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Abstract: Nowadays, water quality monitoring is an essential task since environmental contamination
and human exposure to heavy metals increased. Sensors that are able to detect ever lower
concentrations of heavy metal ions with greater accuracy and speed are needed to effectively
monitor water quality and prevent poisoning. This article shows studies of the modification of flexible
track-etched membranes as the basis for the sensor with various polymers and their influence on the
accuracy of detection of copper, cadmium, and lead ions in water. We report the UV-induced graft
(co)polymerization of acrylic acid (AA) and 4-vinylpyridine (4-VPy) on poly(ethylene terephthalate)
track-etched membrane (PET TeMs) and use them after platinum layer sputtering in square wave
anodic stripping voltammetry (SW-ASV) for detection of Cu2+, Cd2+, and Pb2+. Optimal conditions
leading to functionalization of the surface and retention of the pore structure were found.
Modified membranes were characterized by SEM, FTIR, X-ray photoelectron spectroscopy (XPS)
and colorimetric analysis. The dependence of the modification method on the sensitivity of the sensor
was shown. Membrane modified with polyacrylic acid (PET TeMs-g-PAA), poly(4-vinylpyridine)
(PET TeMs-g-P4VPy), and their copolymer (PET TeMs-g-P4VPy/PAA) with average grafting yield
of 3% have been found to be sensitive to µg/L concentration of copper, lead, and cadmium ions.
Limits of detection (LOD) for sensors based on PET TeMs-g-PAA are 2.22, 1.05, and 2.53 µg/L for
Cu2+, Pb2+, and Cd2+, respectively. LODs for sensors based on PET TeMs-g-P4VPy are 5.23 µg/L
(Cu2+), 1.78 µg/L (Pb2+), and 3.64 µg/L (Cd2+) µg/L. PET TeMs-g-P4VPy/PAA electrodes are found to
be sensitive with LODs of 0.74 µg/L(Cu2+), 1.13 µg/L (Pb2+), and 2.07 µg/L(Cd2+). Thus, it was shown
that the modification of membranes by copolymers with carboxylic and amino groups leads to more
accurate detection of heavy metal ions, associated with the formation of more stable complexes.

Keywords: track-etched membranes; graft polymerization; stripping voltammetry; 4-vinylpyridine;
acrylic acid

1. Introduction

Currently, development of analytical methods for detection of heavy metal ions is urgent task
since toxic ions such as As, Pb, Cd, Hg, Ni, and others are widely used in industry and released
into the environment affecting human health [1,2]. Accumulation of heavy metal ions in the body
can cause different diseases such as cancer, schizophrenia; kidney, lung, liver, skin diseases, etc.
The World Health Organization has established the maximum permissible concentration of toxic
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metals in water, which, for instance, for Pb2+ is 0.01 mg/L [3]. Methods of absorption spectroscopy,
mass spectrometry, and X-ray fluorescence spectroscopy can be used to detect metal ions in trace
level [4]. However, these methods have drawbacks including bulkiness, high cost, time-consuming,
etc. In this regard, interest is growing in the search for portable, inexpensive, and sensitive methods
of heavy metal ion analysis. One such method is electrochemical method based on stripping
voltammetry [5]. This method is currently widely used both in the field of chemical analysis of
substances present in trace-level concentrations [6,7], and to study the mechanism of electrode reactions,
the properties of solid electrodes, the adsorption of substances, etc.; it is inexpensive, fast, and portable.
Moreover, advantages of the method are: the ability to determine a significant number (more than
40) of chemical elements and many organic compounds; low detection limits (10−9–10−10M); high
selectivity and good metrological characteristics; ease of computerization and automation.

