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Abstract: Membrane fouling is seen as the main culprit that hinders the widespread of membrane
application in liquid-based filtration. Therefore, fouling management is key for the successful
implementation of membrane processes, and it is done across all magnitudes. For optimum operation,
membrane developments and surface modifications have largely been reported, including membrane
surface patterning. Membrane surface patterning involves structural modification of the membrane
surface to induce secondary flow due to eddies, which mitigate foulant agglomeration and increase
the effective surface area for improved permeance and antifouling properties. This paper reviews
surface patterning approaches used for fouling mitigation in water and wastewater treatments.
The focus is given on the pattern formation methods and their effect on overall process performances.
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1. Introduction

Membrane technology has been used widely for many applications, such as liquid filtration,
oil and gas processing, carbon capture, and many others. Many techniques of using a membrane
for carbon dioxide capture and utilization have been patented [1]. In renewable energy, membrane
technology has also been used for biofuel production which shows optimized end-product production
by using ultrafiltration hollow fiber membranes. Biofuel production is a multimillion-dollar business,
in which membrane technology can help to reduce the cost of production of biodiesel [2–5]. Membrane
technology is also reliable and efficient in water and wastewater treatments and is in a state of rapid
development. However, the major drawback of membrane technology is membrane fouling, which
hinders its widespread application, as cleaning is costly and generates significant amounts of waste.
Fouling generally refers to the blocking of pores or build-up of material on the membrane surface.
Membrane fouling diminishes permeance and eventually affects the economics of the process in terms
of operational and capital expenditures [6,7].

Fouling is categorized as biofouling, scaling, organic, and colloidal fouling. Biofouling involves a
multi-step process where bacteria, biopolymers, and proteins adsorb onto the membrane surface or
within the membrane pores. Biofouling is a major hindrance to membrane usage because unlike other
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types of fouling, microorganisms can grow, multiply, and relocate on the membrane surface. Scaling is
a type of fouling that arises from the precipitation and deposition of salts on the membrane surface
or within the membrane. Organic fouling occurs as a result of hydrocarbons coating the surface or
plugging the pores of the membrane. Colloidal fouling is the accumulation of particles such as clay or
silica on the surface or within the membrane [8–23].

Membrane fouling makes the operation more complex in accommodating for fouling management.
Therefore, researchers are focusing on simplifying and inventing new strategies of fouling control.
Fouling can be mitigated by controlling physical and chemical interactions between foulant materials
in the feed solution and on the membrane surface [24,25].

From the perspective of membrane engineering, the surface chemistry affects the surface/foulants
integration, and topography/patterning is seen as the way to alter those interactions in favor of
membrane fouling control, i.e., via manipulating local mixing and hydrodynamics. Such views lead
to innovative works in developing novel membrane materials having a patterned surface. However,
more comprehensive applications of modifying the surface chemistry have been limited by uncertainty
concerning cost, reliability, and environmental sustainability [24–30].

Membrane surface patterning is a non-chemical strategy that mitigates membrane fouling by
changing the membrane or substrate surface topography. Surface patterns promote turbulence near the
surface of the membrane by inducing secondary flow due to eddies which inhibit foulant accumulation
and improve permeance by increasing the effective surface area [17,31–34]. Many review papers have
been published regarding fouling mitigation but none on surface patterning as a fouling mitigation
strategy. Therefore, this report provides a comprehensive overview of membrane surface-patterning as
a fouling mitigation strategy in water and wastewater treatments.

2. Membrane Surface Patterning

Surface patterning is an approach in mitigating membrane fouling by altering the membrane
surface topography. The mechanism of fouling mitigation by the patterned surface is the generation
of eddies induced by the patterns in combination with cross-flow velocity, which facilitates the
back-diffusion of foulant to the bulk liquid [35–40].

Surface patterns reduce the membrane fouling propensity during the filtration of different feeds.
Besides the hydrodynamic effect, surface patterning affects the foulant by preventing deposition of
particles on the valleys if the particle size is bigger than the valley size or by altering the particle
crystallization entropy when the size is about similar. Membrane surface patterning induces turbulence
via local mixing near the membrane surface, requiring lower linear velocity and thus lowering the
pressure loss along the module [7,41–45]. This advantage makes membrane surface patterning gain
more attention of researchers to explore all its possible application opportunities.

