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Abstract: Metal organic frameworks (MOFs), also called porous coordination polymers, have
attracted extensive attention as molecular-level organic-inorganic hybrid supramolecular solid
materials bridged by metal ions/clusters and organic ligands. Given their advantages, such as their
high specific surface area, high porosity, and open active metal sites, MOFs offer great potential for
gas storage, adsorption, catalysis, pollute removal, and biomedicine. However, the relatively weak
stability and poor mechanical property of most MOFs have limited the practical application of such
materials. Recently, the combination of MOFs with inorganic materials has been found to provide a
possible strategy to solve such limitations. Silica, which has excellent chemical stability and mechanical
properties, shows great advantages in compounding with MOFs to improve their properties and
performance. It not only provides structured support for MOF materials but also improves the
stability of materials through hydrophobic interaction or covalent bonding. This review summarizes
the fabrication strategy, structural characteristics, and applications of MOF/silica composites, focusing
on their application in chromatographic column separation, catalysis, biomedicine, and adsorption.
The challenges of the application of MOF/SiO2 composites are addressed, and future developments
are prospected.

Keywords: metal organic frameworks; silica; chromatographic column separation; gas adsorption;
catalysis; biomedicine

1. Introduction

Metal organic frameworks (MOFs), also called porous coordination polymers (PCPs), as
organic-inorganic hybrid materials with a 3D periodic grid structure formed by coordination bonds
between metal ions or clusters and organic ligands, have developed rapidly in recent decades [1–6].
The structures of the originally prepared MOFs are not stable, and their skeletons easily collapse,
limiting further research and application. In the 1990s, Yaghi et al. synthesized MOF-5, which retained
the skeleton integrity after removing the guest molecules in the channel [7,8]. The successful synthesis
of MOF-5 became a milestone in the development of MOFs. MOFs have the advantages of ultrahigh
specific surface area, high and adjustable porosity, diverse structural composition, open metal sites,
and chemical modifiability, which make them widely concerned in the fields of gas storage and
separation, catalysis, energy, and drug-sustained release [9–19]. However, weak coordination bond
composition results in the poor stability and low mechanical strength of many MOF materials, which
greatly limit their application [20,21]. MOFs with higher stability can be obtained by synthesizing
metal–nitrogen-containing MOFs with high bonding energy, by synthesizing MOFs with metals with
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high coordination numbers, or by post-synthetic modification using organic linkers [22–24]. Currently,
in practical applications, especially in high-temperature and high-humidity industrial environments,
enhancing the thermal stability, water stability, chemical stability, and mechanical strength of MOFs
while maintaining high specific surface area and high activity remains a big challenge [23,25,26]. To
solve this problem, researchers have attempted to compound MOFs with other materials to form MOF
nanocomposites [27–33]. MOF composites are two-phase or multiphase composites based on MOFs
as matrixes with polymers, metals, silica, graphene, or carbon nanotubes with different properties as
the reinforcement phase [34–44]. Among them, silica, especially porous silica, is very suitable for the
preparation of composite materials to improve the performance of MOFs due to its high stability and
structural adjustability [45–48]. Silica not only provides structured support for MOFs but also improves
the stability of materials through hydrophobic interaction or covalent bonding. The compound strategy
of MOF/SiO2 composites generally includes an in situ method, where MOF crystals are grown on
the prepared silica, and the sol–gel method, where a silica layer is coated on the synthesized MOF
crystals [49].

MOF/silica composites demonstrate excellent performance in various applications. Especially,
as the stationary phase of the chromatographic column, the highly uniform core–shell-structured
MOF/silica composite could improve the uneven packing of MOF particles and greatly enhance the
separation efficiency [50]. Silica has a guiding effect on the growth of MOF crystals and could effectively
design and control the morphology of MOFs. The interaction between silanol groups on the silica
precursor and metal center can cause structural changes in the material and lead to the increase in
surface area and micropore volume, which will facilitate gas adsorption applications [51]. In addition,
MOF/silica composites containing different open metal sites can not only act as catalysts but also
support noble metal particles, which have great potential in the field of catalysis [52]. MOF/silica
composites have also been utilized for drug delivery, angiography, diagnosis, treatment, and other
biomedical fields [53]. Especially in the field of next-generation drug-sustained release, MOF materials
have great advantages due to their organic-inorganic hybrid structure, molecular horizontal structure,
designability/adjustable porosity, and easy chemical modification. After compounding with silica,
the biological stability and structural diversity of MOF materials can be improved and become more
suitable for biomedical applications [54]. As shown in Table 1, the synthesis strategy and the advanced
applications of MOF/SiO2 nanocomposites have been summarized in detail. Even though people
have reviewed some composite materials containing MOFs for some special applications [55–59], the
review of the specific topic of MOF/SiO2 composite materials still seems necessary, due to the rapid
development in this field. Herein, the fabrication and properties of MOF/silica composites reported in
recent years are summarized. Especially, their applications in the fields of chromatographic column
separation, catalysis, adsorption, and biomedicine, have been analyzed carefully. The problems and
challenges in the application of MOF/silica composites are pointed out.

