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Abstract: Developing cheap, clean and atomic-efficient synthetic methodologies for conjugated
polymers are always critical for the field of organic electronics. Herein, classic Ullmann
coupling polymerization is developed to synthesize a series of Acceptor-Acceptor (A-A) type
homopolymers with microwave-assistance, which are supported by nuclear magnetic resonance
(NMR), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF),
elemental analysis (EA) and gel permeation chromatography (GPC). The physicochemical properties
of these polymers are studied by UV-vis spectroscopy, cyclic voltammetry (CV), thermal gravimetric
analysis (TGA), and density functional theory (DFT) calculation. Furthermore, these A-A
homopolymers are used as acceptors for all-polymer solar cells (All-PSCs), affording a promising
efficiency of 3.08%, which is the highest value for A-A-homopolymer-based organic solar cells.

Keywords: A-A homopolymers; classic Ullmann coupling polymerization; microwave-assistance;
organic solar cells

1. Introduction

Polymeric semiconductors are emerging as crucial components for state-of-the-art opto-electronic
technologies, including organic thin film transistors (TFTs), organic photovoltaics (OPV) and organic
photodetectors (OPDs), due to their tunable energy levels, potentially low cost manufacturing,
and solution-processability [1–4]. To tune the energy levels and enhance intramolecular charge
transfer, the donor-acceptor (D-A) strategy has been used to construct conjugated polymers by various
transition metal-mediated aryl coupling methodologies, including Stille coupling and Suzuki coupling
reactions [5–12]. Although D-A type copolymers have demonstrated great success in the area of organic
electronics, they still suffered from complicated structures and costly synthetic routes. In comparison,
homopolymers demonstrated a promising future for commercialization due to their simple structures,
easily synthetic routes, and potentially low-cost manufacture [13]. For example, poly(3-hexylthiophene)
(P3HT), as one of the Donor-Donor (D-D) conjugated polymers available in quantities over
10 kg, was considered as a promising material for commercial electro-devices [14]. In addition,
D-D homopolymer poly-4,8-bis-(5-((2-ethylhexyl)thio)thiophen-2-yl)benzo[1,2-b:4,5-b′]-dithiophene
(PBDTT-S) based on benzo[1,2-b:4,5-b′]dithiophene (BDT) units was reported for OPVs with a high
power conversion efficiency (PCE) of 7.05% [13]. On the other hand, acceptor-acceptor (A-A)
homopolymers are relatively rare, although they exhibit excellent electronic affinities and air-stability
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for high-performance organic electronics [15–19]. For example, Guo and coworkers synthesized an A-A
homopolymer, poly(2,2′-bithiazolothienyl-4,4′,10,10′-tetracarboxydiimide) (PDTzTI) through Stille
coupling for organic field effect transistors (OFETs) devices, which exhibits a remarkable electron
mobility (µe) of 1.61 cm2 V−1 s−1 [20]. Reynolds et al. employed an isoindigo unit to synthesize
poly(isoindigo) through Suzuki polycondensation, which was used as an acceptor for OPVs, affording
a relatively low efficiency of 0.47% [21]. Unfortunately, these synthetic methods usually involve several
synthetic steps and toxic reagents (e.g., tin), which is detrimental for commercializing organic electronic
technologies. Thus, it is critical to develop cheap, clean and atomic-efficient synthetic methodologies
for high-performance A-A homopolymers.

The classic Ullmann coupling reaction is a copper-mediated methodology used to build
conjugated systems upon coupling of two molecules of aryl halides with C–C bond formation;
its advantages include cheap reagents, straightforward routes, and environmentally friendly oxidants
(air or oxygen) [22–24]. Thus, Ullmann coupling has been developed to construct molecular
and polymeric conjugated materials for opto-electronics [25,26], medicines [27,28], and dyes [29].
For example, Gorgun et al. [25,26] employed Ullmann coupling to synthesize carbazole-based organic
semiconductors for photodiodes and photodetectors with respectable performances. Wang and
coworkers [27] used CuI as a catalyst to promote a domino reaction, where the condensation
and cyclization reaction were followed by an intramolecular Ullmann type reaction, to give
16H-dibenzo[2,3:6,7][1,4]oxazepino[5,4-b]quinazolin-16-ones in good yields. However, the Ullmann
coupling reaction has never been employed to synthesize A-A homopolymers.

