1. Main Reagents and Instrumentation

The primary reagents used in the experiments, [C4(m-ABIM)2][PF6]2 ([33]), sodium dihydrogen
phosphate, disodium hydrogen phosphate, potassium chloride, hydroquinone, and anatase nano-TiO2

powder (10–25 nm), were of analytical grade, and were used as received. The water used in
the experiment was double distilled water.
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The instruments used in the experiments were an automatic double distilled water
distillation apparatus D1810C (Shanghai Asia-Pacific Glass instrument Company, Shanghai, China);
a heat-collecting, constant temperature magnetic heating stirrer CJJ 78-1 (Zhengzhou Greatwall
Scientific Industrial and Trade Co., Ltd., Zhengzhou, China); a rotary evaporator R.1002 (Zhengzhou
Greatwall Scientific Industrial and Trade Co., Ltd., Zhengzhou, China); an ultrasonic cleaner SK5200HP
(Shanghai Kudos Ultrasonic instrument Co., Ltd., Shanghai, China); an infrared spectrophotometer
TJ270-30 (A) (Tianjin Jinwei Electronic Instrument Co., Ltd., Tianjin, China ); and an electrochemical
workstation IviumStat (Ivium Technologies BV, Eindhoven, Netherlands).

2.2. Synthesis of Poly-[C4(m-ABIM)2][PF6]2–TiO2 Composite Film

An electrochemical tri-electrode system was introduced for electropolymerization.
An Au electrode, platinum wire, and Ag/AgCl electrode were used as the working electrode, counter
electrode, and reference electrode, respectively. Prior to the surface modification, Au electrodes were
separately polished by alumina particles with diameters of 1, 0.3, and 0.05 µm to obtain mirror-like
surfaces. After successive sonication in ethanol and double distilled water successively for 10 minutes
(5 minutes each), the polished electrodes were rinsed with water and then dried with an air blower.
All electrochemical experiments were carried out at room temperature under a nitrogen atmosphere.

A 0.5 mg/mL TiO2 uniform suspension solution (prepared via the ultrasonic dispersion of
10 mg nano-TiO2 power in 20 mL anhydrous ethanol containing 5 wt % nafion) was mixed with
an equal volume of 0.05 mol/L acetonitrile solution of GDIL (containing 0.1 mol/L sodium perchlorate)
via ultrasonic agitation. Then, the Au electrode as the working electrode was placed in this mixture to
prepare the PGDIL–TiO2 composite film by means of chronoamperometric polymerization at a constant
potential of 1.1 V for 300 s. As control subjects, PGDIL film without TiO2 was also prepared in the same
chronoamperometric polymerization conditions, and TiO2 film was prepared by dropping 10 µL
0.5 mg/mL TiO2 uniform suspension solution onto the bare gold electrode.

Chronoamperometry is an important diagnostic technique for the initial stage of
electro-crystallization [34]. Figure 1 sows a current transient (CTT) recorded during the polymerization
process of GDIL-TiO2 at 1.1 V. The electropolymerization process should be hardly affected by other
reactions. The CTT can be divided into three regions, which is consistent with the aggregation
polymerization process of GDIL [33]. In the first region (t < 2 s), the decrease in oxidation current is
related to charging of the double layer due to the specific adsorption of GDIL on the Au electrode.
The second region (2 s < t < 21 s) corresponds to the increase in the oxidation current up to a maximum,
which is typical of nucleation and growth processes. The third region (t > 21 s) corresponds to the decrease
in the oxidation current, which is typical of a diffusion-controlled process. An analysis of the CTT was
performed by fitting the experimental data to a dimensionless theoretical curve for crystal nucleation
and diffusion-controlled growth in three dimensions (3D), as proposed by Scharifker and Hills [35].
The instantaneous and progressive theoretical transients are given by Equations (1) and (2), respectively:

i2

i2m
=

1.9542
t/tm

{1 − exp[ − 1.2564(t/tm)]}
2 (1)

i2

i2m
=

1.2254
t/tm

{
1− exp[−2.3367(t/tm)