There are two main categories of surface patterning methods: template-based micromolding and
direct printing [25]. Figure 1 shows the classification of surface patterning methods and the summary
of those methods is depicted in Table 1.
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Table 1. Summary of membrane surface patterning methods.

Description of Patterning Method Advantage Disadvantage Ref.

EM is a stamping of a rigid patterned master mold
under high pressures and temperatures and pressure on
the polymer surface to replicate a negative of the master
mold patterns

Good resolution
High speed

High energy
consumption

Simple shapes only
Low fidelity

[33]

PSmM involves phase inversion to shape the pattern
from a liquid dope solution which precipitates into the
solid phase on the pattern features of a master mold.

Good resolution
Easy to control

Slow
Simple shapes only

Low fidelity
[46]

3D printing constructs the pattern structure through
layer-by-layer deposition according to the input 3D
model.

Free of geometry
Easy to control
High fidelity

Limited polymers
Moderate resolution [47]

Inkjet printing deposits the droplet of solution jet to
form a 3D pattern solidified due to solvent evaporation

Easy to control
High fidelity

Limited application
Moderate resolution [28]

SCmM casts a Nafion polymer solution onto a master
mold, and when it solidifies, the solid pattern is formed
as the negative of the master mold.

Easy to control
Good resolution

Poor fidelity
Limited application [48]

EM: embossing micromolding, PSmM: phase separation micromolding, SCmM: solution casting micromolding,
3D: three-dimensional.

2.1. Template-Based Micromolding

The template-based micromolding requires a master mold with the desired pattern. Such mold
is typically fabricated directly via the lithographic process or from another master mold [32]. The
negative of the master mold pattern is replicated on the membrane surface (Figure 1). There are two
types of template-based micromoldings, namely solution-based and embossing micromolding.

2.1.1. Solution-Based Micromolding

Solution-based micromolding employs the phase inversion process to form the solid membrane
from a liquid dope solution. The dope solution is cast into a master mold, as such negative replication
of the pattern in the master mold is formed in the form of polymer membrane matrix. There are two
methods of solution-based micromolding, which are: solution casting and phase separation or phase
inversion [25,48,49].

Solution Casting Micromolding

In solution-based micromoulding, the process of pattern formation occurs simultaneously with
the membrane matrix formation. It starts with casting a liquid dope solution (i.e., Nafion) onto a master
mold, and as the solvent evaporates, the solution solidifies to form the shape of the negative of the
master mold. This process is relatively fast and simple which can be done even at room temperature,
the patterned membrane can be developed using an elastomeric polydimethylsiloxane (PDMS) mold
as illustrated in Figure 2. The patterned PDMS is used as a mold not as a stamp for the surface
patterning of the Nafion film. The patterned PDMS mold is prepared using the desired thickness and
shape of the patterned silicon master (the thickness of the silicon wafer itself). In a recent report, a
three-dimensional (3D)-patterned membrane was fabricated from Nafion using a solvent evaporation
technique. The Nafion solution is then cast onto the master mold. The solid membrane is formed after
the solvent evaporation. The solid polymer matrix is then carefully peeled off the master [50–53].

Some parameters are important in solution casting micromolding, namely solution viscosity,
solution–mold interaction, solvent evaporation rate, and adhesion of the solid polymer membrane
matrix to the master mold material, which is important during the de-molding process. Nafion solution
has better mechanical stability than any other polymer solution for boundary layer separation processes.
This reduces the roughness experienced using solution casting micromolding techniques [54,55].
Membrane–mold adhesion during demolding affects the structure and the smoothness of the membrane
surface which hinders its wide application in liquid separation processes due to the presence of a
boundary layer. Membrane surface roughness facilitates accumulation of colloidal particles in the
valley areas [7,43].
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Vrijenhoek et al. demonstrated the link between surface roughness and membrane fouling in
reverse osmosis and nanofiltration processes [56]. Elimelech et al. suggested that accumulation of
colloidal particles happens at the valleys of the rough surfaces and as the particles accumulate, the
valleys become blocked, which worsens the rate of membrane fouling [57].