The stripping voltammetry is usually performed with a three-electrode system containing
a reference electrode, auxiliary electrode, and working electrode (WE). Electrodes based on mercury
and bismuth are the most commonly used for standard tests. Mercury and bismuth are toxic
and difficult to use, and new materials are currently under considerable attention [8]. For such
purpose, materials based on carbon nanotubes [9], carbon thin film [10], graphene and graphene
oxide [11], metal nanoparticles [11–14], and polymers and membranes [15–17] are used as WE.
Moreover, the number of publications has been growing on the use of track-etched membranes
(TeMs) based on polyvinylidene fluoride (PVDF) as a dual-electrode [18–23]. TeMs are thin (5–24 µm),
light, and flexible polymeric films with pores with narrow pore-size distribution. It is possible to
control the pore size from 30–50 nm to 3–6 microns, as well as the shape of the channel, which can
be cylindrical, tapered, and others [24,25], subjected to relatively easy modification by functional
polymers, which makes them an attractive object for research in voltammetric measurements as
WE. To increase the selectivity and sensitivity of the analysis, modification of the TeMs surface with
functional monomers is carried out.

Barsbay et al. [20] grafted poly(acrylic acid) (PAA) into the nanochannels of ß-PVDF TeMs by
controlled radical polymerization using reversible addition-fragmentation chain transfer (RAFT) agents.
Such grafted membranes were transformed into membrane electrode by deposition of gold layer
(50 nm) and found to be sensitive to sub-ppb Pb2+ concentration. Poly(4-vinyl pyridine) (P4VPy)
grafted into PVDF was found to be effective in detection of mercury [19,26] with concentrations
ng/L after 24 h of absorption and µg/L after 2 h of absorption. Penaeva et al. [18] reported the
electron-beam-induced graft polymerization of bis[2-(methacryloyloxy)ethyl] phosphate onto PVDF
membrane for the detection of uranium (VI) in ppb concentrations from 20 to 100 ppb using square
wave cathodic stripping voltammetry.

At the same time, there are no works in the literature on the modifications of TeMs for stripping
voltammetry by copolymers with different nature. However, it is known that such copolymers form
more stable complexes with heavy metal ions [27,28], which ultimately will improve the properties of
the sensor [29]. Such polymers can be PAA and P4VPy. PAA [20,30] and P4VPy [19,31] were found to be
effective modifier of electrodes for the detection of lead, cadmium, cobalt, and others. Their copolymers
can form more stable complexes with heavy metal ions [32,33]. Thus, using PAA-P4VPy copolymers
as modifying agents can improve the versatility, sensitivity as well as enable its use in various
electrochemical applications at a much larger scale.

The current study is focused on investigating the effect of copolymer with carboxylic and
amino groups or individual polymers on sensitivity of heavy metal ion electrochemical detection.
Modification of TeMs based on PET was performed by simple method of UV-induced graft
polymerization of acrylic acid (AA) and 4-vinylpyridine (4VPy) and their copolymers. Based on such
modified membranes, sensors were prepared by platinum sputtering. These sensors were tested for
detection of copper, lead, and cadmium ions in the concentration range from 0.25 to 12.5 µg/L by the
method of stripping voltammetry.
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2. Materials and Methods

2.1. Materials and Instruments

Acrylic acid, 4-vinylpyrridine, benzophenone, N,N-dimethylformamide, and ethanol (reagent
grade) were purchased from Sigma-Aldrich. Acrylic acid was purified by distillation, 4-vinylpyrridine
was purified by Al2O3 column chromatography, and benzophenone was cleaned by recrystallization.

Sodium acetate, lead, cadmium, and copper standard solutions (Sigma-Aldrich, Hong Kong,
China) were analytical grade and used without further purification. Deionized water purchased from
Akvilon-D301 (18.2 MΩ) was used for preparing all the solutions. A PalmSens EmStat 3+ potentiostat
(Houten, The Netherlands) was used for voltammetric measurements.

2.2. Preparation of the Membranes and Their Modification

TeMs were prepared by irradiation of 12 µm thick PET films with krypton ions with an energy of
1.75 MeV/nucleon and ion fluence of 4.3·107 ion/cm2 using the DC-60 accelerator in Institute of Nuclear
Physics (Nur-Sultan, Kazakhstan). Membranes with average pore diameters of 400 nm were obtained
by photosensitization and chemical etching in 2.2 M NaOH at 85 ◦C.