2]
}2

(2)

where im and tm represent the maximum current density and its corresponding time, respectively.
The experimental data were fitted as shown in the inset of Figure 1. The instantaneous nucleation

is dominant at the oxidant peak potential in the electropolymerization of GDIL-TiO2, because
the experimental curve conforms to the theoretical curve of the instantaneous nucleation model.
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Figure 1. Current versus time transient during the potentiostatic electropolymerization of geminal 
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amplitude of 5 mV. Cyclic voltammetry (CV) measurements were performed at a scan rate of 0.05 
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methods, respectively. Platinum wire and Ag/AgCl electrode were used as the counter electrode and 
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pH = 7 NaH2PO4–Na2HPO4 (PBS). For continuous determination, the HQ and CC adsorbed on the 
electrode surface could be removed by CV for 10 cycles at a 0.05 V/s scan rate in the buffer solution. 
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The CV curves of GDIL–TiO2 on the Au electrode are presented in Figure 2. In the first scan 
process, the apparent oxidation peak g could be found at the anode 1.0 V, and was induced by 
oxidation of the anilino-groups of GDIL to a cation radical. The reduction peak g’ of the cation radical 
appeared in the process of the back sweep cathode, and decreased with the scanning. This indicates 
that with the continuation of the reaction, the cation radical generated was continuously consumed, 
and the polymerization generated PGDIL. The current of the redox peak f–f’, which is the redox peak 
pair for the formation of a chain-type polymer reaction, increased with the polymerization, and 
finally stabilized. The CV curves of GDIL on the Au electrodes also have the appearance of this redox 
peak pair, which proves that f–f’ peak is the redox peak pair of polymerization. However, the 
polymerization process of GDIL on the Au electrode did not contain this reduction peak of the cation 
radical. It is possible that the cationic base generated was more active and reacted immediately; this 
is also illustrated by the peak current response of GDOL on the Au electrode, which is significantly 
greater than the peak current response of GDIL–TiO2. It can be seen that the electropolymerization 
mechanism of GDIL–TiO2 and GDIL were the same, but the polymerization rate of GDIL–TiO2 was 
slower than that of GDIL [33]. 

Figure 1. Current versus time transient during the potentiostatic electropolymerization of geminal
dicationic ionic liquid (GDIL)–TiO2 at a potential of 1.1 V. Inset: comparison of the experiment curve
with theoretical curves from the Scharifker–Hills model.

2.3. Electrochemical Performance Tests

All electrochemical treatments were conducted at room temperature. in 0.1 mol/L KCl containing
K3[Fe(CN)6]/K4[Fe(CN)6] (5.0 × 10−3 mol/L each). Electrochemical impedance spectra (EIS) were tested
in the frequency range between 100,000 and 0.01 Hz at an alternating current voltage amplitude of 5 mV.
Cyclic voltammetry (CV) measurements were performed at a scan rate of 0.05 V/s in the scanning
range of −0.2–0.6 V.

The electrochemical behaviors of HQ and CC on the PGDIL–TiO2/Au, PGDIL/Au, TiO2/Au,
and Au electrodes were preliminarily investigated by CV and differential pulse voltammetry (DPV)
methods, respectively. Platinum wire and Ag/AgCl electrode were used as the counter electrode
and reference electrode, respectively. The buffer solutions used in all electrochemical experiments
were pH = 7 NaH2PO4–Na2HPO4 (PBS). For continuous determination, the HQ and CC adsorbed on
the electrode surface could be removed by CV for 10 cycles at a 0.05 V/s scan rate in the buffer solution.

