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Abstract: The development of eco-friendly adhesives is a major research direction in the wood-based
material industry. Previous research has already demonstrated the mixture of sucrose and citric
acid could be utilized as an adhesive for the manufacture of particleboard. Herein, based on the
chemical characteristics of sucrose, a synthesized sucrose-citric acid (SC) adhesive was prepared,
featuring suitable viscosity and high solid content. The investigation of synthesis conditions on
the bond performance showed that the optimal mass proportion between sucrose and citric acid
was 25/75, the synthesis temperature was 100 ◦C, and the synthesis time was 2 h. The wet shear
strength of the plywood bonded with SC adhesive, which was synthesized at optimal conditions and
satisfied the China National Standard GB/T 9846-2015. The synthesis mechanism was studied by both
13C NMR analysis and HPLC, and the chemical composition manifesting caramelization reaction
occurred during the synthesis process. The results of ATR FT-IR indicated the formation of a furan
ring, carbonyl, and ether groups in the cured insoluble matter of the SC adhesive, which indicated
dehydration condensation as the reaction mechanism between sucrose and citric acid.

Keywords: eco-friendly adhesive; sucrose; citric acid; plywood

1. Introduction

The exploitation of bio-based composites has received increasing attention [1,2], however, the most
widely utilized bio-based materials are traditional wood-based materials, for instance, particleboard [3],
plywood [4], and fibreboard [5]. In the wood-based material industry, resins such as urea-formaldehyde,
phenol-formaldehyde, and isocyanates are widely utilized due to their excellent adhesion properties
and economically satisfactory performance [6]. However, these synthetic resins usually contain volatile
organic compounds (VOC), which are harmful to human health [7,8]. Most of the raw materials of
the synthesis resins are derived from fossil resources, and it is predictable that the utilization of these
raw materials will be inevitably restricted in the future due to the depletion of fossil resources [9].
Therefore, the development of an eco-friendly wood adhesive composed of renewable materials has
become a key topic of wood science [10,11].

Previous research has already demonstrated that citric acid could be utilized as a green adhesive
of wood-based materials [12–14]. In these studies, a citric acid water solution was sprayed on
wood particles. After or without prior drying treatment, the sprayed particles were hot-pressed at
180–200 ◦C to fabricate particleboards. The mechanical properties and water resistance of the resulting
particleboards satisfied the JIS A 5908 standard, and the reaction mechanism was considered to be the
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formation of carbonyl groups between citric acid and wood composition [14]. Furthermore, sucrose
was added to the citric acid solution to promote bond performance [15,16]. However, although the
previous citric acid-sucrose adhesive could be used for the manufacture of particleboard, it is rarely
applied to the plywood production due to its low viscosity and low solid content. To overcome this
limitation of the application of the citric acid-sucrose adhesion system, this study explores a synthesis
method to gain a novel citric acid-sucrose adhesive with applicable viscosity, high solid content and
good bond performance which satisfy the utilize requirements of plywood.

Sucrose (β-d-fructofuranosyl α-d-glucopyranoside) is a natural disaccharide, which is produced
from sugar beet or sugarcane, and its chemistry has attracted considerable interest [17]. It is used as
an organic raw material in the food, beverage, and seasoning industry since it is cheap, pure, stable,
and chemically reactive [18–20]. Based on the research of sucrose chemistry, it is found that the heating
treatment can transform sucrose into an amorphous substance along with increased solution viscosity,
and acid compounds usually act as catalysts in this reaction [17,20–23]. Therefore, considering the
chemical properties of sucrose and the reactivity of citric acid, there is a possibility to synthesize a suitable
eco-friendly adhesive for plywood. This study investigated the effects of synthesis conditions on the
bond performance of sucrose-citric acid (SC) adhesive and clarified its synthesis and curing mechanisms.

2. Materials and Methods

2.1. Materials

Sucrose (analytical reagent) and citric acid (analytical reagent) were purchased from Sinopharm
chemical reagent Co., Ltd. (Shanghai, China), and used as received without further purification.
The reagents were vacuum-dried at 60 ◦C for 15 h until reaching a constant mass prior to usage in
experiments. Poplar veneers were obtained from Zuogezhuang, Hebei Province, China.