Modification of poly(ethylene terephthalate) track-etched membranes (PET TeMs) was performed
by photoinduced graft (co)polymerization of AA and 4-VPy. The samples were ultrasonicated for
10 min (in water) to remove any pollutions and then soaked in 5% benzophenone (BP) solution in
N,N-dimethylformamide for 24 h, dried, quickly washed in ethanol and placed in a monomer mixture
solution. UV-induced graft polymerization was performed using UV lamp OSRAM Ultra Vitalux E27
(UVA: 315–400 nm, 13.6 W; UVB: 280–315 nm, 3.0 W). It should be noted that UV-lamp heat the sample,
without any cooling, the temperature increased to 85 ◦C. Air cooling allows to decrease the temperature
to 35 ◦C. Finally, the samples were washed in water, dried at 50 ◦C, and weighed to determine the
degree of grafting.

2.3. Membrane Characterization

FTIR analysis was performed using Agilent Cary 600 Series FTIR Spectrometer with attenuated
total reflectance (ATR) accessory at scan range from 400 to 4000 cm−1, resolution 4.0 cm−1.
X-ray photoelectron spectra were recorded on a Thermo Scientific K-Alpha spectrometer in the
Ural Center for Shared Use “Modern Nanotechnology” Yekaterinburg, Russia. The pressure in the
analysis chamber was maintained at 2 × 10−6 Pa or lower. Scanning electron microscope JEOL
JSM-7500F was used for pore diameters measurements and morphology characterization. To estimate
effective membrane pore sizes, the gas flow rate was used at a pressure drop of 20 kPa [34]. Colorimetric
assay was done according to recommendations described in References [35,36].

2.4. Anodic Stripping Voltammetry Measurements

Sensors based on modified PET TeMs were obtained according to References [19,21] by magnetron
sputtering of platinum with average thickness of 40–50 nm using mask on both sides of the membrane.
These surfaces were connected to potentiostat EmStat 3+ (PalmSens) through 0.4 mm diameter
copper cables, which were glued to metalized membrane using silver paste (Sigma-Aldrich, Seoul,
South Korea). Connections were isolated by fingernail varnish and wax. Diameter of platinum surfaces
is 5 mm. One side of membrane was used as working electrode, another side as counter electrode,
Ag/AgCl electrode in 1 M KCl solution was used as reference electrode. Electrochemical analysis was
performed by square wave anodic stripping voltammetry (SW-ASV) using standard solution of Cu2+,
Pb2+, and Cd2+ in 0.1 M sodium acetate. Before the measurements, sensors were kept in analyzed
solution for a certain time. Then applying −1.2 V for deposition time of 120 s and scanning from −1 V
to 1 V at a frequency of 50 Hz and an amplitude of 20 mV, SW-ASV was performed.
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3. Results and Discussion

3.1. UV-Induced Graft Polymerization of 4-vinylpyridine on PET TeMs

Optimization of irradiation time, distance from the UV-lamp and monomer concentration for
the effective graft polymerization of 4-VPy on PET TeMs are presented in Figure 1. Water–ethanol
mixture (30% by volume) was used as solvent. The choice of 30% water–ethanol mixture is due to the
peculiarities of monomer dissolution. The solvent should dissolve the monomer well, at the same time
it should not dissolve the previously adsorbed onto the membrane photosensitizer (benzophenone) in
order to reduce its transition into the solution and reduce the side-reaction of homopolymerization.
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Figure 1. Grafting degree depends on irradiation time (a), distance to UV-source (b), monomer 
concentration (c), and temperature (d). 
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increase in the degree of grafting from 15% to 167% (at a concentration of monomer 2%, a distance of 
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At the same time, a prerequisite for the further use of such membranes as sensors is the 
preservation of the pore structure of the membranes; therefore, the samples were studied by 
scanning electron microscopy (SEM). Examples of SEM images with the preservation of the pore 
structure are presented in Figure 2. Data from SEM and gas permeability are summarized in Table 1. 