2. General Strategies for MOF/Silica Composite

Silica, which has excellent chemical stability and mechanical properties, shows great advantages
in the compounding with MOFs to improve their properties and performance. It not only provides
structured support for MOF materials but also improves the stability of materials through hydrophobic
interaction and covalent bonding [60]. The structure, morphology, surface chemistry, and thermal
stability of the MOF/silica composite could be characterized by the techniques of X-ray diffraction (XRD),
scanning electron microscope (SEM), transmission electron Microscopy (TEM), Fourier transform
infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), etc. To fabricate MOF/SiO2

composites, three processes including in situ synthesis, sol–gel methods, and impregnation are usually
utilized according to their application requirements.
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Table 1. Synthesis strategy and advanced applications of MOF/SiO2 nanocomposites. MOF: metal
organic framework.

MOF/SiO2 Synthesis Strategy Application Ref.

UiO-66@SiO2
Solvothermal process to coat UiO-66

on silica core Stationary phase for HPLC [61]

HKUST-1-SiO2
Synthesis of MOFs in the mesoporous

silica pores Stationary phase for HPLC [62]

UiO-66-NH2@SiO2
One pot synthesis of UiO-66-NH2 and

silica gel Stationary phase for HPLC [63]

HKUST-1-SiO2
MOFs were incorporated in situ into

mesoporous silica pores Stationary phase for HPLC [64]

Cu(BDC)-SiO2
MOFs nanocrystals grown in the

pores of mesoporous silica CO2 adsorption [65]

MIL-101(Cr)-SiO2 In situ hydrothermal method CO2 adsorption [66]

HKUST-1-SiO2 Sol–gel method CO2 adsorption [67]

MIL-101(Cr)-SiO2 Microwave-assisted hydrothermal Water vapor adsorption [68]

ZIF-8@SiO2 Ultrasound-assisted in situ process H2S adsorption [69]

MOF-5@SiO2
Double-solvent strategy to grow

MOFs inside silica pores Catalyst [70]

HKUST-1-SiO2
In situ synthesis of MOFs in porous

silica monoliths Catalyst [71]

ZIF-8@ SiO2
ZIF-7@ SiO2

UiO-66@ SiO2
HKUST-1@ SiO2

Sol-gel process to coat silica on MOFs Catalyst support [72]

MIL-88B-NH2@ SiO2 Sol-gel process to coat silica on MOFs Catalyst support [73]

ZIF-8@ SiO2

Drug DOX loaded into hollow
mesoporous silica and then wrapped

ZIF-8
Drug Delivery [74]

SiO2@ZIF-8 Mesoporous silica layer on ZIF-8
particles Drug Delivery [75]

HKUST-1-SiO2
ZIF-8-SiO2

Layer-by-layer grown of MOFs on
silica foam Gas separation [76]

SiO2@Eu-dpa Solvothermal process to grow MOFs
on silica spheres Fluorescence sensing [77]

SiO2@MIL-68 MIL-68(Al) grow and nucleate on the
surface of silica nanoparticles Pollute removal [78]

For the in situ process of coating MOF layers on silica particles, silica seeds are prepared first,
and then MOF are grown on them by the one-pot or layer-by-layer assembly method. As shown in
Figure 1, Gao et al. first prepared carboxylate-terminated silica, which adsorbed the Zr4+ on the silica
surface and finally reacted with 1,4-benzenedicarboxylic acid (H2BDC) to form UiO-66@SiO2 [61]. In
this process, uniform-sized silica worked as a support and offered MOFs regular shape and narrow
size distribution, which are very important for versatile applications.
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Figure 1. Synthetic procedure of UiO-66@SiO2 shell-core composites via in situ coating process. 
Reproduced from [61], with permission from Elsevier, 2019. 
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but also improves the stability and mechanical properties of the MOF materials. As Figure 2 shows, 
a very thin shell of hydrophobic mesoporous silica was encapsulated on the prepared MIL-101(Cr) 
crystals by sol–gel and calcination processes [80]. The MIL-101(Cr)@SiO2 was utilized to catalyze the 
oxidation reaction of indene with H2O2 in acetonitrile, and the activity of MIL-101(Cr)@SiO2 was 
found obviously higher than that of the pure MIL-101(Cr) sample. The turnover frequency (TOF) 
value of the MIL-101(Cr)@SiO2 (95.2 mmol g−1 h−1) is 1.24 times higher than that of the MIL-101(Cr) 
(76.8 mmol g−1 h−1). Moreover, after 1 h, the conversion of indene with the MIL-101(Cr)@SiO2 sample 
is 95%, while the conversion with the MIL-101(Cr) is only 77%. The porous silica shell facilitates the 
diffusion of reactants, which will improve the catalytic performance and catalytic stability of the 
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An impregnation approach could be utilized to grow MOFs confined in the pores of porous silica 
materials to well control the morphology of MOF/silica composites [81,82]. Abolghasemi et al. first 
fabricated mesoporous silica (SBA-15) with uniform large pores and then impregnated the silica into 
the MOF precursors with suitable solvent and grew MOFs only on the pore surfaces (Figure 3) [83]. 
The obtained MOF-5@SBA-15 nanocomposite shows an enhanced sorbent capacity of small 
molecules originating from the properties of the nanocomposites, including its porous structure, 
large surface area, and homogeneous morphology.  

