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Abstract: Macrostructural flexible photocatalysts have been proven to have desirable recyclable properties
during the photocatalytic degradation of organic pollutants in water. However, the photocatalytic
activities of these photocatalysts are often unsatisfactory due to the fast recombination of charge
carriers and the limited surface active sites. Herein, we developed a novel flexible photocatalyst
of AgBr/BiOBr/polyacrylonitrile (PAN) composite mats (CMs) through the controllable assembly
of AgBr/BiOBr nano-heterostructures on electrospun polyacrylonitrile nanofibers (PAN NFs) via
a three-step synthesis route. The component ratio of AgBr to BiOBr in the CMs could be easily adjusted by
controlling the in situ ion exchange process. The charge–transfer process occurring at the interface of the
AgBr/BiOBr nano-heterostructures strongly hindered the recombination of photoinduced electron–hole
pairs, thereby effectively enhancing the photocatalytic activity of the AgBr/BiOBr/PAN CMs. Meanwhile,
the unique hierarchical inorganic/organic heterostructure of the AgBr/BiOBr/PAN CMs not only
led to good flexibility, but also provided an abundance of active sites for photocatalytic reactions.
Upon visible-light irradiation, AgBr/BiOBr/PAN CMs with an optimal ratio of AgBr to BiOBr components
exhibited both enhanced photocatalytic activity and excellent separability during the degradation
of methyl orange in water compared to the BiOBr/PAN CMs.

Keywords: polyacrylonitrile nanofibers; flexibility; photocatalysis; interfacial charge–transfer; adsorption

1. Introduction

With the rapid development of global industry and economics, there is an urgent demand for a “green”
ecological environment for human beings. However, the heavy use of nonsustainable fossil fuels and
industrial chemicals inevitably leads to environmental pollution threatening human health. [1–4]. Over the
past several decades, many efforts have been devoted to environmental remediation using different
physical or chemical techniques [5,6]. Among them, the “green” photocatalysis technique has attracted
much interest, because it offers great potential for the degradation of organic pollutions in water or air by
using high-performance semiconductor photocatalysts under sunlight irradiation [7–9]. As an indirect
transition bandgap semiconductor, a BiOBr nanostructure with a low bandgap energy is considered
to be an effective photocatalyst for visible-light-driven photocatalytic reactions [10]. The layered crystal
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structure of BiOBr provides a space large enough to polarize the electron–hole pairs, which can effectively
boost the separation probability of photoinduced charge carriers during the photocatalytic degradation
of organic pollution [11]. It has been reported that two-dimensional (2D) BiOBr nanosheets with good
visible-light photocatalytic degradation activity could be easily obtained via a traditional hydrothermal
process in the presence of cetyltrimethylammonium bromide (CTAB) as both the precursor and structure
template [12]. Nevertheless, it is of immediate significance to further enhance photocatalytic activity and
the recyclable properties of BiOBr nanostructures.

The rational integration of two different semiconductor photocatalysts to form a well-defined
heterojunction interface has been regarded as an effective strategy in reducing charge recombination
and enhancing photocatalytic activity. [13] According to band theory, the energy band structures
of AgBr and BiOBr are suitable for the formation of “type II” heterojunctions in their heterostructures,
which boosts the separation of photoinduced charge carriers during the photocatalytic process [11,12].
Although the AgBr/BiOBr heterostructure has been demonstrated to show enhanced visible-light
photocatalytic activity for pollution degradation, the suspended particulate photocatalyst of the
AgBr/BiOBr heterostructure is hard to separate completely in solution after a photocatalytic reaction,
leading to repollution of the treated water. Thus, the design and fabrication of a macrostructural
photocatalyst with a hierarchical multi-heterostructure seems to be an available method to solve
the drawbacks to an AgBr/BiOBr heterostructure.