Figure 1. Grafting degree depends on irradiation time (a), distance to UV-source (b), monomer
concentration (c), and temperature (d).

As can be seen from Figure 1, there is an increase in the degree of grafting, measured gravimetrically
with an increase in irradiation time, concentration, temperature, and a decrease in the distance from
the UV source.

A sharp increase in the degree of grafting is observed (from 3 to 45%) with a decrease in the
distance to the UV-source from 10 to 7 cm. An increase in temperature from 37 ◦C to 85 ◦C leads to
an increase in the degree of grafting from 15% to 167% (at a concentration of monomer 2%, a distance
of 7 cm). Such a sharp increase can lead to a significant change in the pore structure of the membranes.

At the same time, a prerequisite for the further use of such membranes as sensors is the preservation
of the pore structure of the membranes; therefore, the samples were studied by scanning electron
microscopy (SEM). Examples of SEM images with the preservation of the pore structure are presented
in Figure 2. Data from SEM and gas permeability are summarized in Table 1.
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Figure 2. SEM images of poly(ethylene terephthalate) track-etched membranes (PET TeMs) before
(a) and after UV-grafting of 4-vinylpyridine (4VPy) for 15 min (b), 60 min (c) (at constant T = 37◦,
L = 10 cm, monomer concertation 3%), and after grafting with grafting degree 167% (d).

Table 1. Pore sizes for grafted PET TeMs at various conditions.

№
Sample

Time of
Grafting,

min

Concentration
of

Monomer,%

Distance
from

UV-Lamp,
cm

Temperature,
◦C

Grafting
Degree,

%

Effective
Pore

Size, nm

Pore
Size

(from
SEM

Analysis),
nm

Porosity,
%

1 0 - - - - 400 ± 5 405 ± 25 22
2 15 3 10 37 0.5 355 ± 4 365 ± 17 17
3 30 3 10 37 1 350 ± 6 361 ± 15 16.5
4 60 3 10 37 3 230 ± 6 253 ± 22 7
5 60 3 7 37 45 0 0 -
6 60 3 15 37 0.1 357 ± 6 376 ± 22 17
7 60 1 7 37 10 145 ± 4 167 ± 21 4
8 60 1.5 7 37 11 154 ± 6 176 ± 15 4
9 60 2 7 37 16 110 ± 5 103 ± 12 2

10 60 3 7 37 45 0 0 -
11 60 1 7 85 18 0 0 -
12 60 1.5 7 85 32 0 0 -
13 60 2 7 85 167 0 0 -

As can be seen, with an increase in the degree of grafting, a uniform decrease in pore diameter
occurs. According to gas permeability test, the pore diameter decreased from 400 nm to 355,
350, and 230 nm, respectively, at irradiation for 15, 30, and 60 min.
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Figure 3 shows FTIR-ATR spectroscopy that was used to elucidate changes on PET TeMs surface
after 4-VPy grafting. The main absorption bands were at 3435 cm−1 (O–H), 2975 cm−1 (aromatic C–H),
2915 cm−1 (aliphatic CH), 1715 cm−1 (C=O), 1615, 1470, 1430, 1409 cm−1 (aromatic vibrations of the
carbon skeleton), 1238 cm−1 (stretching vibrations of C (O)–O bonds), and 980 cm−1 (O–CH2) [37].
The main difference between the spectra of the initial and modified PET TeMs is related to P4VPy,
absorption bands at 1595 cm−1 (C=C aryl.), 1450, and 1410 cm−1 (C–N). Moreover, an increase in the
degree of grafting leads to increasing peak height at 1595 cm−1.
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Figure 3. ATR-FTIR spectra of PET TeMs modified with 4-VPy at different grafting degrees.