Figure 1. Synthetic procedure of UiO-66@SiO2 shell-core composites via in situ coating process.
Reproduced from [61], with permission from Elsevier, 2019.

In the sol-gel method, MOF crystals are first synthesized, and then the silica precursors are
hydrolyzed, condensed, and gelled to form porous SiO2 shells in the presence of MOFs [79]. The silica
coating prepared using this strategy not only maintains the intrinsic good performance of the MOFs
but also improves the stability and mechanical properties of the MOF materials. As Figure 2 shows,
a very thin shell of hydrophobic mesoporous silica was encapsulated on the prepared MIL-101(Cr)
crystals by sol–gel and calcination processes [80]. The MIL-101(Cr)@SiO2 was utilized to catalyze
the oxidation reaction of indene with H2O2 in acetonitrile, and the activity of MIL-101(Cr)@SiO2 was
found obviously higher than that of the pure MIL-101(Cr) sample. The turnover frequency (TOF) value
of the MIL-101(Cr)@SiO2 (95.2 mmol g−1 h−1) is 1.24 times higher than that of the MIL-101(Cr) (76.8
mmol g−1 h−1). Moreover, after 1 h, the conversion of indene with the MIL-101(Cr)@SiO2 sample is
95%, while the conversion with the MIL-101(Cr) is only 77%. The porous silica shell facilitates the
diffusion of reactants, which will improve the catalytic performance and catalytic stability of the MOFs.
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Figure 2. Schematic representation of the synthesis of MIL-101(Cr)@mSiO2 sample via a sol–gel process
to grow silica layer on MOF crystal. (a) MIL-101Cr; (b) as-synthesized MIL-101(Cr)@mSiO2; (c) final
MIL-101(Cr)@mSiO2. Reproduced from [80], with permission from American Chemical Society, 2018.

An impregnation approach could be utilized to grow MOFs confined in the pores of porous silica
materials to well control the morphology of MOF/silica composites [81,82]. Abolghasemi et al. first
fabricated mesoporous silica (SBA-15) with uniform large pores and then impregnated the silica into
the MOF precursors with suitable solvent and grew MOFs only on the pore surfaces (Figure 3) [83].
The obtained MOF-5@SBA-15 nanocomposite shows an enhanced sorbent capacity of small molecules
originating from the properties of the nanocomposites, including its porous structure, large surface
area, and homogeneous morphology.
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3. Application of MOF/Silica Composite

3.1. Application in Chromatographic Column Separation

Given the large specific surface area, adjustable pore structure, and large number of active metal
sites, MOFs have great potential in separation applications, especially in chromatographic column
separation [84–88]. However, the irregular shape and wide size distribution of MOF particles lead
to the difficulty in column packing, low column efficiency, or high column pressure. Combining
traditionally well-filled silica (which has excellent column-filling properties) with MOFs (which have
excellent separation properties) is an excellent strategy to fabricate composites for the stationary phase
of high-performance liquid chromatography (HPLC) [89–92]. The structure of the composite could
greatly influence the separation ability of the materials. Exploring and optimizing the structure of
MOF/SiO2 composites are important to improve the separation performance. Usually, MOF/SiO2

composites with a different structure for chromatographic column separation could be fabricated by
impregnation, sol–gel or solvothermal process.