Immobilizing photocatalysts on macrostructural supports has been a common solution to answer
the repollution problem of particulate photocatalysts. In various support materials, the electrospun
mats of polyacrylonitrile nanofibers (PAN NFs) are promising for photocatalyst loading due to the
following advantages [14,15]: (1) polymer PAN possesses a relatively stable molecular structure
due to the existence of large numbers of cyano groups; (2) a nanosized fibrous structure with an
ultralarge surface-to-volume ratio provides abundant active sites for the controllable immobilization
of semiconductor-based photocatalysts; (3) electrospun NFs with random orientations interweave
to form macroscopic flexible mats with micropore structures, achieving an easily tailorable photocatalyst;
and (4) electrospun NFs with unique 1D nanostructure properties can realize a high level of exposure
for the loaded nanostructure photocatalysts, therefore improving photocatalytic efficiency. To date,
there has been no report on the fabrication of inorganic/organic composite photocatalysts for such
AgBr/BiOBr heterostructure-decorated PAN NFs for visible-light-driven photocatalytic degradation.

In this work, we report on the controllable immobilization of AgBr/BiOBr nanostructures on
the flexible support of electrospun PAN NFs through a facile solvothermal process combined with
an in situ ion exchange method. The optimal AgBr/BiOBr/PAN composite mats (CMs) possessed
enhanced photocatalytic activity and an excellent separability for the degradation of methyl orange
under visible-light irradiation. This could be attributed to the effective process of charge–transfer
on the AgBr/BiOBr heterojunction interface and the unique structural properties of flexible PAN
nanofibrous mats. Our work provides new insight into the development of semiconductor
heterojunction-based flexible photocatalysts for practical applications.

2. Experiment

Scheme 1 illustrates the synthesis procedure of the flexible inorganic/organic composite mats (CMs)
with different component ratios of AgBr/BiOBr nano-heterostructures on PAN NFs. First, the mats
of the PAN NFs were obtained through an electrospinning technique. Second, BiOBr nanostructures
were assembled onto the surfaces of the electrospun PAN NFs via a solvothermal treatment. Finally,
a traditional ion exchange process was employed to construct the AgBr/BiOBr nano-heterostructures
on the electrospun PAN NFs. During this process, the BiOBr could react with Ag+ ions in situ to form
AgBr nanoparticles (NPs) in the presence of an ethylene glycol solution as the reductant:

BiOBr + Ag+ Room Temperature
−−−−−−−−−−−−−−→BiO+ + AgBr ↓ .
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2.1. Fabrication of PAN Nanofiber (NF) Mats 
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was dissolved in 10 mL of N,N-dimethylformamide (DMF, Sinopharm Chemical ReagentCo., Ltd, 
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solution formed. The above precursor solution was drawn into a needle tube. The working voltage 
was set at 7.5 kV (Dingtong technology development co. LTD, Dalian, China), and the distance 
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were obtained on aluminum foil. 

2.2. Fabrication of BiOBr/PAN Composite Mats (CMs) 

Here, 0.75 mmol of Bi(NO3)3·5H2O and 0.75 mmol of cetyltrimethylammonium bromide (CTAB, 
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Subsequently, the PAN mat-suspended mixture solution was transferred into a 50-mL Teflon-lined 
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The AgBr/BiOBr/PAN CMs were prepared through an in situ ion exchange route, for which the 
as-fabricated BiOBr/PAN CMs were immersed into 20 mL of ethylene glycol with 2 mmol of AgNO3. 
The component ratio of the AgBr/BiOBr heterostructures on the electrospun PAN NFs was adjusted 
by controlling the reaction time at 2, 6, 10, and 12 h. Then, the products were washed with deionized 
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Thus, AgBr/BiOBr/PAN CMs were obtained by using a three-step synthetic route.

2.1. Fabrication of PAN Nanofiber (NF) Mats

In a typical procedure, 1.0 g of PAN (Mw ca. 150,000, Sigma-Aldrich, Shanghai, China) powder
was dissolved in 10 mL of N,N-dimethylformamide (DMF, Sinopharm Chemical ReagentCo., Ltd.,
Shanghai, China) solution. After vigorous stirring at room temperature for 12 h, a homogeneous
solution formed. The above precursor solution was drawn into a needle tube. The working voltage was
set at 7.5 kV (Dingtong technology development co. LTD, Dalian, China), and the distance between
the needle and collector was 12 cm. Thus, white mats consisting of interweaved PAN NFs were
obtained on aluminum foil.