X-ray photoelectron spectroscopy (XPS) analysis was carried out for further investigation of the
surfaces of PET TeMs after grafting of 4-VPy with grafting degrees of 3% and 10%. Survey spectra
of initial PET TeMs consist of carbon (71.9%) and oxygen (28.1%). Graft polymerization of 4-VPy
at grafting degree of 3% lead to detection of 7% nitrogen, 7.8% of oxygen, and 85.2% of carbon.
High-resolution N1s spectra of PET TeMs-g-P4VPy at different grafting degrees represents one peak
at 399 eV related to nitrogen of P4VPy [38]. High-resolution C1s spectra of PET TeMs are consist of
three main peaks at 285, 286.6, and 289 eV related to C–C/C–H, C–O–C, and C=O, respectively, also
π–π* shake up was detected at 292 eV. Graft polymerization of P4VPy lead to disappearance of peaks
at 286.6 and 289 eV, probably associated with full covering of very top surface with grafted polymer.
This is also consistent with a decrease in intensities of C–O and C=O peaks in O1s spectra presented in
Figure 4d.
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3.2. UV-Induced Graft Copolymerization of 4-Vinylpyridine and Acrylic Acid on PET TeMs

In order to study the effect of polymers of various nature on the detection ability,
graft copolymerization of 4-VPy with AA was studied. AA contains negatively charged carboxyl
groups (in contrast with positively charged P4VPy), which can also form complexes with heavy
metal ions. Grafting polymerization was carried out in a water–ethanol medium by varying the
concentration of monomers and the ratio of monomers, while the irradiation time and temperature
remained constant—1 h and 37 ◦C, respectively. The results are presented in Figure 5.
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Figure 5. The dependence of the ratio of the monomers on the degree of grafting.

It can be seen from the graph that the largest mass gain is observed at the ratio of the monomers of
4-VPy:AA = 90:10, probably due to the greater tendency of 4-VPy to polymerization compared to AA
(r1 (4-VPy) = 5, r2 (AA) = 0.5 [39]. The minimum value of grafting degree is achieved when the ratio of
monomers is 50:50. According to Reference [39], this is due to the formation of associates, which lead
to a decrease in the reactivity of monomers (Figure 6).
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Figure 6. Interaction of acrylic acid and 4-vinylpyridine monomers.

The composition of the grafted copolymer was studied by colorimetry using dyes toluidine blue
(TB) and orange acid (AO) [35,36,40]. TB has specificity to carboxyl groups of PAA grafted chains and
AO has specificity to P4VPy. Schematically, the process is presented in Figure 7. The results of the
analysis are presented in Table 2.
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Table 2. The composition of the grafted copolymer PET-TeMs-g-PAA/poly(4-vinylpyridine) (P4VPy)
depending on the AA/4VPy ratio.

Monomer Mixture Composition Dye Concentration, µM/g Composition of Grafted
Copolymer

[AA] [4-VPy] TB AO m1 m2

90 10 11.9 11.1 51.7 48.3
70 30 21.4 89.5 19.3 80.7
50 50 26.6 72.1 27.0 73.0
30 70 25.7 81.9 23.9 76.1
10 90 34.0 44.4 43.4 56.6

As can be seen from the Table 2, the ratio of the polymer units in the chain 50:50 is achieved with the
composition of the monomer mixture AA:4-VPy = 90:10, this is due to the high polymerization tendency
of 4-VPy. However, with an increase in the concentration of 4-VPy, a decrease in its concentration
in the grafted polymer is observed, probably due to the formation of a homopolymer, which was
clearly recorded during the experiment. The observed effects are in good agreement with previously
published works [41].

SEM images of the surface of modified PET TeMs at various monomer ratios are shown in Figure 8.
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Figure 8. SEM images of PET TeMs modified with graft copolymerization of AA and 4VPy at different
monomer ratios.