Solution casting micromolding has been adopted in non-boundary layer processes like fuel cell
membranes. In non-boundary layer separation processes, improvement of the separation surface area
(permeance) is the concern of surface patterning, not the fouling [50,54,55]. Jeon et al. reported the
advantages of surface-patterned Nafion membrane with a circle size of 2 µm in membrane electrode
assembly. The surface-patterned membrane exhibited a 73% improvement of a referenced commercial
membrane at a high power density of 1906 mW/cm2 when operated at 75 ◦C by using platinum loading
of 0.4 mg/cm2. The remarkable improvement could be achieved thanks to the decrease in membrane
electrode assembly resistance and increased surface area due to the surface pattern [58].
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Phase Separation Micromolding

Phase separation micromolding is identical with the solution-based micromolding. The only
difference is the process of solidifying the liquid polymer solution. In solution-based micromolding, it is
done by solvent evaporation, while in the phase inversion micromolding, solidification of the polymer
solution is done by immersion of the cast film into a bath containing a nonsolvent, as in the traditional
immersion precipitation, also known as nonsolvent induced phase separation (Figure 3A) [46,48,59].
During the evaporation of the solvent, the membrane matrix shrinks, which creates a small gap between
the mold and the polymer matrices that facilitates the demolding [46,48,59–61]. In this method, the top
surface is flat, and the pattern is formed on the bottom side, the surface in contact with the master
mold. This alignment results in the formation of a dense skin layer on the patterned surface [25,48].

Patterns at the solvent–nonsolvent interface have also been fabricated via conventional nonsolvent
vapor-induced phase separation micromolding (VI-PSmM). Unlike immersion precipitation, this
process uses water from humid air as the nonsolvent to induce phase separation. After being cast
onto a master mold, the cast film is exposed to a humid room. Over time, the imbibition of water that
precipitates from the air destabilizes the polymer solution on top of the cast film which induces the
phase inversion. The process starts from the top of the cast film gradually to the bottom and into the
whole thickness of the film. Subsequently, the whole system (cast polymer solution together with the
master mold) is then immersed in a nonsolvent to complete the phase inversion process in which the
porous membrane matrix is fully developed [62–64].

Hollow fiber membranes can also be spun via VI-PSmM. It is done by using a custom-made
spinneret that help to shape the outer or inner surface of the fiber. During the dry–wet spinning
process, the air gap is set small. In this way, the pattern, typically on the lumen side, can be preserved
by rapid coagulation in the nonsolvent [65].

There is a vast amount of advancement in phase separation micromolding processes that has
been reported. A simple imprinting method was incorporated in the membrane preparation through
phase inversion (Figure 3B). An improvement in permeance of 87.5% (corrugated: 15 L/m2

·h and flat:
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8 L/m2
·h) for a membrane distillation process was achieved for a long-term operation of 50 h by a

corrugated polyvinylidene difluoride that was fabricated by imprinting spacers onto the membrane
surface before the phase inversion step [40]. An improvement of 50% in the effective surface area
which accounts for 5–6 times the improvement in permeance was recorded for a corrugated membrane
for a membrane bioreactor process via imprinting a fine and a coarse spacers onto the cast film before
the phase inversion step [66].
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2.1.2. Embossing Micromolding

Embossing micromolding (EM) techniques involve stamping of a rigid patterned master
mold under high pressure (wafer-based) or high temperature and pressure (thermal embossing
or nanoimprinting) on the polymer surface to replicate the patterns of the master mold (Figure 4).
EM can be done using thermal, nanoimprinting, and wafer-based embossing. Careful control of the
processing parameters (T, P, t) is the key to achieving high fidelity of the pattern in EM. Thermal
embossing micromolding (TEM) uses high temperatures above the glass transition temperature Tg

of the polymer and a pressure in range of 20–100 bar to “imprint” the topographic features onto
a flat polymeric membrane. However, TEM was modified (nanoimprinting lithography) by using
temperatures just below the polymer glass transition temperature due to pore sealing and rupture
observed by earlier approaches [24]. In nanoimprinting, the temperature is slightly lower or just below
the Tg, and a pressure of 20–100 bar is beneficial in avoiding pore sealing and defects that occur in
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the TEM. The pore sealing in TEM was attributed to the viscous flow of the polymer at temperatures
above the glass transition of the polymer [24,32,67].