3.1.1. MOFs Grown on the Pores of Porous SiO2 Particles

To fabricate MOF/SiO2 composites for HPLC separation, porous silica particles are impregnated
into the dispersion solution of MOF precursors and loaded with MOF nanocrystals in the pores after
reaction to form the MOF/SiO2 composite. Ameloot et al. immersed porous silica beads in the precursor
solution of HKUST-1, and after solvent evaporation, HKUST-1 crystals were grown in the pores of
silica beads [93]. The obtained monodispersed MOF/SiO2 composite microspheres with a diameter of 3
µm showed high HPLC separation performance. Qu et al. also utilized carboxyl-modified mesoporous
silica spheres as cores to grow a layer of HKUST-1 or ZIF-8 nanoscale films in the pores [62,94].
By adjusting the reaction condition, such as the volume of ethanol in the solvents, the formation
of HKUST-1 crystals could be controllably coated only on the porous surface, and the thickness of
the films could be controlled by changing the formation rate of nanocrystals (Figure 4). With the
HKUST-1/SiO2 composite as a filler for the column of HPLC, a high separation efficiency as high as
almost 140,000 plates per meter was achieved for the model analyte styrene.
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3.1.2. MOF Film on SiO2 Particles

To increase the packing efficiency and sorbent–solute contact time, a suitable approach is to
coat MOFs on silica, which is cheap, has a high surface area, and functions as a support. Through
a one-pot synthesis process, El-mehalmey et al. wrapped a layer of amino-modified MOF materials
on the surface of silica particles (Figure 5) to prepare a UiO-66-NH2@silica composite material. The
composite was used as a porous solid phase of ion exchange column to improve the filling efficiency of
the column and increase the contact time of the adsorbent and solute [63]. The results showed that the
composite has an excellent uptake capacity of Cr(VI) ions in the chromatographic column. Even under
the interference of competing anions, such as chloride, bromide, nitrate, and sulfate, the ion exchange
column could effectively eliminate Cr(VI) ions. Yan et al. prepared mesoporous composite materials of
MOF crystals on silica particles with the aid of surfactant cetyltrimethylammonium bromide (CTAB)
by the solvothermal method and utilized them as new stationary phases for liquid chromatography
(LC) [64,95]. The results showed that the isomers could be separated quickly and efficiently. Tanaka et
al. prepared chiral (R)-MOF–silica composites using chiral organic ligands and copper nitrate or zinc
nitrate as raw materials in the presence of monodispersed silica spheres by a one-step solvothermal
method [96,97]. As a stationary phase of enantiomers in HPLC, this chiral composite material has
excellent selectivity and high separation efficiency for various chiral sulfoxides. In addition, using the
sol–gel method and supercritical CO2 drying method, Nuzhdin et al. prepared an HKUST-1@SiO2

aerogel composite material and used it in the stationary phase of conventional LC to efficiently separate
unsaturated hydrocarbon from saturated aliphatic hydrocarbon [98].

3.1.3. MOF Particles on SiO2 Particles

Recently, superficially porous particles with a solid core and porous shell as the stationary phase
for separation columns exhibited higher separation performance compared with only solid or porous
materials [99–102]. Ahmed et al. utilized silica microspheres modified with amino or carboxyl groups
as the template core to synthesize copper-based HKUST-1 nanocrystals on them and finally obtained
HKUST-1/SiO2 microspheres with regular morphology [103]. As the stationary phase for fast and
HPLC (Figure 6), the composite materials combined the filling and supporting function of the silica
with the large number of open active metal sites of MOFs, achieving a high-efficiency separation of
HPLC, which can rapidly separate toluene/ethylbenzene/styrene in 1.5 min. The same group also
prepared a ZIF-8/SiO2 composite with stable ZIF-8 as the shell, which demonstrated high column
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The MOF/silica composite mainly combines the advantages of silica microspheres (stability and
suitable morphology) and MOFs (large specific surface area, adjustable pore structure, modifiability,
and a large number of active metal sites), indicating its high application potential for chromatographic
column separation. To improve the separation performance, exploring and optimizing the structure of
MOFs/SiO2 composites are important.

3.2. Application in Gas Adsorption

MOF materials have been widely used in the field of gas adsorption due to their high specific
surface area, adjustable pore size, and pore surface, especially in the adsorption of carbon, sulfur, and
nitrogen-containing gases [105–107]. The silica in the MOF/silica composites acts as a structure-directing
agent to guide the growth of MOFs into a regular morphology and provides protection for MOFs
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to improve their stability [65]. The composite of porous/mesoporous silica and MOFs is expected
to further reduce the mass transfer resistance of target molecules, such as gases, and accelerate the
diffusion of target molecules, such as carbon dioxide. The synergistic effect between silicon dioxide
and MOFs can also enhance the interaction between materials and gas molecules, thereby improving
the gas adsorption efficiency of materials [108].