In this contribution, classic Ullmann polycondensation was employed to synthesize three
A-A homopolymers (PPDI(H), PPDI(OD), and PNDI(OD)) with microwave-assistance, which were
supported by nuclear magnetic resonance (NMR), elemental analysis (EA), and gel permeation
chromatography (GPC). The physicochemical properties of these polymers were investigated by UV-vis
spectroscopy, cyclic voltammetry (CV), thermal gravimetric analysis (TGA), and density functional
theory (DFT) calculations. Furthermore, these A-A polymers were employed as acceptors for all
polymer solar cells (All-PSCs), affording a promising efficiency of 3.08%, which is the highest value for
A-A homopolymer-based organic solar cells (OSCs).

2. Results and Discussion

2.1. Ullmann Polymerization

Scheme 1 shows the synthetic route of poly[5,12-dimethyl-2,9-di(tridecan-7-yl)anthra[2,1,9-def:6,5,
10-d′e′f′]diisoquinoline-1,3,8,10(2H,9H)-tetraone] (PPDI(H)). The reaction conditions of Ullmann
polymerization are listed in Table 1. In a typical reaction, PDI(H) was heated with 40% equiv. of
cuprous iodide and 2 equiv. of base in a solvent. According to the literature [30], polar solvents are
good choices for Ullmann polymerization in most instances. Thus, dimethyl sulfoxide (DMSO) was
first chosen as the solvent for the polymerization at 80 ◦C (Entry 1). However, no product was obtained
due to the poor solubility of 2Br-PDI in DMSO. Thus, toluene, another polar and excellent solvent for
2Br-PDI, [31] was used for the reaction (Entry 2), but no product was obtained at 80 ◦C. Considering
temperature is a key parameter for catalytic reaction, when the temperature was raised to 150 ◦C, a good
amount of oligomers with up to 5 repeating units were achieved after 12 h, confirmed by matrix-assisted
laser desorption ionization time-of-flight (MALDI-TOF) (Entry 4, Figure S1). Afterwards, the reaction
time was extended to 24 h to afford a higher yield and molecular weight (Entry 5, Figure S2). However,
the molecular weight is still too low to be defined as a polymer.
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Scheme 1. Synthetic routes of A-A homopolymers.

The microwave-assistance technique has been used as an important tool for coupling
polymerization [32,33]. Thus, this technique was employed to improve the efficiency of this Ullmann
polymerization. Impressively, the repeating units were significantly improved to 11 units under
microwave assistance (Entry 6, Figure S3), while the reaction time was dramatically reduced to 5 h.
The number-average molecular weight (Mn) and polydispersity (PDI) are 7.4 kDa and 1.86, respectively,
indicating that a polymeric material was achieved.

Table 1. Optimization of the Ullmann polymerization of 2Br-PDI(H).

Entry a Solvent T (◦C) Time (h) Heat Yield (%) Repeat Unit b

1 DMSO 80 12 Oil Bath 0 No
2 Toluene 80 12 Oil Bath 0 No
3 DMF 80 12 Oil Bath 0 No
4 DMF 150 12 Oil Bath 30 5
5 DMF 150 24 Oil Bath 32 6
6 DMF 150 5 M. W. 38 11

a All polymerization reactions used CuI as a catalyst and K2CO3 as a base; b Repeated units of products were
determined by MALDI-TOF.