Wafer-based embossing, an improved version of the thermal and nanoimprinting processes,
creates the patterned surface at room temperature but employs a higher pressure of >200 bar for
embossing. This modification is considered an improvement from the traditional TEM complexity by
eliminating heating and cooling steps, which also offers economic competitiveness [25].
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2.2. Direct Printing

Direct printing is categorized into ink-jet printing and 3D printing, which are detailed below.

2.2.1. Inkjet Printing

Inkjet printing is a technique that involves solvent evaporation of structured droplets of a solution
to form computer-based designed objects (Figure 5) [28]. It has been used exclusively for the chemical
formation of surface patterns on polymers. Therefore, it is briefly discussed as it is beyond the scope
of this review. Bandalov et al. incorporated inkjet printing with interfacial polymerization for the
fabrication of thin film composite membrane for water desalination process. The membrane showed
~97.2% salt rejection and a ~26.4% increase in permeance [68]. Gao et al. generated a patterned
structure layer-by-layer on a microfiltration membrane with 0.2 µm pore diameter by incorporating
inkjet printing with template synthesis [69].

2.2.2. Additive Manufacturing (3D Printing)

Three-dimensional printing, also known as microstereolithography and rapid prototyping, is
the construction of 3D objects based on computer-designed models. This technique allows the
formation of geometrically complex shapes and features via the layer-by-layer deposition of polymeric
materials (Figure 5) [70]. Three-dimensional printing has revolutionized the traditional prototyping
and manufacturing industry that depends on the expensive and time-consuming conventional methods.
In 3D printing, the design and fabrication of micro- and macro-structure membranes can be controlled
in one go. Three-dimensional printing is categorized into: photopolymerization, powder, material
extrusion, and lamination [47,70–74]. There is much ongoing research on the advancement of continuous
liquid interface production (CLIP), the ability for 3D printers to accommodate to more polymers, the
reduction in processing time, and improvement in resolution.

Photopolymerization is popular for fabricating polymeric membrane for liquid-based filtration.
It is not only economically attractive, but also offers a high resolution. In photopolymerization,
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photo-reactive polymers (photopolymers) are cured with the help of a lasers. For example, in
laser-lithography also known as stereolithography (SLA), an ultraviolet laser is employed for tracing
and curing a model’s cross-section. The formed trace is then coated with a resin layer. The process is
repeated until the entire structure is formed until finally the object is cured in an ultraviolet oven [75].

Direct light processing (DLP) improved traditional 3D printing by using normal light instead of
laser. CLIP techniques based on DLP are a technological breakthrough in photopolymerization, where
printing times can be reduced by 25 to 100 times. DLP techniques require a mechanical separation
of the cured layer from the bottom of the resin vat, followed by resin re-coating before the next
layer is exposed. CLIP forms an oxygen-containing “dead zone” to reduce mechanical movement.
The presence of the dead zone inhibits adhesion to the resin vat for multi-layer printing which then
eliminates the separation step in the traditional SLA printers and radically reduces the construction
time while still offering high resolution [70,74–76].

Al-Shimmery et al. fabricated a 3D-patterned polyethersulfone membrane. It was done by
casting the polymer atop an acrylonitrile butadiene styrene-like 3D-printed substrate. The patterned
membrane offered 30% higher pure water permeance compared to a flat membrane. The membrane
was tested for filtration of feed comprised of oil-in-water emulsions. When treating oil/water emulsions,
the patterned membrane had a 52% higher permeance recovery ratio after the first filtration cycle,
without reducing the rejection rate. It maintained constant hydraulic performance after five filtration
cycles without requiring chemical cleaning [77]. Such performance was much better than that of the
flat membrane, in which it severely fouled even after the first cycle.