2.2. Preparation of Sucrose-Citric Acid (SC) Adhesives

Sucrose and citric acid were mixed in different proportions and were poured into a three-mouthed
flask with distilled water to synthesize SC adhesives with 80 wt % solid content. Three groups of
adhesives were synthesized to investigate the effects of proportion, synthesis temperature, and synthesis
time on the bond performance of plywood. All synthesis processes were conducted in an oil bath
under 180 rpm/min mechanical stirring, and the detail information of the synthesis condition of each
group are shown in Table 1. The pH values of the adhesives were measured at 30 ◦C using a Leici
pH meter PHBJ-206 (Leici, Shanghai, China). The viscosities of the adhesives were measured by
HAAKE rotational rheometer MA S60 (HAAKE CO., Karlsruhe, Germany), in this test, 2 mL of each
adhesive (without prior freeze-drying) was dripped on a flat plate, the measuring geometry was C60
2◦/Ti-02170027, the temperature was 30 ◦C, and the testing mode was CR at a shear rate of 100/s.
Each viscosity test experiment was sustained for 300 s until the viscosity values tended to stabilize.
A total of 80 viscosity measurements were acquired over the duration of analysis, while the final
viscosity was defined as the average values of the last 40 data points. The results of pH and viscosity
are shown in Table 1. All the synthesized SC adhesives were sealed and stored at room temperature
for at least three days before further research was conducted involving them.
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Table 1. Detailed information of synthesis conditions and results of viscosity, pH values,
and precipitation.

Groups
Mass

Proportion
(Sucrose/CA)

Synthesis
Temperature

(◦C)

Synthesis
Time (h)

Design Solid
Content (%)

Viscosity
(mPa·s) pH

Whether Contain the
Precipitation after

3 Days Storing

100/0 1770 4.6 Yes
75/25 1690 1.5 NO

Group 1 50/50 90 3 80 1290 1.2 NO
25/75 890 1.0 NO
0/100 20 0.9 Yes

Group 2 25/75

80

3 80

920 1.0 NO
90 890 1.0 NO

100 640 0.9 NO
110 460 0.9 NO

Group 3 25/75 100

1

80

770 1.0 NO
2 720 1.0 NO
3 640 0.9 NO
4 620 0.8 NO

2.3. Bond Performance

2.3.1. Manufacture of Plywood

The synthesized SC adhesives were utilized to manufacture three-layer plywood (300 mm ×
300 mm), the bond performance of which was evaluated. The moisture content and thickness of the
veneers were 9.8–11% and 1.5 mm, respectively. SC adhesives were applied to the core veneer at
a spread rate of 140 g/m2 for a single veneer surface. The coated veneer was stacked between two
uncoated veneers so that the grain direction of both adjacent veneers was perpendicular to each other.
All assembled three-layered plywood samples with each SC adhesive were hot-pressed at 190 ◦C for
7 min.

2.3.2. Shear Strength Measurement

The prepared plywood samples were cut into standard tensile shear test specimens according to
China National Standards (GB/T 9846.7-2004). Six plywood specimens (10 cm × 2.5 cm) were cut from
each manufactured plywood and were submerged in water at 63 ± 2 ◦C for 3 h. Then, the tensile shear
strengths of the plywood samples were measured at wet conditions at a loading rate of 1.0 mm/min.
Each plywood was tested in six replications, and the average values, standard deviations, and average
wood failure levels were calculated. Statistical significance was considered for p values < 0.05.

2.4. Analysis of the Synthesis and Curing Mechanisms

2.4.1. C13 Nuclear Magnetic Resonance (NMR) Analysis

C13 NMR spectra were acquired on a Bruker AVANCE 600 MHz spectrometer equipped with
a 5 mm BBO probe using an inverse gated proton decoupling sequence. An amount of 100 mg of
freeze-dried SC adhesive was dissolved in 0.5 mL DMSO-d6. Then, the solution was transferred to
the Shigemi microtube and characterized at 25 ◦C. The acquisition parameters were 90◦ pulse width,
a relaxation delay of 1.7 s, and an acquisition time of 1.2 s. A total of 10,000 scans were collected.