SEM images clearly show a change in surface morphology. With increasing of grafting degree at
monomer ratio AA/4-VPy = 30:70 and 10:90, surface topography inhomogeneity with inclusions can
be observed. Moreover, changes in pore diameters occurred, and thickness of grafted copolymer is
different between pore diameter of pristine PET TeMs and modified one. However, the pore diameter
varies slightly. For a more accurate study of the change in pore diameter, the gas permeability method
was used. The results are presented in Figure 9.
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and N (6.5%); PET TeMs-g-P4VPy/AA = 10:90 consist of C (79.3%), O (16.4%), and N (4.3%). 
High-resolution C1s spectra show us that with increasing of AA content, an increase in the peak 
intensity at 289 eV corresponding to C=O bond has occurred. At a monomer mixture ratio of 
4-VPy:AA = 10:90, which leads to the formation of copolymers on PET TeMs with a ratio of 50:50, 
two peaks appear at high-resolution N1s XPS spectra at 399 eV and 401.8 eV. The presence of a 

Figure 9. Pore diameters of PET TeMs at different monomer ratios.

The gas permeability data obtained are in good agreement with SEM images. There is greater
pore overgrowth with an increase in the proportion of 4-VPy in the monomer mixture.

To investigate chemical composition of the surface after graft polymerization, FTIR and XPS
analysis were performed.

FTIR-ATR spectra are presented in Figure 10. In addition to the main peaks related to the PET
membrane, shifting of C=C aryl of P4VPy ring from 1595 to 1575 cm−1 together with recording of peaks
at 1640 cm−1 (COO−) and at 3500–3100 cm−1 (OH) was observed indicating formation complexing
between PAA and P4VPy.
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Figure 10. ATR-FTIR spectra of PET TeMs modified with 4-VPy/AA at different monomer ratios.

Survey XPS spectra (Figure 11a) of PET TeMs-g-P4VPy/AA=30:70 consist of C (84.2%),
O (9.3%), and N (6.5%); PET TeMs-g-P4VPy/AA = 10:90 consist of C (79.3%), O (16.4%), and N
(4.3%). High-resolution C1s spectra show us that with increasing of AA content, an increase in the
peak intensity at 289 eV corresponding to C=O bond has occurred. At a monomer mixture ratio of
4-VPy:AA = 10:90, which leads to the formation of copolymers on PET TeMs with a ratio of 50:50,
two peaks appear at high-resolution N1s XPS spectra at 399 eV and 401.8 eV. The presence of a second
peak at 401.8 eV also confirms the assumption that a complex is formed between PAA and P4VPy [38].
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was around 3%, in which the chemical modification of the surface was achieved by complexing 
groups to heavy metal ions (HMI) together with the preservation of the pore structure of the 
membranes. These modified membranes were converted to sensors by magnetron sputtering of 
platinum from both sides of the membranes with a thickness of 40–50 nm. One side of the membrane 
was used as working electrode, another side as counter electrode, thus distance between these two 
electrodes is equal to membrane thickness (12 µm) since graft polymerization at 3% of grafting 
degree does not lead to a significant change in membrane thickness. 
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sodium acetate. HMIs were detected simultaneously in the same concentrations from 0.025 µg/L to 
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Figure 11. XPS survey (a), high-resolution N1s (b), C1s (c), and O1s (d) spectra of PET TeMs before and
after graft copolymerization of 4-VPy and AA on PET TeMs at different monomer ratios.

3.3. Electrochemical Detection

For the electrochemical detection, PET TeMs modified with AA according to our previously
published paper [36] PET TeMs modified with 4-VPy and 4-VPy/AA in monomer ratio 10:90 (this
monomer ration lead to formation 50:50 grafted PAA/P4VPy on the membrane, which in turn lead to
the formation of a more stable complex with heavy metal ions [32]). In all cases the grafting degree
was around 3%, in which the chemical modification of the surface was achieved by complexing groups
to heavy metal ions (HMI) together with the preservation of the pore structure of the membranes.
These modified membranes were converted to sensors by magnetron sputtering of platinum from
both sides of the membranes with a thickness of 40–50 nm. One side of the membrane was used as
working electrode, another side as counter electrode, thus distance between these two electrodes is
equal to membrane thickness (12 µm) since graft polymerization at 3% of grafting degree does not lead
to a significant change in membrane thickness.