3. Results and Discussion

3.1. Polymerization Mechanism of PGDIL–TiO2 Electrode

The CV curves of GDIL–TiO2 on the Au electrode are presented in Figure 2. In the first scan
process, the apparent oxidation peak g could be found at the anode 1.0 V, and was induced by
oxidation of the anilino-groups of GDIL to a cation radical. The reduction peak g’ of the cation radical
appeared in the process of the back sweep cathode, and decreased with the scanning. This indicates
that with the continuation of the reaction, the cation radical generated was continuously consumed,
and the polymerization generated PGDIL. The current of the redox peak f–f’, which is the redox
peak pair for the formation of a chain-type polymer reaction, increased with the polymerization,
and finally stabilized. The CV curves of GDIL on the Au electrodes also have the appearance of this
redox peak pair, which proves that f–f’ peak is the redox peak pair of polymerization. However,
the polymerization process of GDIL on the Au electrode did not contain this reduction peak of the cation
radical. It is possible that the cationic base generated was more active and reacted immediately; this is
also illustrated by the peak current response of GDOL on the Au electrode, which is significantly
greater than the peak current response of GDIL–TiO2. It can be seen that the electropolymerization
mechanism of GDIL–TiO2 and GDIL were the same, but the polymerization rate of GDIL–TiO2 was
slower than that of GDIL [33].
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Figure 2. The cyclic voltammetry curve of GDIL. The arrows were the 1st scan of the CV curves
of GDIL and GDIL–TiO2 on the Au electrode. g and g’ were the oxidation and reduction peak of
the monomer, respectively. f and f’ were the oxidation and reduction peak of the polymer molecular
chain, respectively.

3.2. SEM Characterization of PGDIL–TiO2 and PGDIL

The PGDIL–TiO2 film formed on the surface of the Au electrode was scraped down and dissolved
in anhydrous ethanol. The ultrasonic shock made it disperse evenly and then remain stationary.
The clear droplets were absorbed into the copper sheet after treatment.

Figure 3 shows the scanning electron micrograph of the PGDIL–TiO2 powder. As shown in
the images, the PGDIL–TiO2 powder was composed of homogeneous, stacked, spherical particles,
which is similar in shape to the PGDIL powder. Additionally, the PGDIL–TiO2 powder had
a more uniform and smaller particle size than the PGDIL [33]. This is because, at the beginning
of electropolymerization, TiO2 nanoparticles adsorbed on the surface of Au electrode had a good
promoting effect on the electropolymerization of GDIL with anilino groups because its O-vacancy can
adsorb GDIL molecules, which forms the core of polymerization. The growth process of PGDIL–TiO2

particles was slow and uniform, and the resulting particles were smaller, and the film layer was thicker,
than that of PGDIL. This is consistent with the CV results.
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3.3. EIS Characterization of PGIL–TiO2/Au, TiO2/Au, and Bare Au Electrode

The conductivity of the electrode can be judged by the redox reaction of potassium ferricyanide
solution on the electrode. The stronger the conductivity of the electrode, the stronger the redox reaction
of potassium ferricyanide, and the greater the redox current value, and vice versa. Figure 4a presents
the cyclic voltammetry curves of the PGDIL–TiO2/Au, PGDIL/Au, TiO2/Au, and Au electrodes in
5 mmol/L Fe(CN)6

3−/4− solution containing 0.1 mmol/L KCl. From largest to smallest, the redox peak
current values were Au > PGDIL > TiO2 > PGDIL–TiO2 [36].
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3−/4− with 0.1 mol L−1 KCl as the electrolyte.
The illustration equivalent circuit.