2.4.2. Attenuated Total Reflection-Fourier Transform Infrared Spectra (ATR-FTIR) Analysis

ATR-FTIR spectra were acquired to assess chemical changes to (i) uncured SC adhesives (after
freeze-drying) (ii) insoluble mass of SC adhesive with optimal synthesis conditions (obtained by
curing at 190 ◦C for 7 min, then boiling in distilled water for 4 h, and finally drying at 60 ◦C for 15 h).
Infrared spectra were obtained using an ATR-FTIR spectrophotometer (Nicolet iS10, Thermo, Waltham,
MA, USA), and were recorded with an average of 32 scans at a resolution of 4 cm−1.
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2.4.3. High-Performance Liquid Chromatography (HPLC) Analysis

The chemical composition of the synthesized SC adhesives from Groups 2 and 3 (without
freeze-drying) were measured using Agillent 1260 high-performance liquid chromatography (HPLC;
Agilent Technologies Inc., Santa Clara, CA, USA). Before the measurement, the adhesive solutions
were diluted 300 times. The HPLC system was equipped with an HPX-87H ion exclusion column
(300 mm × 7.8 mm), degasser, pump, and refractive index (RI) detector. HPLC-grade milli-Q water
was used as eluent at a flow rate of 0.6 mL/min at a column temperature of 55 ◦C.

3. Results and Discussion

3.1. Effects of Synthesis Conditions on Viscosity, pH Values, and Crystallization of SC Adhesives

Table 1 shows the basic information of the SC adhesives. All results were measured after storing
for three days at room temperature. The viscosity and pH of the synthesized adhesives of Group
1 decreased by adding citric acid, and crystallization could be observed in sucrose (100/0) and citric acid
(0/100) solutions. However, the crystalline components were not observed from the adhesives mixed
with sucrose and citric acid, indicating that some reaction occurred during the synthesis treatment,
and amorphous solutions formed, which prevented the crystallization [24]. With regard to the change
of viscosity, due to the hydrolysis of sucrose, an amorphous substance with high viscosity was formed
during the heat treatment [25], hence, the viscosity variation of adhesives showed a positive correlation
with the sucrose proportion, although some crystallization could be found in the SC (100/0). In both
Groups 2 and 3, the pHs of adhesives under all synthesis conditions were almost identical—this
was due to the proportion of citric acid being constant. In contrast, the viscosity of Groups 2 and
3 decreased by increasing synthesis temperature and time, which was possible due to the formation of
small molecule compounds (such as the monosaccharide and some conversion products [26]) during
the heating process.

3.2. Effects of Synthesis Conditions on the Bonding Performance

To investigate the effects of different synthesis conditions on the bonding properties, the SC
adhesives (prepared by various mass proportions, synthesis temperature, and synthesis times) were
utilized to manufacture plywood at 190 ◦C for 7 min. Figure 1 shows the results of the wet shear strength
of the plywood bonded by SC adhesives, which were synthesized with different mass proportions.
The plywood manufactured by sucrose only (100/0) and 75/25 adhesives exhibited weak water resistance,
and thus, the glue line broke in response to water immersion treatment. With increasing citric acid
content to equal and higher than 50% conditions, the plywood showed a certain wet shear strength.
The maximum bond strength was achieved by 25/75 mass proportion adhesive (0.78 MPa), which
satisfied the China National Standard GB/T 9846-2015. In addition, the value of wood failure of the
plywood bonded by 25/75 adhesives showed a clear increase (45%), which signified that the bonding
strength between glue line and the wood surface was promoted. Other than the sucrose only condition,
the plywood bonded by citric only (0/100) showed 0.35 MPa wet shear strength and 35% wood failure,
indicating that citric acid itself contributed to the bond strength and water resistance of plywood.
These results demonstrate that the optimal mass proportion between sucrose and citric acid was 25/75.
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Figure 1. Effects of the mass proportion on the wet shear strength of plywood.

Figure 2 shows the results of the wet shear strength of the plywood bonded by the SC (75/25)
adhesives, which synthesized at different temperatures. When the synthesis temperature increased
from 80 to 100 ◦C, both wet shear strength and wood failure were promoted, indicating that the
bondability of SC adhesives was positively correlated with the synthesis temperature. The maximum
value was 0.99 MPa, which was found for the plywood bonded with the adhesive synthesized at
100 ◦C. However, ANOVA analysis showed no significant difference in the wet shear strength between
plywood bonded with SC adhesives synthesized at 100 and 110 ◦C. This implied that the influence of the
synthesis temperature on the bonded strength of SC adhesive levelled off as the temperature exceeded
100 ◦C. In addition, the wet shear strength of all specimens achieved the requirements of China
National Standard GB/T 9846-2015. Judging from the bond performance of each synthesis temperature
and considering room for improvement, the synthesis temperature at 100 ◦C was considered as the
optimal condition.