In order to investigate the versatility of the Ullmann polymerization methodology for A-A
homopolymers, another two polymers PPDI(OD) and PNDI(OD) were successfully synthesized under
the optimized reaction conditions. All three polymers were fully characterized by 1H-NMR, elementary
analysis and GPC (Supporting Information, Figures S4–S9). According to the GPC results, the Mn
and PDI of PPDI(OD) and PNDI(OD) are 12.8 kDa and 1.84, and 5.9 kDa and 1.86, respectively.
These respectable Mn and PDI values suggest that versatile applications exist for the use of Ullmann
coupling polymerization for synthesizing A-A conjugated polymers. Moreover, these three polymers
are soluble in common solvents such as chloroform (CF), chlorobenzene (CB), tetrahydrofuran (THF)
and hexane at room temperature. Thermal properties of the polymers were investigated by TGA.
As shown in Figure S10, the onset temperatures at 5% weight loss for these polymers are over
280 ◦C, which indicated the excellent thermal stability. Moreover, differential scanning calorimetry
(DSC) measurement (Figure S11) shows that all these polymers exhibit no obvious melting transition
temperature, which indicated the relatively poor crystallinity due to the twisted conformation.

2.2. Optical and Electrochemical Properties

UV-vis optical absorption spectra and CV spectrum were performed to investigate the energy
levels of PPDI(H), PPDI(OD) and PNDI(OD). The spectra are shown in Figure 1 and Figure S12,
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respectively and the data are listed in Table 2. In solution, both PPDI(H) and PPDI(OD) showed broad
absorption bands with maximum absorption peaks at 549 nm and 546 nm, respectively. The similar
absorption profiles indicate turning alkyl chain barely affect the optical properties. Unlike PDI-based
homopolymers, the PNDI(OD) showed two absorption bands. The smaller one corresponds to the π–π*
transition, while the larger peak is ascribed to the intramolecular charge transfer (ICT), suggesting the
weak ICT process in PNDI(OD). In thin films, PPDI(OD) shows a maximum absorption peak at 545 nm,
which is slightly red shifted (13 nm) in comparison with that PPDI(H), indicating the stereo-demanding
alkyl chain may influence the intermolecular packing and thus the optical properties. Also, PNDI(OD)
demonstrates two absorption peaks at 368 nm and 531 nm in film. Notably, these values are close to
those of solutions, suggesting very weak intermolecular interactions. According to the onset of the
long wavelength absorption, the optical band gaps (Eg) of PPDI(H) and PPDI(OD) and PNDI(OD)
were estimated to be 1.94 eV, 1.87 eV and 2.16 eV, respectively. According to the CV measurement,
the LUMO energy levels of PPDI(H) and PPDI(OD) and PNDI(OD) were estimated to be −4.00 eV,
−4.05 eV and −3.84 eV, respectively. Thus, HOMO energy levels of PPDI(H) and PPDI(OD) and
PNDI(OD) were calculated to be −5.94 eV, −5.92 eV and −6.00 eV, respectively.

Figure 1. Normalized UV–vis spectra of these polymers in solution (a) and as film (b).

Table 2. Summarized opto-electronic properties of the polymers.

Material λpeak
a (nm) λonset (eV) Eg

b (eV) LUMO (eV) HOMO c (eV)

PPDI(H) 532 638 1.94 −4.00 −5.94
PPDI(OD) 545 667 1.87 −4.05 −5.92
PNDI(OD) 531 575 2.16 −3.84 -6.00

a all data were measured in films; b Eg = 1240/λoffset; c HOMO = LUMO – Eg.