Electrochemical impedance spectroscopy (EIS) can be used to characterize the surface electron
transfer of different modified electrodes. In the resulting graph of the data (Figure 4b), the linear part
indicates a diffusion-controlled process at low frequency, and the semicircle part is consistent with
the electron transfer resistance at a high frequency; together, they make up the EIS results in a typical
Nyquist plot. The diameter of the arc represents the charge-transfer resistance (Rct) on the surface of
the electrode. The impedance is mainly composed of film resistance, ion transmission resistance in
the film, and double layer capacitance at the interface between the film and the solution, which formed
a large capacitive arc. It can be seen from Figure 4b that the conductivity of each electrode from
smallest to largest was PGDIL–TiO2 < TiO2 < PGDIL < Au. Although the conductivity of PGDIL
was inferior to that of the metal Au, it was superior to that of TiO2, which may be related to the low
electrical conductivity of the polyaniline-like material itself. In addition, it is also possible that
the PGIL film with a positive charge adsorbed part of the Fe(CN)6

3−/4−, resulting in the generation of
an electrostatic repulsion between the surface of the electrode material and the ions in the bulk solution;
thus, there was not a significant difference in concentration between the electrode surface and the bulk
solution, which prevented the reaction of Fe(CN)6

3−/4 on the electrode surface [37]. The conductivity
of PGDIL–TiO2 was worse than that of TiO2 and PGDIL because it included not only the resistance of
TiO2, but the resistance of PGDIL. In the low frequency region, the PGDIL–TiO2 composites presented
a straight line close to 45◦, and the length of the Warburg curve was smaller than that of the PGDIL,
which demonstrates that the electrolyte ions had a better rapid diffusion and transfer ability, and lower
interfacial resistance.

3.4. CVs of HQ and CC on Different Modified Electrodes

The CV results of 0.1 mmol/L HQ and 0.05 mmol/L CC on different modified electrodes are shown
in Figure 5. The related electrochemical parameters are listed in Table 1. HQ and CC are composed
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of one benzene ring and two hydroxyl groups, but the CVs are slightly different due to the different
hydroxyl positions. The charge density of p-hydroxyl group in benzene ring is higher than that in
ortho-position, and is the lowest in meso-position. Because of the higher charge density, the anodic peak
potential (Epa) of HQ is lower than that of CC. On the contrary, the lower the charge density, the easier
it can be reduced, so the reduction peak potential (Epc) of CC is higher than that of HQ [38].

Table 1. Electrochemical parameters of CC and HQ on different modified electrodes.

Electrode PGIL-TiO2/Au PGIL/Au TiO2/Au Au

E/V vs
Ag/AgCl Epa Epc ∆Ep Epa Epc ∆Ep Epa Epc ∆Ep Epa Epc ∆Ep

HQ 0.070 0.030 0.040 0.165 0.065 0.100 >0.225 −0.005 >0.23 >0.175 <−0.05 >0.23
CC 0.235 0.205 0.03 0.249 0.175 0.074 0.234 0.140 0.094 0.244 0.195 0.049

It is demonstrated by the CV results that there was no significant redox peak current response to
either HQ (Figure 5a) or CC (Figure 5b) on the Au electrode, whereas a pair of obvious redox
peaks appeared on the CVs of the PGDIL–TiO2/Au electrode of both HQ (Figure 5a) and CC
(Figure 5b) solutions. The peak potential difference (∆Ep) between the anodic and cathodic peaks
on the PGDIL–TiO2/Au electrode was smaller than that for the PGDIL/Au and TiO2/Au electrodes
(Table 1), indicating that the reversibility of the electrochemical reaction was improved. We propose that
the electrochemical processes of HQ and CC on the PGDIL–TiO2/Au electrode were quasi-reversible
because the cathodic current (Ipc) and anodic peak current (Ipa) were near equal. On the other
hand, the peak currents were much higher compared with those on the PGDIL/Au and TiO2/Au
electrodes. HQ exhibited a peak current of 1.533 µA on the PGDIL–TiO2/Au electrode, which is 1.66
times higher than that on the PGDIL/Au electrode (0.926 µA). In contrast, the peak current of CC on
the PGDIL–TiO2/Au electrode was 1.771 µA, exhibiting an increase of 1.62 times that on the PGDIL/Au
electrode (1.090 µA). The increasing current signals and minimization of over potentials confirms that
the PGDIL–TiO2/Au electrode has high electrocatalytic activity for electrochemical oxidation of CC
and HQ.
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According to the characteristics of a reversible electrode reaction [39], at 25 ◦C,

∆Ep(mV)= 22.5RT/nF = 59/n(mV) (3)

The electron transfer number n of the electrochemical reaction can be obtained from the formula.
It can be determined that the reaction processes of HQ and CC on the PGDIL–TiO2/Au electrode are
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two electron-involved quasi-reversible reactions. According to the experimental results, the possible
electrocatalytic redox mechanism of HQ and CC can be inferred from the relevant literature [40].