Figure 3 presents the effects of synthesis time on the bond performance of SC adhesives.
Comparatively higher wet shear strengths were observed from plywood bonded by adhesives
synthesized for 2 h (0.98 MPa) and 3 h (0.99 MPa). The results of the ANOVA analysis indicated that
the bond strength between both types of adhesives was almost uniform. However, prolonging the
synthesis time to 4 h caused significant decreases of both wet shear strength and wood failure, which
was possibly attributed to the chemical transformation during the synthesis and curing processes.
Consequently, judging from the bond performance of the plywood bonded with SC adhesives with
different synthesis conditions, the optimal mass proportion between sucrose and citric acid, the synthesis
temperature, and synthesis time were 25/75, 100 ◦C, and 2 h, respectively.
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Figure 2. Effects of the synthesis temperature on the wet shear strength of plywood.
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Figure 3. Effects of the synthesis time on the wet shear strength of plywood.

3.3. Synthesis Mechanism

3.3.1. 13C NMR

To clarify the synthesis mechanism of SC adhesives, the 13C NMR spectra of sucrose (100/0),
SC adhesive (25/75), and citric acid (0/100), which were prepared at 100 ◦C for 2 h were determined.
The adhesive solutions were freeze-dried prior to the experiments. Figure 4 shows the chemical shift of
sucrose (100/0). Two types of peaks can be observed, and the peak with higher intensity corresponded
to sucrose [27,28]. In addition, the signals with lesser intensity were considered as the isomerides of
glucose and fructose. The characteristic signals of C1 of glucose isomerides were observed at 97.1 ppm
(β-d-glucopyranose), 92.5 ppm (α-d-glucopyranose), 102.2 ppm (β-d-glucofuranose), and 98.3 ppm
(α-d-glucofuranose) [29–31]. With regard to the isomerides of fructose, the peaks at 64.7 and 64.01 ppm
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were attributed to β-d-fructofuranose and α-d-fructofuranose, respectively [29]. The presence of these
signals confirmed the hydrolysis of sucrose during synthesis.
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The 13C NMR spectrum in Figure 5 shows the chemical shifts of citric acid only (0/100), where
four high peaks can be attributed to C1–C6 of citric acid [32]. In contrast to sucrose, the specimen
containing citric acid only indicated that synthesis treatment did not cause any chemical changes of
citric acid. The 13C NMR spectra of the 25/75 adhesive, as shown in Figure 6, indicates that the four
higher-intensity signals were the result of the existence of citric acid, and the major peak area indicated
that the principal compound in the 25/75 synthesized SC adhesive was citric acid. However, compared
with the results shown in Figure 4, the characteristic peaks of sucrose disappeared, which implied that
sucrose was transformed during the synthesis process. In the lesser intensity signals, the peaks located
at 56.19, 152.00, 110.03, 125.37, 162.38, and 178.29 ppm were attributed to C1, C2, C3, C4, C5, and C6 of
5-hydroxymethylfurfural (5-HMF), respectively [33–35]. In addition, the resonances concentrated on
60–100 ppm were possibly attributed to oligosaccharides [36,37]. Based on the NMR analysis of the
synthesized SC adhesives, the chemical composition of SC adhesive (25/75) differed from that of both
sucrose (100/0) and citric acid (0/100). Furthermore, the existence of citric acid and the generation of
5-HMF and oligomers indicated that caramelization of sucrose occurred during the synthesis process,
in which, citric acid was considered the catalyst.
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3.3.2. HPLC

To investigate the effects of synthesis conditions on the chemical composition of SC adhesives,
the contents of glucose and 5-HMF of synthesized SC adhesives of Groups 2 and 3 were measured
by HPLC. The results are shown in Table 2. In Group 2, the increase of synthesis temperature led to
a reduction of glucose concentration and an increasing of 5-HMF, which was due to the hydrolysis
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of sucrose and the dehydration of monosaccharide. In Group 3, the content of glucose decreased in
response to prolonged synthesis time. However, the concentration of 5-HMF increased from synthesis
time at 1–3 h but decreased at 4 h, which was possible because 5-HMF converted to other oligomers,
and this was considered as a reason for the reducing of bond strength in Figure 4. Focusing on the
change of 5-HMF, clear growth was observed when the synthesis temperature was increased to 100 ◦C
(Group 2) and 2 h (Group 3). Judging from the results of the bonding performance of Groups 2 and 3,
the maximum wet shear strength of the plywood bonded with SC adhesives along with the highest
concentration of 5-HMF, indicated that the bonding properties of SC adhesives exhibited a positive
correlation with the 5-HMF concentration.