2.3. DFT Calculation

In order to further understand the optical properties of PPDI and PNDI, DFT calculations were
carried out at the level of the B3LYP/6-31G(d, p) as shown in Figure 2 and Figure S13, respectively.
From the side view (Figure 2c), dihedral angles of these structures 3-PDI, 4-PDI, and 5-PDI are 55◦, 56◦,
and 52◦ respectively, indicating the X-type structure of PPDI. Obviously, twisted molecules exhibit
weak intermolecular interactions and prevent the strong aggregation and large domain size, which may
be beneficial for optimal phase separation in the blend films of OSCs [34–37]. The molecular orbital
distribution showed that the highest occupied molecular orbital (HOMO) is delocalized along the whole
backbone of the molecules, while the lowest unoccupied molecular orbital (LUMO) is localized on the
center part of these molecules, indicating moderate intramolecular charge transfer, consistent with the
optical absorption. The DFT calculations (Table S2) showed that the energy levels of LUMO/HOMO of
these three molecules (3-PDI, 4-PDI, and 5-PDI) are −3.68/−5.95 eV, −3.71/−5.96 eV, −3.73/−5.96 eV,
respectively. Obviously, as the number of repeating units (PDI) increased, energy level of LUMO
decreases but HOMO remains unchanged, which thus can narrow the bandgap.
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Figure 2. (a,b) Optimized geometry, calculated HOMO and LUMO orbitals of the 3-PDI, 4-PDI and
5-PDI; (c) optimized geometry of three molecules shown in side view.

2.4. Fabrication and Characterization of All-PSCs

Among these three A-A homopolymers, PPDI(H) exhibits complementary absorptions with
narrow bandgap materials, such as poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]
dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and poly[(2,6-(4,8-bis
(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis
(2-ethylhexyl)benzo[1,2-c:4,5-c′]dithiophene-4,8-dione)] (PBDB-T) [38,39]. Furthermore, PPDI(H)
presents a similar absorption coefficient to these two D-A donor conjugated polymers (Figure S14),
suggesting that PPDI(H) may be an excellent acceptor matching with these two donors for All-PSCs.

To investigate the photovoltaic performances of PPDI(H)\PTB7-Th:PPDI(H) and PBDB-T:PPDI(H)
based All-PSCs were fabricated with inverted structures of ITO/ZnO/Active layer/MoO3/Ag. The typical
current density−voltage (J-V) curves are shown in Figure 3a and the photovoltaic parameters were
summarized in Table 3. The PTB7-Th:PPDI(H)-based All-PSCs exhibited a promising average PCE
of 2.87%, with VOC of 0.58 V, JSC of 11.24 mA·cm−2, and FF of 0.450, and the maximum efficiency is
over 3%, the highest value for A-A homopolymer-based All-PSCs. However, PBDB-T:PPDI(H)-based
devices showed a much lower efficiency of 1.95%, with VOC of 0.61 V, JSC of 7.88 mA·cm−2, and FF of
0.419. In comparison to PBDB-T-based solar cells, PTB7-Th-based solar cells display lower VOC due to
its high-lying HOMO energy level. However, PTB7-Th-based solar cells exhibit relatively higher JSC
than PBDB-T-based solar cells, which may be partly ascribed to its better complementary absorption
with PTB7-Th. The mobilities of the PTB7-Th/PPDI(H), PTB7-Th/PPDI(OD) and PTB7-Th/PNDI(OD)
via the SCLC method (space charge limits current) are shown in Table S3.
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Figure 3. (a) The current density−voltage (J-V) curves of PPDI(H)-based All-PSCs; (b) absorption
coefficient of PTB7-Th:PPDI(H) and PBDB-T:PPDI(H) blend films; (c) EQE of PPDI(H)-based
All-PSCs; (d) short current density (JSC) versus light intensity of the PTB7-Th-based devices and
PBDB-T-based devices.

Table 3. Photovoltaic properties of All-PSCs under the illumination of AM 1.5 G, 100 mW·cm2.

Blend Film PCE (%) VOC (V) JSC (mA·cm-2) FF (%)

PTB7-Th:PPDI(H) 2.87 ± 0.22 0.58 ± 0.01 11.24 ± 0.28 45.0 ± 0.5
PBDB-T:PPDI(H) 1.95 ± 0.13 0.61 ± 0.01 7.88 ± 0.24 41.9 ± 0.4