3.2.1. Carbon Dioxide Adsorption

For CO2 adsorption, porous/mesoporous silica materials are usually utilized as seeds, and MOF
crystals are in situ synthesized on the seed to form MOF/SiO2 adsorbent [109]. As Sorribas et al.
reported, the prepared mesoporous silica spheres (MSSs), MCM-41, reacts in situ with the precursors
of Al(NO3)3·H2O and NH2-H2BDC to form the MOF/SiO2 composites through a layer-by-layer process
(Figure 7) [110,111]. The adsorption amount of CO2 can reach 10 mmol/g when the materials are applied
as a CO2 adsorbent due to the breathing behavior of the mesoporous silica core and microporous
MOF shell. Through a hydrothermal process, MOF@SiO2 composites have also been reported by
growing MOF nanocrystals on an SBA-15 or MCM-41 mesoporous silica matrix, which works as the
structure-directing agent to guide the growth of MOFs [51,66]. As a CO2 adsorbent, the obtained
composite material exhibits higher specific surface area than the original MOF material, and the
material has a higher adsorption amount and a faster adsorption rate for CO2.Polymers 2019, 11, x FOR PEER REVIEW 9 of 23 
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Figure 7. SEM images of SiO2 coated with NH2-MIL-53(Al) crystals by (a) an ex situ seeding process
with mesoporous silica spheres (MSSs) added into NH2-MIL-53(Al) seeds in N,N-dimethylformamide
(DMF), or by (b) in situ seeding with MSSs were added to the synthesis gel of NH2-MIL-53(Al)
seeds. (c) Adsorption–desorption isotherms of N2 at −196 ◦C for SiO2, NH2-MIL-53(Al), seeds
and SiO2-NH2MIL53(Al) samples. (d) Adsorption–desorption isotherms of CO2 at 0 ◦C for SiO2,
NH2-MIL-53(Al), and SiO2-NH2MIL53(Al) samples. Solid and open symbols correspond to adsorption
and desorption, respectively. Reproduced from [110], with permission from Elsevier, 2016.
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In other processes, MOF crystals as the core or dispersed phase are first prepared, and then silica
is formed via a sol-gel process under the catalysis of acid and alkali to form MOFs/SiO2. Through a
sol–gel process, Ulker et al. mixed the tetraethoxysilane (TEOS, SiO2 precursor) with the prepared
HKUST-1 crystals to form an HKUST-1-doped and dispersed silica aerogel composite material [67].
Given the synergistic effect of MOFs and silica aerogel on gas adsorption, the composite has high
CO2 adsorption capacity and can be used for carbon dioxide adsorption and the storage/separation of
gas mixtures.

3.2.2. Adsorption of Water Vapor

Silica can be used to enhance the water stability of MOFs, and their composites can be used to
adsorb water or other moist gases. Using a microwave-assisted sol-gel process, Uma et al. fabricated an
MIL-101(Cr)-SiO2 composite with uniform mesopores; they found that the material has high adsorption
efficiency to water vapor, and the water stability of the composite is significantly enhanced by the
addition of silica [68]. Mazaj et al. first prepared amino-functionalized MOFs by modifying FDU-12
with aminopropyltriethoxysilane; then, the MOFs were immersed into a Cu2+ solution to obtain an
HKUST-1@NH2-FDU-12 composite material with copper ions as ligands (Figure 8) [112]. In this
composite, HKUST-1 is loaded into the pores of the silica matrix, and the hydrophobic silica provides
a layer of protection for the MOFs, which significantly improves the structural stability and avoids
the hydrolysis of pure HKUST-1 in direct contact with water. The large specific surface area of the
MOFs and the structural stability of silica effectively increase the adsorption efficiency of the composite
materials, which can be used to continuously capture humid gases.
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3.2.3. Adsorption of Other Gases

In addition to the adsorption of carbon dioxide and water vapor, MOF/SiO2 composites can
also be used for the adsorption and removal of sulfur-containing gases, such as H2S. Using an
ultrasound-assisted in situ process, Saeedirad et al. grew ZIF-8 crystals on three kinds of mesoporous
silica templates to form three kinds of composites, namely, MCM-41@ZIF-8, SBA-15@ZIF-8, and
UVM-7@ZIF-8 [69]. The composite material performed well in the adsorption desulfurization of H2S
and CH3CH2SH and had good recycling performance. Its absorption capacity was only reduced by
approximately 10% after hydrogen sulfide and ethanethiol adsorption four times.

3.3. Application in the Field of Catalysis

As a kind of crystalline material containing metal or metal cluster junctions, metal–organic
skeleton materials are expected to become heterogeneous catalysts or catalyst carriers [113–120]. MOF
materials provide a highly tunable platform for structure and performance, integrating all the properties
required for catalysis, including high surface area, high porosity, active metal sites, recyclability, and
high crystallinity [55,121–124]. However, the active site of MOFs must be protected, especially in
the high-temperature or high-oxidation environment of industrial catalysis, and the composite of
silica/MOF material can effectively solve this problem [125]. Silica not only provides MOFs with
thermal stability and structural integrity but also maintains the high availability of the active sites
of MOFs.