Table 2. HPLC results of SC adhesive with 25/75 proportion synthesized under different temperatures
and times.

Groups Sucrose-CA Synthesis Temperature (◦C) Synthesis Time (h) Glucose (g/L) 5-HMF (g/L)

Group 2 25/75

80

3

50.7 1.5
90 46.2 2.9

100 41.2 8.2
110 34.5 9.8

Group 3 25/75 100

1 50.4 2.7
2 47.7 7.8
3 41.2 8.2
4 36.4 5.79

3.4. Curing Mechanism

The chemical changes of SC adhesive before and after curing were measured by FT-IR, and the
result at the 1800–500 cm−1 region is shown in Figure 7. Compared with uncured adhesive, four new
peaks were generated and one peak disappeared from the cured adhesive. The new peak was located
at 1722 cm−1 and could be attributed to C=O stretching derived from carbonyl group and/or ester
group [16,38]. The peak that disappeared at 1708 cm−1 was due to the C=O of the carboxyl group [39].
Considering the chemical composition of the synthesized SC adhesive and the involved chemical
changes, the formation of a novel C=O group was possible due to the reaction between citric acid
and 5-HMF. The peaks at 1514 and 797 cm−1 were derived from the C=C stretching vibration and the
CH=CH of the furan ring [40,41], respectively, indicated that furan compounds participated in the
curing reaction. Another new peak located at around 1025 cm-1 was identified as the ether linkage
C–O–R [42], which possibly formed by the dehydration condensation of furan compounds. In addition,
several studies reported that citric acid could react with the hydroxyl group of wood components,
which contributed to the bond strength [14,43]. Our results also corroborate this phenomenon (Figure 1).
Therefore, the curing mechanism of SC adhesive for the manufacture of plywood should be described
via two aspects: one is the dehydration condensation reaction between citric acid and the 5-HMF
which derived from the sucrose caramelization, in which, the carbonyl and ether groups formed as
cross-linkage; the second is the reaction between citric acid and wood components.

Based on the chemical analysis above, a possible synthesis mechanism and curing mechanisms
are shown in Figure 8. In the synthesis process, 5-HMF and oligosaccharides were formed during
the heating treatment, which implied the caramelization reaction as one considered as a synthesis
mechanism. During the curing process, the furan ring, carbonyl group, and ether linkage were observed
in the cured insoluble matter, and these chemical groups indicated that a dehydration condensation
reaction occurred between citric acid and 5-HMF. In addition, the reaction between citric acid and
wood constituents also contributed to the bond strength and water resistance of the resultant plywood.
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4. Conclusions

A novel eco-friendly adhesive was synthesized by combining sucrose and citric acid under heating
conditions for incorporation into plywood. The effects of different synthesis conditions (such as mass
proportion, synthesis temperature, and synthesis time) on the bonding performance of plywood were
investigated. The results of wet shear strength tests indicated that the optimal synthesis conditions
of SC adhesive were 25/75 sucrose/citric acid mass proportion, 110 ◦C, and 2 h. When plywood was
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bonded with the optimal SC adhesive at 170 ◦C for 7 min, the wet shear strength achieved the China
National Standard GB/T 9846-2015. The results of 13C NMR and HPLC showed that 5-HMF and
oligosaccharides were generated during the heating treatment. ATR FT-IR indicated the chemical
structure change from uncured SC adhesive to cured insoluble matter. Compared with uncured SC
adhesive, the furan ring, carbonyl group, and ether linkage were observed in the cured insoluble
matter, which indicated that a dehydration condensation reaction occurred between citric acid and
5-HMF. The preliminary research result of this study shows that sucrose and citric acid adhesive could
be synthesized and utilized as adhesive for plywood. The curing behaviour, optimal hot-pressing
conditions (such as reducing hot-pressing conditions and increase bond performance) will be further
investigated in our further research.
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