To understand the difference of the JSC of these two systems, absorption coefficients of the blend
films were measured as shown in Figure 3b. The PBDB-T:PPDI(H) blend films possess stronger light
absorption in the range of 550–650 nm due to the heavily overlapped absorption of these two materials
in this area. However, the PTB7-Th:PPDI(H) blend films exhibit a much broader optical absorption in
the range of 450–800 nm due to the narrow bandgap of PTB7-Th in comparison to PBDB-T:PPDI(H)
blend films (450–620 nm), which may lead to generation of more excitons and higher JSC. The EQE
curves of All-PSCs are shown in Figure 3c, which demonstrated that PTB7-Th-based All-PSCs possess
broader photoresponse than PBDB-T-based devices, consistent with the optical absorption spectra.
Importantly, PTB7-Th: PPDI(H)-based All-PSCs possess stronger photoresponse in the range from 550
to 650 nm, though the blend films absorb less optical light in this area compared to PBDB: PPDI(H) blend
films, which may be ascribed to the morphology of the blend films. The exciton split was investigated
by the photoluminescence of blend films as shown in Figure 4. Interestingly, the quenching efficiency
of PTB7-Th: PPDI(H) blend film is 97.2%, higher than that of PBDB-T: PPDI(H) blend film (95.6%),
which suggested that electron transfer from the donor polymers to the acceptor polymers in the former
system is more efficient than the later one, consistent with the JSC values. Moreover, JSC was measured
as a function of illumination intensity for the devices to understand the bimolecular recombination
kinetics. In principle, a linear dependence of log (JSC) and log (Plight) with a slope close to 1 suggests
weak bimolecular recombination in the photovoltaic devices. As shown in Figure 3d, the slope values
for PTB7-Th-based and PBDB-T-based devices are 0.951 and 0.925 respectively, which revealed that the
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bimolecular recombination in PTB7-Th devices is less than that in PBDB-T ones, which may contribute
to the larger JSC.

Figure 4. Photoluminescence spectra of PTB7-Th: PPDI(H) blend film (a); and PBDB-T: PPDI(H) blend
film (b).

The morphologies of blend films are critical for photovoltaic performance, thus the PTB7-Th:
PPDI(H) and PBDB-T: PPDI(H) blend films were investigated by transmission electron microscopy
(TEM) and atomic force microscopy (AFM). The TEM images (Figure 5a,b) obviously show
that PTB7-Th:PPDI(H) blend films exhibit featured domain size and suitable phase separation,
which facilitates exciton diffusion, separation and charge transport [40]. In comparison, PBDB-T:
PPDI(H) blend films demonstrate unfeatured morphologies and small domains, which are unfavorable
for charge transport. On the other hand, the AFM phase images (Figure 5c,d) exhibit that the
root-mean-square (RMS) roughness of PTB7-Th-based blend film and PBDB-T blend film are 0.918 nm
and 1.256 nm, respectively, suggesting both films possess smooth morphologies, beneficial for the
contact between blend films and interfacial layers. The powder X-ray diffraction pattern of the PPDI(H)
is shown in Figure S15, which shows that no obvious diffraction peaks including crystalline or π-π
stacking were observed.

Figure 5. (a,b) TEM images of PTB7-Th: PPDI(H) blend film and PBDB-T: PPDI(H) blend films (the
scan size is 10 µm × 10 µm); (c,d) AFM phase images of PTB7-Th: PPDI (H) blend film and PBDB-T:
PPDI(H) blend films (scan size is 10 µm × 10 µm).
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3. Conclusions

In summary, we successfully developed Ullmann coupling polymerization as a feasible
methodology to synthesize A-A type conjugated homopolymers. Upon optimizing the reaction
conditions, three A-A homopolymers with respectable molecular weights were synthesized,
which exhibited excellent optical, thermal and electronic properties. In combination with a narrow
bandgap donor (PTB7-Th), PPDI(H)-based All-PSCs showed a promising efficiency of 3.09%, the highest
value for A-A homopolymer-based OSCs. This contribution presented an important step towards
development of green and cheap tools to synthesize high-performance A-A type conjugated polymers.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/2073-4360/
11/11/1741/s1.
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