3.3.1. MOFs/SiO2 as Direct Catalyst

MOF/silica composites for catalysis can be prepared by the in situ synthesis of MOF crystals
in the pores of mesoporous silica. The macroscopic morphology and crystal defects greatly
affect the catalytic performance of MOF composites. Karimi et al. obtained MOF-5 crystals
with different morphologies by growing MOF-5 crystals on SBA-15 mesoporous silica at different
concentrations [126]. Flower-like to nanorod-like MOF-5 crystals have been controllably fabricated by
regulating the concentration of silica, which could guide the directional crystallization and growth
of MOFs. Among them, nanorod-shaped MOF/silica composites were found to be highly selective
to the ortho-products in the catalytic Friedel–Crafts alkylation reaction, showing superior catalytic
performance to pure MOF-5 materials. Kou et al. first prepared SBA-15 mesoporous silica and then
grew MOF crystals in silica nanopore in a double solvent containing hydrophobic solvent and a
hydrophilic solution containing MOF precursors [70]. Based on a hydrophobic n-octane solvent and
hydrophilic N,N-dimethylformamide (DMF) solvent containing MOF precursor, an MOF-5@SBA-15
composite was prepared (Figure 9). Contrary to the pure MOFs, the structure of the composites
remained undamaged for 8 h in a humid environment, which indicated that the water stability
of MOF-5 was significantly improved by the support and protection provided by mesoporous
silica. With this material as the catalyst for the Friedel–Crafts alkylation reaction, the conversion
of benzyl bromide reached up to 100% within 3 h, which is considerably higher than that of pure
MOF-5. In addition, Song et al. soaked bulk silica in HKUST-1 precursor solution directly and
obtained HKUST-1-SiO2 composite materials [71]. With the composite as catalyst, the oxidations of
propylbenzene, 1,2,3,4-tetrahydronaphthalene, diphenyl methane, and fluorene were carried out, and
the substrates, propylbenzene, and 1,2,3,4-tetrahydronaphthalene were oxidized to the respective
ketones in >90% yields and >99% selectivity. The enhancement of the catalytic performance is thought
to arise partially from the support of the silica monoliths. Furthermore, this type of HKUST-1-SiO2

is easily recovered by simple filtration and subsequently used in the successive 12 cycles without an
obvious loss in conversion (from 95% to >99%), which presents the remarkable catalytic stability of the
HKUST-1–SiO2 composite.
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Another commonly used strategy for the preparation of MOF/silica composite catalyst materials is
to first synthesize MOF materials and then grow a silica shell material on it by the sol–gel method. Ying
et al. first prepared MIL-101(Cr) and then wrapped a very thin layer of mesoporous silica on the surface
to fabricate a hydrophobic MIL-101(Cr)@mSiO2 composite and utilized it to catalyze the oxidation
reaction of indene with H2O2 in acetonitrile [80]. Considering the reusability of the catalyst, 82% of the
initial conversion is retained for MIL-101(Cr)@mSiO2 after three runs, while only 46% of the initial
conversion is still present for MIL-101(Cr). Mesoporous silica not only enhances the stability of MOF
materials because of its hydrophobicity but also shows improved catalytic activity and recyclability.
Shalygin et al. mixed MOF powders and silica sol and then obtained an aerogel composite through a
gelation of silica sol, separation, and a drying process [127]. This composite aerogel material has high
selectivity in the reaction of the catalytic oxidation of styrene into phenylacetaldehyde and can be used
as a catalytic flow reactor for the continuous preparation of styrene and phenylacetaldehyde.