As shown in Scheme 1, the structure of PGDIL is a mixture of benzenoid and quinoid units [33].
In the electrocatalytic oxidation system, due to the polyaniline-like structure in the structure of
the PGDIL–TiO2 electrode, the imino nitrogen atoms (–N=) in the conjugated quinoid moieties of
polyaniline-like structure will interact with the hydroxyl groups (–OH) in HQ or CC through hydrogen
bonds, accelerating the oxidation of HQ or CC [41,42]. First, CC in the solution was absorbed on
the surface of the PGDIL–TiO2 electrode and formed two hydrogen bonds with the two hydrogen atoms
of imino on the polyaniline-like structure. Then, two single electron transition processes occurred.
As shown in Scheme 1, the reacting center itself is based on the hydrogen bonds, or, better yet, a hydrogen
bridge that regulates the redox state of quinone (catechol or intermediate product) on the PGDIL–TiO2

electrode. The phenolic hydroxyl groups of HQ or CC can be easily adsorbed on the O-vacancy of
the TiO2-anatase surface to form an adsorption structure, and, the H atoms on the phenolic hydroxyl
group can be easily moved to the O atom surface at the adjacent position via hydrogen transfer. Finally,
the corresponding benzodiquinone was formed. This may also explain why, although its catalytic
ability was better, the Rct value of the TiO2/Au electrode was higher than that of PGDIL (as shown
in Figures 4 and 5) [43,44]. In addition, there is a certain synergistic effect between TiO2 and PGDIL.
Due to the electrocatalytic reaction, the quinoid units of PGDIL became benzenoid units and lost their
oxidative activity, while the lone pair electrons on the N atom (–

..
NH–) in benzenoid units occupied

the O-vacancy of TiO2 to be restored by dehydrogenation to form quinoid units again. Therefore,
the PGDIL–TiO2/Au electrode has higher electrocatalytic activity for electrochemical oxidation of CC
and HQ than the PGDIL/Au and TiO2/Au electrode.

Cyclic voltammetry at different scan rates (0.01–0.09 V/s) was employed to further study
the conduction characteristics of HQ and CC on the PGDIL–TiO2/Au composite film modified
electrode in 0.1 mmol/L HQ and 0.05 mmol/L CC. As shown in Figure 6a, with the increase of scan
rate, the anodic peak currents of HQ and CC increased, and as the anodic peak potential shifted
positively, the reduction peak currents increased, and the reduction peak potential shifted negatively;
these findings further prove that the redox reactions of HQ and CC are quasi-reversible processes.
Both the anodic peak current value (Ipa) and the cathodic peak current value (Ipc) are linearly related
to υ1/2 (Figure 6b,c) under the given conditions. These results indicated that the electrode reactions of
CC and HQ on PGDIL–TiO2/Au were typical diffusion-controlled process.

As presented in Figure 6d, the anodic peak potential (Epa) and the cathodic peak potential (Epc)
of HQ and CC are linearly related to lnυwhen the ∆Ep value of HQ is greater than 32 mV, and when
the ∆Ep of CC is greater than 30 mV, it is in accordance with the Laviron equation [45]:

Epc = Eθ +
RT
αnF

In
RTκs

αnF
−

RT
αnF

ln ν (4)

Epa = Eθ +
RT

(1−α)nF
In

RTκs

(1−α)nF
+

RT
(1−α)nF

ln v (5)

where Epc is the cathodic peak potential, Epa is the anodic peak potential, Eθ is the standard electrode
potential, α is the electron transfer coefficient, n is the electron transfer number, ks is the standard
heterogeneous reaction rate constant, R is the gas constant, T is the thermodynamic temperature, and F
is the faraday constant.