2.2. Fabrication of BiOBr/PAN Composite Mats (CMs)

Here, 0.75 mmol of Bi(NO3)3·5H2O and 0.75 mmol of cetyltrimethylammonium bromide
(CTAB, Sinopharm Chemical ReagentCo., Ltd., Shanghai, China) were dissolved into a mixture
solution consisting of 10 mL of ethylene glycol (Sinopharm Chemical ReagentCo., Ltd., Shanghai,
China) and 30 mL of isopropyl alcohol (Sinopharm Chemical ReagentCo., Ltd., Shanghai, China). Then,
30 mg of the as-electrospun PAN NF mats were added to this solution under magnetic stirring for 3 h.
Subsequently, the PAN mat-suspended mixture solution was transferred into a 50-mL Teflon-lined
stainless-steel autoclave at 160 ◦C for 8 h. Then, the autoclave was cooled down to room temperature
naturally. Finally, the obtained BiOBr/PAN CMs were removed from the autoclave, washed with
deionized water and ethanol several times, and then dried in an oven at 60 ◦C for 8 h.

2.3. Fabrication of AgBr/BiOBr/PAN CMs

The AgBr/BiOBr/PAN CMs were prepared through an in situ ion exchange route, for which
the as-fabricated BiOBr/PAN CMs were immersed into 20 mL of ethylene glycol with 2 mmol
of AgNO3. The component ratio of the AgBr/BiOBr heterostructures on the electrospun PAN NFs was
adjusted by controlling the reaction time at 2, 6, 10, and 12 h. Then, the products were washed with
deionized water and ethanol several times. Finally, the obtained samples were dried in an oven at
60 ◦C for 8 h. The AgBr/BiOBr/PAN CMs obtained through the ion exchange treatment at 2, 6, 10,
and 12 h were denoted as AgBr/BiOBr/PAN CMs-1, AgBr/BiOBr/PAN CMs-2, AgBr/BiOBr/PAN CMs-3,
and AgBr/BiOBr/PAN CMs-4, respectively.
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2.4. Characterization

Field emission scanning electron microscopy (FE-SEM; SU70, Hitachi, Japan) and X-ray diffraction
(XRD; D/max2600, Rigaku, Japan) were used to characterize the morphology and the crystal structure
of the products. An energy-dispersive X-ray (EDX) spectroscope coupled to an FE-SEM (SU70, Hitachi,
Tokyo, Japan) was used to analyze the composition of the samples. The UV-Vis diffuse reflectance spectra
of the samples were recorded on a Cary 500 UV-vis-NIR spectrophotometer (Agilent, Beijing, China).

2.5. Photocatalytic Tests

Here, 100 mg of the as-fabricated samples were put into 50 mL of methyl orange (MO, Sinopharm
Chemical ReagentCo., Ltd., Shanghai, China) solution with an initial concentration of 10 mg/L,
which was irradiated with a 300-W Xe lamp (Prefectlight, Beijing, China) equipped with an ultraviolet
cut-off filter to provide visible light at λ ≥ 400 nm. The catalytic reaction was conducted at room
temperature. Decreases in the concentrations of the dyes were analyzed by a Cary 500 UV-vis-NIR
spectrophotometer at 460 nm. During the photocatalytic process, 3 mL of the MO solution was
extracted at an interval of 15 min, and the samples were analyzed.

3. Results and Discussion

The phase structures of the as-fabricated samples were identified through X-ray diffraction (XRD)
patterns. As observed in Figure 1, the sample of PAN NF mats only showed a very broad diffraction
peak at 25◦ due to the semicrystalline structure of the polymer [16]. The diffraction peaks from
the curve of the BiOBr/PAN CMs were indexed for tetragonal BiOBr (JCPDS, 09-0393). This indicated
the formation of BiOBr nanostructures on the electrospun PAN NFs through the solvothermal process.
After an ion exchange treatment, some new diffraction peaks originating from the AgBr (JCPDS, 06-0438)
could be found in the XRD patterns of the AgBr/BiOBr/PAN CMs. Meanwhile, when we prolonged
the reaction time during the ion exchange process, the diffraction intensities of the AgBr peaks were
increased on the XRD curve of the AgBr/BiOBr/PAN CMs. This suggests that the component ratio
between the AgBr and BiOBr in the ternary CMs could be adjusted by controlling the reaction time
of the ion exchange process.Polymers 2019, 11, 1718 5 of 13 
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respectively, which was indicative of Bi3+ in BiOBr. The Br 3d5/2 and Br 3d3/2 peaks were associated 
with binding energies of 67.8 and 69.0 eV, respectively (Figure 2b). The peaks at 367.3 and 373.2 eV 
were attributed to Ag+ in AgBr, and those at 368.4 and 374.4 eV were assigned to Ag0 species (Figure 
2c). The O 1s peak could be fitted by two peaks at 531.7 and 533.1 eV, which were related to the 
oxygen in the BiOBr catalyst and other components (such as –OH and H2O) adsorbed on the surface 
of AgBr/BiOBr, respectively (Figure 2d). 