3.3.2. MOF/SiO2 Composite as Catalyst Support

Maintaining the catalytic activity of active metal/metal oxide nanoparticles and improving their
stability are problems that need to be solved in the field of catalysis. Encapsulating the unstable catalyst
particles into MOF materials is an effective approach that can address these problems [128]. MOFs
were proven to be suitable carriers for noble metal nanoparticle catalysts due to their large specific
surface area and abundant pores [129]. The MOF material has uniform micropores or mesopores, which
can effectively prevent particle aggregation and facilitate the transfer and diffusion of guest molecules.
Moreover, MOF materials are easy to be separated and can be reused, effectively extending the service life
of catalyst and reducing environmental pollution. However, MOFs have limited thermal and mechanical
stability [130], which could be enhanced by silica protection layer. Li et al. established a general method to
“armorize” MOF materials by coating them with silica [72]. The first step of the method is to coat a layer
of gel filamentous microporous silica shell on the surface of MOFs with the help of surfactant and then
grow a layer of MOF shell on the surface to prepare a composite material with an MOF@mSiO2@MOF
core–shell structure. This structure could improve the mechanical strength, hardness, and toughness
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of the MOF material. The prepared ZIF-8@mSiO2@ZIF-8 composite has been proven to have excellent
catalytic performance in the catalytic reduction of 4-nitrophenol reaction by NaBH4 in water media after
loading metal particles such as gold/copper. Similarly, Pascanu et al. fixed Pd metal onto the pores of
the MIL-88B-NH2 material, coated the material surface with a layer of mesoporous silica coating, and
finally fabricated Pd@MIL-88B-NH2@nano-SiO2 double-supported nano-Pd catalysts [73]. The materials
exhibit high catalytic activity in the oxidation of benzyl alcohol without using any bubbling device under
atmospheric pressure. Under continuous flow, the composite catalyst can withstand continuous operation
at 110 ◦C for 7 days without deactivation. During this period, no metal leaching was observed, and
the material maintained its structural integrity. To enhance the mechanical properties (hardness and
toughness), Li et al. reported a general synthetic approach to coat microporous MOFs and their derivatives
with an enforcing shell of mesoporous silica (mSiO2). With ZIF-8@Au and ZIF-8@Cu utilized as binary
solid cores, meosporous silica layers were wrapped on them (Figure 10) [131]. The excellent accessibility
of the porous silica-wrapped MOFs and their metal-containing nanocomposites showed excellent catalytic
performance using the reduction of 4-nitrophenol as a model reaction with the reaction proceeded rapidly
with a conversion over 99% in ca. 14 min.
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Figure 10. TEM images for (a) ZIF-8@Au after calcination, (b) ZIF-8@Au@mSiO2 before
calcination, (c) ZIF-8@Au@mSiO2 after calcination, (d) ZIF-8@Au@mSiO2@ZIF-8, (e) ZIF-8@Cu after
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(h) ZIF-8@Cu@mSiO2@ZIF-8. Reproduced from [72], with permission from American Chemical
Society, 2014.

3.3.3. MOF/SiO2 Composite-Derived Metal/Silica Catalyst

Using a ligand calcining or dissolving process, MOF/silica composites can directly derivatize
metal/silica composites with good dispersibility and good catalytic activity [132,133]. Desai et al.
loaded cobalt or cobalt–aluminum complexes onto the zirconium nodes of a zirconium-based MOF
material NU-1000 using the osmotic method and then grew SiO2 in the voids of MOFs [134]. Finally,
after removing the double organic ligands, the Co2-Zr6@SiO2 and AlCoZr6@SiO2 polymetallic site
oxide cluster composites protected by silica carrier were prepared. The composite material was stable
and firm, and its cobalt site exhibited high catalytic activity in the oxidation of benzyl alcohol to
benzaldehyde. By calcining a ZIF-67/mesoporous silica composite, Zhou et al. prepared silica–Co/N
carbon nanotube (CNT) composites [135]. The SiO2 shell not only prevented the rapid accumulation of
Co nanoparticles in ZIF-67, but also provided a unique external “sieve” to induce the catalytic growth
of CNTs. The prepared carbon nanotubes had a good 3D framework structure, good stability, and good
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solvent tolerance, and the composite exhibited excellent electrocatalytic performance, even exceeding
some commercial catalysts.

3.4. Application in Biomedicine

Metal–organic matrix composites have attracted considerable attention in the fields of separation,
adsorption, and catalysis; however, their application in biomedicine remains a challenge [136,137]. MOF
composites have the advantages of flexible composition, adjustable pore size, and high crystallinity, and
they have attracted considerable attention in biomedical fields, especially in drug delivery, angiography,
diagnosis, and treatment [138–140]. The composite of silica shell and MOFs can provide several
advantages, including enhancing the water dispersion and biocompatibility of the materials, and the
condensation of organosilica precursors can further functionalize the MOF materials [141,142]. Rieter
et al. first synthesized MOF nanorods with lanthanide metal ions and terephthalic acid; they then
modified the nanorods with polyvinylpyrrolidone (PVP) and coated them with silica materials through
a sol–gel process [143]. The obtained MOF/SiO2 composite materials showed good performance in
drug sustained release and biomarkers.