By the slope of the Epa–lnυ curve, αHQ = 0.5826 and αCC = 0.5909 can be obtained.
According to the Randles–Sevcik formula [46] for a quasi-reversible reaction controlled by diffusion:

Ipa = 2.69 × 105 n3/2 A D1/2 C0 υ1/2 (6)
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where D is the reactant diffusion coefficient (cm2/s), A is the electroactive surface area (cm2), n is
the electron transfer number, υ is the scan rate (V/s), C0 is the reactant concentration (mol/cm3), and Ipa

is the anodic peak current (A).Polymers 2019, 11, x FOR PEER REVIEW 9 of 18 
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With a concentration of 1 mmol/L K3Fe(CN)6 as the model material (diffusion coefficient
D = 7.6 × 10−6cm2/s, n = 1), the relationship between the anodic peak current (Ipa) and scan rates
(v) is Ipa= 1.09 × 10−5 + 0.7959 × 10−4 υ1/2, and the slope is 0.7959 × 10−4 = 2.69 × 105 n3/2AD1/2C0.
The electroactive surface area of modified electrode can be concluded to be A = 0.1073 cm2. By the linear
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relationship of the anodic peak current (Ipa) and scan rates (v) on the modified electrode Ipa,HQ

(µA) = 0.4469 + 4.892 υ1/2 and according to the Randles–Sevcik formula, there is a straight slope
4.892 × 10−6 = 2.69 × 105 n3/2AD1/2C0 (n = 2, A = 0.1073 cm2, C0 = 0.1 mmol/L). The diffusivity of
HQ in pH = 7 phosphate buffer solution can be obtained as D = 3.591 × 10−7 cm2/s. Similarly, Ipa,CC

(µA) = 0.5529 + 5.646 υ1/2, and the diffusion coefficient of CC in pH = 7 phosphate buffer solution can
be determined as 1.913 × 10−6 cm2/s.
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The CV curves of 0.1 mmol/L HQ and 0.05 mmol/L CC on the PGDIL–TiO2/Au composite
film electrode at different temperatures were tested experimentally, and the relationship between
the obtained oxidation peak current (Ipa) and the square root of scan rate (v1/2) is shown in Figure 7.
The values of the diffusion coefficients of HQ and CC (DHQ and DCC, respectively) at different
temperatures were calculated according to the diffusion coefficient formula (Table 2). It can be found
from the table that both the DHQ and DCC increased with the increase of temperature, possibly because
the increase of temperature led to the increase of kinetic energy of HQ and CC and the decrease of
the viscosity of the solution medium, which is beneficial to diffusion.

According to Arrhenius equation [47], the relationship between temperature and diffusion
coefficient is in accordance with Equation (7),

D = D0e−ED/RT (7)
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where D is the diffusion coefficient when the temperature is T (cm2/s), and D0 is the empirical
parameter. The formula can be obtained by logarithmic transformation of the formula; i.e., there is
a linear relationship between lnD and 1/T.

ln D = ln D0 − ED/RT (8)
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Table 2. Diffusion coefficients of HQ and CC at different temperatures.