 

Figure 1. X-ray diffraction (XRD) patterns of the as-fabricated samples: (a) BiOBr/PAN CMs;
(b) AgBr/BiOBr/PAN CMs-1; (c) AgBr/BiOBr/PAN CMs-2; (d) AgBr/BiOBr/PAN CMs-3;
(e) AgBr/BiOBr/PAN CMs-4.



Polymers 2019, 11, 1718 5 of 12

More detailed information regarding the chemical and bonding environment of the
AgBr/BiOBr/PAN photocatalysis was ascertained using X-ray photoelectron spectroscopy (XPS).
As shown in Figure 2a, two peaks at 158.9 and 164.2 eV were attributed to Bi 4f7/2 and Bi 4f5/2,
respectively, which was indicative of Bi3+ in BiOBr. The Br 3d5/2 and Br 3d3/2 peaks were associated
with binding energies of 67.8 and 69.0 eV, respectively (Figure 2b). The peaks at 367.3 and 373.2 eV were
attributed to Ag+ in AgBr, and those at 368.4 and 374.4 eV were assigned to Ag0 species (Figure 2c).
The O 1s peak could be fitted by two peaks at 531.7 and 533.1 eV, which were related to the oxygen in the
BiOBr catalyst and other components (such as –OH and H2O) adsorbed on the surface of AgBr/BiOBr,
respectively (Figure 2d).Polymers 2019, 11, 1718 6 of 13 
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The morphologies of the PAN NF mats, the BiOBr/PAN CMs, and the different AgBr/BiOBr/PAN
CMs were characterized using scanning electron microscopy (SEM). Figure 3a shows that the electrospun
PAN NFs had relatively smooth surfaces due to organic semicrystalline properties. After solvothermal
treatment, BiOBr nanostructures could be observed on the surfaces of the electrospun PAN NFs
(Figure 3b). The obtained BiOBr/PAN composite NFs remained as one-dimensional (1D) fibrous
structures. It can be clearly seen that the flower-like BiOBr nanostructure on the PAN NF consisted
of several standing nanosheets with thicknesses of 5–15 nm (Figure 3c). When the BiOBr/PAN CMs
were immersed into the ethylene glycol solution for ion exchange with the Ag+ ions, AgBr NPs
were produced in situ on the surfaces of the BiOBr nanosheets (Figure 3d,e). During this process,
BiOBr nanosheets on the PAN NF surfaces provided reaction sites for AgBr loading. With an increase
in the ion exchange time from 2 to 6 h, the amounts and sizes of the AgBr NFs on the BiOBr nanosheets
significantly increased from AgBr/BiOBr/PAN CMs-1 to AgBr/BiOBr/PAN CMs-2 (Figure 3d,e). An SEM
image of an individual AgBr/BiOBr/PAN NF and the corresponding energy-dispersive X-ray (EDX)
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map are shown in Figure 3f. Observation of the Ag-related image confirmed that the Ag atoms were
indeed exchanged with the BiO+ to form AgBr NPs on the BiOBr nanostructures. Meanwhile, the Ag,
Br, Bi, and O atoms were distributed uniformly in the AgBr/BiOBr/PAN NFs. The above results indicate
that the AgBr NPs were successfully immobilized on the surfaces of the BiOBr nanosheets with good
dispersion and a controllable density.Polymers 2019, 11, 1718 7 of 13 
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Figure 3. Scanning electron microscopy (SEM) images of (a) PAN nanofibers (NFs) and (b) BiOBr/PAN
CMs; SEM images of BiOBr or AgBr/BiOBr nanostructures in (c) BiOBr/PAN CMs, (d) AgBr/BiOBr/PAN
CMs-1, and (e) AgBr/BiOBr/PAN CMs-2; (f) SEM images of AgBr/BiOBr/PAN CMs-2 (left) and
the corresponding elemental maps (right) of Ag, Br, Bi, and O.