For drug release, to avoid the rapid and uncontrolled release of the original drug,
stimulus-responsive MOF composite materials have attracted interest. Zeolite imidazole MOFs,
such as ZIF-8, synthesized from dimethylimidazole and zinc ions, have pH stimulation responsiveness.
They are very stable under physiological conditions but dissociate under acidic conditions. Hence, the
material is highly suitable for drug loading and targeted release. Jia et al. loaded the anticancer drug
DOX into hollow mesoporous silica (HMS) and then wrapped ZIF-8 to obtain a DOX/HMS@ZIF-8
composite capsule (Figure 11) [74]. DOX in the HMS@ZIF-8 composite was not released under
physiological conditions (pH 7.4); it was only released at low pH (4–6). HMS@ZIF-8 has excellent
cell compatibility and can be used to assemble pH-responsive drug delivery systems. Zou et al. also
fabricated a mesoporous layer on ZIF-8 particles with different morphologies and removed the ZIF-8
to obtain the HMS, which is suitable for drug delivery due to their excellent biocompatibility, large
cavity, and controllable morphology [75].
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The advantage of MOF/silica composites for biomedicine is that they combine the synergy of
inorganic and organic chemistry, have high porosity and rich organic functional groups, and have
biocompatibility and good stability. With carboxyl-functionalized silica beads as a matrix, Liu et al.
prepared a SiO2@EuTTA composite by coating a layer of lanthanum with thiophene trifluoroacetone
on the silica. After grafting a ZIF-8 shell on the composite, they prepared a SiO2@EuTTA@ZIF-8
core–shell composite [144]. The composite showed high selectivity and sensitivity to detect Cu2+ in
environmental or biological solution systems.

3.5. Other Applications

MOFs/SiO2 have shown versatile applications by combining the high specific surface area, high
porosity, and adjustable structure of MOFs and the high stability and functionality of SiO2. In
addition to the above applications, the composite material could also be utilized as an electrode
material. Its void structure can accommodate huge volume changes and maintain the structural
integrity and long cycle stability of the electrode. Sun et al. synthesized a copper-based MOF
material (Cu-MOF), which was coated with a layer of silica and finally carbonized at 700 ◦C to
obtain a silica–copper–carbon nanocomposite electrode material [145]. For gas separation, porous
silica provides a growing environment and support for MOF films, providing a new method for the
preparation of gas-separated MOF films. Using a layer-by-layer process, Shekhah et al. fabricated MOF
films with mesoporous silica foam as a template to form highly crystalline HKUST-1 and ZIF-8, which
showed high performance for gas separation [76]. Lanthanide MOF materials have great potential in
the fields of luminescent dopants, solid-state lighting, integrated optics, optical communication, and
solar cells [146]. In the lanthanide MOF/SiO2 composite, lanthanide ions are connected to the Si–O
network by covalent bonds, and the silica network provides uniform dispersion and luminescence
stability for the lanthanide metal. Using a hydrothermal process, Lian et al. prepared SiO2@MOF
composites (Figure 12) by coating lanthanide MOFs on carboxyl-modified silica spheres [77]. The
obtained SiO2@MOF microspheres are suitable for a reliable sensing process for acetone and Cu2+.
Moreover, the materials show excellent luminescent properties and have a potential applications in the
development of white-light devices.
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For water treatment, the addition of silica can improve the dispersion of MOFs in composite
materials, which is extremely beneficial for the adsorption of pollutants in water and has great
potential in the prevention and control of water pollution [147]. Han et al. synthesized a series of
SiO2@Al–MOF(MIL-68) composites with different silica contents, which showed ultrafast aniline
adsorption and high recyclability [78]. Given the good physical and chemical properties, MOF/SiO2

composites could be utilized in more applications.

4. Conclusions and Outlook

MOFs assembled by metal ions and organic ligands are a kind of newly crystallized porous
material with ultrahigh porosity and very large specific surface area, and the addition of silica further
improves the stability and availability of MOF materials. In Table 1, we summarized the synthesis and
application of MOF/silica composite materials in chromatographic column separation, gas adsorption,
catalysis, biomedicine, and other fields. A large number of readings in the literature have shown that
MOF/silica materials show excellent properties that are rarely seen in other materials. By compounding
with SiO2 material, the stability and mechanical properties of MOF material can not only be improved,
but also the matrix structure of MOFs can be optimized by different SiO2 structures. In addition, the
specific surface area and contact ability of the material can be improved.

The existing challenge lies in the structural control and the fabrication of composite materials with
new structure. With new MOFs and their derivatives, the interface of MOFs and silica materials and
the control of their morphology, including pores, will become prominent problems. A new preparation
method for general MOF/SiO2 composites must be developed urgently. The key issues for future
research are the regulation of the structure and morphology of MOFs/SiO2 materials and the surface
modification and functionalization to obtain composites with stability, biocompatibility, and specific
targeted functionality. MOF/silicon dioxide composites with high stability and structural controllability
will have great application potential in the fields of environmental protection, biomedicine, and
new energy.
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