SW-ASV was performed using standard solution of Cu2+, Pb2+, and Cd2+ in electrolyte of 0.1 M
sodium acetate. HMIs were detected simultaneously in the same concentrations from 0.025 µg/L to
12 µg/L. For the optimization of adsorption time, sensors based on modified PET TeMs were immersed
in 12.5 µg/L solution for certain time from 10 min to 120 min. Then, in present of reference electrode
(Ag/AgCl, 1M KCl) at applied potential of −1.2 V during 120 s, deposition of HMI and their reduction
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was performed. After electrodeposition, a potential scan from −1 to 1 V was performed in order
to oxidize of HMI at redox potential of Cd2+ around −0.84 V, Pb2+ at −0.52 V, and Cu2+ at 0.13 V,
respectively. Results are presented in Figure 12. Optimal adsorption time for all HMI is 30 min.
It should be noted that nonmodified membrane does not show any signal for HMI in this detection
range. Then sensors were tested in different concentration, calibration curves are presented in Figure 13.
The sensors modified with PAA and P4VPy/PAA were found to be more sensitive for copper and lead
ions over cadmium ions, while sensors modified with P4VPy show less selectivity. Limits of detection
(LOD) for sensors based on PET TeMs-g-PAA are 2.22, 1.05, and 2.53 µg/L for Cu2+, Pb2+, and Cd2+,
respectively. LODs for sensors based on PET TeMs-g-P4VPy are 5.23 µg/L (Cu2+), 1.78 µg/L (Pb2+),
and 3.64 µg/L (Cd2+) µg/L. PET TeMs-g-P4VPy/PAA electrodes are found to be sensitive with a LODs
of 0.74 µg/L(Cu2+), 1.13 µg/L (Pb2+), and 2.07 µg/L(Cd2+). In most cases, good correlation between
concentration and current was found and R2 is achieved to 0.992. Thus, these sensors can be used for
SW-ASV detection of copper, lead and cadmium in the µg/L range.
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Figure 12. SW-ASV analysis curve after absorption time of 30 min (a) and kinetics of adsorption as 
function of HMI peak height (12.5 µg/L concentration), deposition at −1.2 V for 120 s (b–d). 
Figure 12. SW-ASV analysis curve after absorption time of 30 min (a) and kinetics of adsorption as
function of HMI peak height (12.5 µg/L concentration), deposition at −1.2 V for 120 s (b–d).
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Figure 13. Calibration curves of peak currents for Cu2+ (a), Cd2+ (b), and Pb2+ (c) concentration for the
SW-ASV after 30 min of adsorption in appropriate HMI solution in 0.1 M sodium acetate electrolyte.

Furthermore, it is seen that LODs of cadmium ion is higher than LODs of copper and lead ions,
this fact is in a good correlation with complexing ability of this ion with polymers: cadmium reacts
weaker with polymers than lead and copper [42,43].

4. Conclusions

This work demonstrates the methods of modification of track-etched membranes based on
poly(ethylene terephthalate) by methods of UV-induced graft polymerization of 4-vinylpyridine,
acrylic acid and copolymerization of 4-vinylpyridine and acrylic acid for application as detectors
for electrochemical detection of heavy metal ions using square-wave anodic stripping voltammetry.
Optimal conditions of modification were found leading to creation of anchors for heavy metal ions
complexation and prevention of pore structure of the membranes. Based on such modified membranes,
detectors were prepared by platinum sputtering through the mask on both sides of the membranes.
These sensors can be used for detection of copper, lead, and cadmium ions in the concentration range
from 0.25 to 12.5 µg/L. Membranes modified with acrylic acid and acrylic acid/4-vinylpyridine showed
more selectivity to Pb2+ and Cu2+ rather than to Cd2+. Modification by copolymerization with different
polymer nature (polyacrylic acid and poly-4-vinylpyridine) leads to more accurate simultaneous heavy
metal ions detection.
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