The photocatalytic activities of the as-fabricated samples were evaluated through the degradation
of MO in water under visible-light irradiation. The characteristic absorption peak of MO at around
λ = 460 nm was used to monitor the photocatalytic degradation process. The degradation efficiency
was defined as C/C0, where C and C0 are the remnant and initial concentrations of MO, respectively.
Before the photocatalytic tests, all of the samples were stirred for 30 min to achieve saturation
adsorption. The photodegradation efficiencies of MO mediated by the series of photocatalysts
are given in Figure 4a. It was found that the PAN NF mats possessed a poor ability to adsorb
MO. In addition, no photocatalytic degradation of MO was observed on the PAN NF mats under
visible-light irradiation due to the lack of semiconductor photocatalysts. When loading the BiOBr
nanostructures on the PAN NF mats to form the BiOBr/PAN CMs, the photocatalytic activity of the MO
degradation increased dramatically. After visible-light irradiation for 60 min, the photodegradation
efficiency reached 81.0% over the BiOBr/PAN CMs. Notably, the AgBr/BiOBr/PAN CMs showed
higher photocatalytic activities than the BiOBr/PAN CMs did for the degradation of MO under
visible-light irradiation. Meanwhile, the photocatalytic activity of the AgBr/BiOBr/PAN CMs for the
MO degradation was dependent on the ion exchange time during the synthesis process for the
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AgBr/BiOBr/PAN CMs. This observation indicates that the AgBr/BiOBr heterojunction played an
important role in the enhancement of photocatalytic activity on the ternary CMs due to an effective
interfacial charge–transfer (Scheme 2a). The optimal sample of AgBr/BiOBr/PAN CMs-2 could degrade
92.9% of MO under visible-light irradiation for 60 min. This photocatalytic activity was obviously
higher than the reported flexible photocatalysts due to the existence of a semiconductor heterojunction
to boost the separation of photoinduced charge carriers (Table 1). For a better understanding of the
photocatalytic activity of the above samples, kinetic analyses of the degradation of MO are given
in Figure 4b according to a pseudo-first-order reaction model: ln(C0/C) = Kappt, where Kapp is the apparent
first-order rate constant (min−1), and t is the time for visible-light irradiation. The linearity between
ln(C0/C) and irradiation time was good for all of the photocatalysts, indicating that the photocatalytic
degradation of MO in water could be described by pseudo-first-order reaction dynamics. The apparent
rate constant of AgBr/BiOBr/PAN CMs-2 was 0.0511 min−1.
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Table 1. The photocatalytic degradation parameters over the different nanofiber photocatalysts. 

Photocatalyst Light Photocatalytic Results Year Ref. 

AgI–BiOI/PAN composite 
nanofibers 

300-W Xe 
lamp (λ > 400 

nm) 

The photodegradation efficiency of 
Rhodamine B (RhB) could reach 

98.5% within 210 min 
2018 [14] 

BiOCl/CuTNPc/PAN 
nanofibers 

150-W xenon 
lamp (λ > 420 

nm) 

The degradation rate of RhB 
reached 

75% within 180 min 
2018 [15] 

CuAl2O4 hollow nanofibers 
500-W xenon 
lamp (λ ≧ 

420 nm) 

The RhB and MO solutions were 
degraded by 83.5% and 94% within 

360 and 300 min 
2018 [16] 

Polyoxometalate/TiO2/Ag 
composite nanofibers 

300-W Xe 
lamp (λ ≧ 

420 nm) 

MO (20 mL, 20 ppm) could be 
completely degraded within 160 

min 
2018 [17] 

PAN/g-C3N4/BiOI nanofibers 
500-W Xe 

lamp (λ ≧ 
400 nm) 
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Table 1. The photocatalytic degradation parameters over the different nanofiber photocatalysts.

Photocatalyst Light Photocatalytic Results Year Ref.