HQ

T (◦C) 25 30 35 40 45

k × 10−6 4.892 6.467 7.840 8.794 9.521
r 0.9964 0.9982 0.9992 0.9987 0.9984

D × 10−7 (cm2/s) 3.591 6.171 8.923 11.05 12.75

CC

k × 10−6 5.646 6.674 7.245 8.272 9.172
r 0.9945 0.9964 0.9955 0.9986 0.9990

D × 10−6 (cm2/s) 1.913 2.629 3.569 3.910 4.731

According to the data of DHQ and temperature in Table 2, the fitting equation is lnDHQ = 5.2187 −
5941/T (As shown in Figure 8a). As can be seen from Equation (8), the slope of the fitting line is −ED/R.
Therefore, the diffusion activation energy of HQ is ED,HQ = 49393 J/mol = 49.39 kJ/mol. Similarly,
the diffusion activation energy of CC is ED,CC = 34935 J/mol = 34.935 kJ/mol (as shown in Figure 8b).
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3.5. DPV Analyses of HQ and CC on Different Modified Electrodes

The electrochemical behaviors of the PGDIL–TiO2/Au, PGDIL /Au, TiO2/Au, and Au electrodes in
the buffer solution containing 0.1 mmol/L HQ and 0.05 mmol/L CC were studied by differential pulse
voltammetry (DPV) to investigate the practicability of the PGDIL–TiO2/Au electrode. As shown in
Figure 9, there was no peak current response in the blank buffer solution in the range of −0.1–0.4 V,
which indicates that the buffer solution can be used as the base solution for the electrocatalytic reaction
of HQ and CC without impure peak interferences. There was no difference between the anodic peaks
of HQ and CC on the bare gold electrode; only a small and wide anodic peak could be observed.
The PGDIL/Au and TiO2/Au electrodes exhibited respective anodic peaks, but their response sensitivity
was low, their current was small, and the two peaks were indistinct, so it was difficult to distinguish
them. However, there were two completely separated and responsive anodic peaks of HQ and CC
on the PGDIL–TiO2/Au electrode. The anodic peak potentials were 0.18 and 0.3 V, which correspond
to the oxidation reactions of HQ and CC, respectively. The anodic peak currents of HQ and CC on
the PGDIL–TiO2/Au modified electrode were 3.22 and 3.42 µA, respectively, and are much higher than
those of the PGDIL /Au and TiO2/Au electrodes. The results demonstrate that the PGDIL–TiO2/Au
electrode can effectively improve the electrochemical behaviors of HQ and CC. The anodic peaks
of HQ and CC can be completely separated into two sensitive anodic peaks. The peak-to-peak
potential difference was 0.12 V, which is slightly higher than the potential reported in the work by [48].
It, therefore, provides a new electrode material for the simultaneous determination of HQ and CC.Polymers 2019, 11, x FOR PEER REVIEW 13 of 18 
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Figure 9. DPV results of 0.1 mmol/L HQ and 0.05 mol/L CC on the PGDIL–TiO2/Au, PGDIL/Au,
TiO2/Au, and Au in pH = 7 PBS at a scan rate of 0.1 V/s.

The effects of pH on the electrochemical behaviors of HQ and CC were studied by DPVs. As shown
in Figure 10, in the range of pH = 5–9, the anodic peaks of HQ and CC were completely separated.
The anodic peak currents increased with the decrease of pH value, and reached the maximum value
at pH = 7.0.

The oxidation peak potentials (Ep) of HQ and CC were negatively shifted with the increase of pH
values (Figure 10c), and presented good linear relationship with slopes of 0.0556 and 0.059, respectively
(Ep,HQ = 0.4678–0.0556 pH, r2 = 0.9985; Ep,CC = 0.605–0.059 pH, r2 = 0.9924). These values are close to
the Nernst theoretical value, indicating that H+ entered into the electrode reaction, and the number of
protons was equal to the number of electrons in the reaction [49]. According to the above conclusion,
the number of electron transfers for both HQ and CC during electrochemical oxidation was two, so
the redox reactions of HQ and CC were two-electron and two-proton transfer processes, which is
consistent with the existing literature [40]. In total, 0.1 mol/L PBS (pH = 7.0) was selected as the support
electrolyte for the detection of HQ and CC to obtain high sensitivity and selectivity.
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Figure 10. (a) DPV results of 0.1 mmol/L HQ and 0.05 mmol/L CC on the PGDIL–TiO2/Au electrode
under different pHs at a scan rate of 0.1 V/s. (b) The relationship between Ip and pH. (c) The relationship
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The selective and simultaneous determination of HQ and CC were performed on
the PGDIL–TiO2/Au electrode at pH = 7 using DPV. The selective determinations of HQ and CC
were carried out by changing the concentration of each isomer separately. Figure 11a,b presents
the variations of HQ and CC concentrations in the range of 1–100 µmol/L and 2–100 µmol/L. The results
show that the oxidation peak currents are related to the increase of HQ concentration, while the peak
currents of CC remain basically unchanged (as shown in Figure 11a). Similarly, the peak currents
of CC increased with the increase of the concentration, whereas the peak currents of HQ remained
basically unchanged (as shown in Figure 10b). The peak current also had a good linear relationship.
The regression equations were Ip,HQ (µA) = 2.380 + 0.009804 CHQ (µmol/L) and Ip,CC (µA) = 2.380 +

0.009804 CCC (µmol/L), respectively. The detection limits (LODs) for HQ and CC were estimated to be
0.23 µmol/L and 0.41 µmol/L (S/N = 3), respectively.

Figure 12a displays the DPV results of the binary mixture of CC and HQ at various concentrations.
The composition of the binary mixture of CC and HQ is shown in Table 3. The results show two
well-defined and separated oxidation peaks for CC and HQ with their respective concentrations
as displayed in calibration plots (insets in Figure 12b,c). The regression equations for HQ, and CC
are Ip, HQ (µA) = 3.413 + 0.008152 CHQ (µmol/L) (r2 = 0.9929), and Ip, CC (µA) = 2.368 + 0.02179 CCC

(µmol/L) (r2 = 0.9952), respectively. The LODs for HQ and CC were estimated to be 0.17 µmol/L
and 0.25 µmol/L, respectively. Therefore, the sensitive and simultaneous determination of HQ and CC
are favored without valid interference between them. Thus, the PGDIL–TiO2/Au modified electrode is
a competitive candidate in simultaneous determination of dihydroxybenzene isomers compared with
other modified electrodes [50].
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4. Conclusions

A novel poly-geminal dicationic ionic liquid-TiO2 (PGDIL)-TiO2/Au composite electrode was
synthesized via the electrochemical polymerization of 1,4-bis(3-(m-aminobenzyl)imidazol-1-yl)butane
bis(hexafluorinephosphate) in an electrolyte containing nano-TiO2. The SEM results showed that
the morphologies of the PGDIL and PGDIL–TiO2 powder are similar. Additionally, the PGDIL–TiO2

powder has a more uniform and smaller particle size than the PGDIL because the O-vacancies of TiO2

can adsorb GDIL molecules to form the core of polymerization, and thus, the polymerization process can
be carried out smoothly and slowly. EIS results revealed that the Rct value of the PGDIL–TiO2 electrode
is higher than those of the PGDIL and TiO2 electrodes, but its catalytic effect on HQ and CC is the best
due to the synergistic effect between TiO2 and PGDIL. Furthermore, the DPV method was used to study
the simultaneous qualitative and quantitative determination of HQ and CC at the PGDIL–TiO2/Au
electrode. The results showed that the peak current of each component in the mixture had almost
non-interference during electrochemical selectivity determination, and the peak current values were
linearly related to their concentrations. The equation for HQ is Ip, HQ (µA) = 3.413 + 0.008152 CHQ

(µmol/L), and that for CC is Ip, CC (µA) = 2.368 + 0.02179 CCC (µmol/L). The PGDIL–TiO2/Au electrode
can be used for simultaneous qualitative and quantitative electrochemical determination of HQ and CC
in wastewater by the DPV tests. The PGDIL–TiO2/Au electrode is also expected to be used for catalytic
oxidation and detection of other organic pollutants containing –OH groups. Further experiments
and studies are required to determine whether there are other synergistic effects between TiO2

and PGDIL.
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