AgI–BiOI/PAN composite
nanofibers

300-W Xe lamp
(λ > 400 nm)

The photodegradation efficiency of Rhodamine
B (RhB) could reach 98.5% within 210 min 2018 [14]

BiOCl/CuTNPc/PAN
nanofibers

150-W xenon lamp
(λ > 420 nm)

The degradation rate of RhB reached
75% within 180 min 2018 [15]

CuAl2O4 hollow
nanofibers

500-W xenon lamp
(λ
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420 nm)
The MO could be completely degraded

within 75 min 2018 [26]

Bi2MoO6/BiFeO3
heterojunction nanofibers

150-W xenon lamp
(λ > 420 nm)

The degradation rate of RhB reached
98% within 5 h 2018 [27]

CuCrO2/SnO2 nanofibers 250-W metal halide
lamp

The MB could be completely degraded
within 120 min 2018 [28]

Ag2O/TiO2 composite
nanofibers

visible light irradiation
(>420 nm)

The degradation rate of RhB reached
87.7% within 80 min 2019 [29]

Au/BiFeO3 composite
nanofibers 500W xenon lamp The degradation rate of RhB reached

85.76% within 3h 2019 [30]

In addition to the photocatalytic efficiency, the recyclability and stability of the photocatalyst are also
crucial issues for practical applications. As shown in Figure 5, AgBr/BiOBr/PAN CMs-2 could be easily
separated and recovered from solution after the photocatalytic reaction because of the macrostructural
flexible structure of the electrospun fibrous mats [31–33]. After three cycles, the photocatalytic
activity of AgBr/BiOBr/PAN CMs-2 was almost unchanged in terms of MO degradation (Figure 6a).
This suggests that the as-fabricated photocatalyst possessed both recycling properties and stable
photocatalytic activity.

The morphologies and crystalline structures of AgBr/BiOBr/PAN CMs-2 after three cycles were
studied in comparison to AgBr/BiOBr/PAN CMs-2 before use in a photocatalytic reaction. As shown
in Figure 6b, the photocatalyst of AgBr/BiOBr/PAN CMs-2 still had a 1D structure with secondary
nanostructure loading. In addition, some NPs appeared on the surface of AgBr/BiOBr/PAN CMs-2,
which could be attributed to the formation of a small amount of Ag NPs due to the photocatalytic
reduction process.
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of MO; (b) XRD patterns and SEM images of AgBr/BiOBr/PAN CMs-2 before and after three
photocatalytic reactions.

Meanwhile, the intensities and positions of the diffraction peaks in the XRD patterns
of AgBr/BiOBr/PAN CMs-2 were changed slightly before and after three cycles of photocatalytic reaction
(Figure 6b). There were some new diffraction peaks in the XRD patterns of the AgBr/BiOBr/PAN
CMs-2 used, which was in accordance with cubic Ag. This further confirmed the formation of Ag NPs
on the AgBr/BiOBr/PAN CMs-2 used. Please note that the Ag NPs on the surface of the AgBr/BiOBr
heterostructures could also boost the separation of photoinduced charge carriers by enhancing
photocatalytic activity due to the “electron sink” effect of Ag NPs (Scheme 2b). Further investigation
found that no detachment of AgBr/BiOBr nanostructures was observed during the photocatalytic
reaction, indicating that the photocatalyst of AgBr/BiOBr/PAN CMs-2 had excellent photoactivity and
good stability.

4. Conclusions

In summary, the AgBr/BiOBr hetero-nanostructures were controlled and immobilized on
the flexible support of electrospun PAN NFs through a facile solvothermal process combined with
an in situ ion exchange method. The AgBr/BiOBr/PAN CMs exhibited enhanced photocatalytic
activity in the decomposition of MO compared to the BiOBr/PAN CMs. The enhanced photocatalytic
activity could be attributed to extended absorption in the visible light region and the effective
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separation of photogenerated charge carriers across the AgBr/BiOBr heterojunction interface. Moreover,
the AgBr/BiOBr/PAN CMs could be reclaimed easily without a decrease in the initial photocatalytic
activity due to the processible flexibility induced by their unique hierarchical inorganic/organic
heterostructure. It is believed that our present work offers a new platform to develop semiconductor
heterojunction-based flexible photocatalysts for practical applications in water purification.
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