Mazinani et al. fabricated 3D-printed membrane by physically attached a polymeric membrane
on top of 3D-patterned support. The membrane active layer was prepared from polyethersulfone
polymer. The attachment of the polymeric membrane matrix was done through vacuum pressure.
The performance of the resulting membranes was analyzed through a crossflow filtration set-up
using bovine serum albumin (BSA) as a feed. The results showed a 10% improvement in pure water
permeance (PWP) of the patterned membrane against the flat membrane. The patterned membrane
maintained a 87% permeance recovery ratio even after the 10th filtration cycle [78].
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reduction in fouling is caused by eddies that are formed at the membrane surface, inducing localized 
mixing such that foulant materials are less likely to come in contact with and adhere to the membrane 
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3. Operation Conditions of Patterned Membranes

The objectives of surface patterning can only be achieved by operating at an appropriate flow
angle (Figure 6). A 0◦ flow angle (flow parallel to patterns) shows significant fouling, whereas a
45◦ or 90◦ flow angle (flow perpendicular to patterns) shows a significant reduction in fouling [79].
This reduction in fouling is caused by eddies that are formed at the membrane surface, inducing
localized mixing such that foulant materials are less likely to come in contact with and adhere to the
membrane [80].
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The influence of the membrane patterns is more pronounced under higher feed crossflow velocities.
Higher corrugation angles increase membrane permeance reaching the highest value at 90◦, induce
maximum local mixing. However, surface patterning incurs higher pressure drops along the membrane
module than the flat surface owing to flow resistance and friction exhibited by the surface patterns to
the axial flow [17,41,80]. Therefore, operating at higher feed flow velocity for patterned membrane
entails a significant increase in energy consumption for pumping countering the benefit of higher
hydraulic productivity. Scott et al. demonstrated an increase in energy savings of 88% for the patterned
membrane as compared to a flat membrane of the same area by calculating the power ratio of the two
membranes [39]. The summary of recent reports on performance enhancements of filtration due to
surface patterning is shown in Table 2.
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Table 2. Recent reports on performance of patterned membrane for water treatment.

Patterning Technique Feed Major Findings Ref.

PSmM Activated sludge 20–25% improvement in permeance flux and
3 times as fouling resistant [81]

PSmM 2000 ppm NaCl solution 210% improvement in permeability [31]

PSmM 2 µm diameter latex bead
suspensions

5.1-fold improvement in mass of particle
deposition on membrane surface [17]

PSmM Activated sludge Permeance: 5804 L/m2
·h.bar (fine), 4241

L/m2
·h.bar (coarse) and 943 L/m2

·h.bar (flat)
[66]

VI-PSmM Activated sludge ~20% permeance improvement [82]
VI-PSmM Yeast suspensions 103% improvement in surface area [83]

3D printing BSA
Reduced normalized flux: 19–24% with
parallel stripes, 13% with flat (no pattern) and
5% with perpendicular stripes

[84]

3D printing BSA
Wavy membrane has 10% better PWP than
flat membrane. Wavy membrane has 87%
PRR while flat has 53%

[78]

3D printing oil-in-water emulsion
0.3–0.5 vol %

Wavy membrane has 30% better PWP than
flat membrane [77]

Inkjet printing Saline water ~26.4% increase in permeance and ~97.2%
salt rejection [68]

TEM BSA 104% increase in flux recovery ratio ~91% in
permeance [85]

NIL 2000 ppm NaCl solution 240% improvement in permeability [31]

NIL 1 g/L NaCl solution 22% improvement in permeability at 0.01 wt
% MDP concentration [86]

PSmM: Phase separation micromolding, VI-PSmM: Vapor induced phase separation micromolding, 3D printing:
Three-dimensional printing, TEM: Thermal embossing micromolding, BSA: Bovine serum albumin, PWP: Pure
water permeance, PRR: Permeance recovery ratio, NIL: Nanoimprinting lithography.
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4. Importance of Surface Patterning for Various Membrane Processes

Membrane fouling is an established problem in most liquid-based filtration processes [6,87].
Membrane surface patterning has been explored as a viable alternative for fouling control due to
economical and sustainability considerations. Apart from inducing turbulence flow of the feed, surface
patterning also increases the effective surface area for improved permeability [17,41]. The 3D pattern
induces turbulence flow by promoting local mixing and hence inhibits accumulation of foulant on the
membrane surface [26,66,81,82,88].

Membrane surface patterning was applied using phase separation micro-molding for a thin
film composite (TFC) used for reverse osmosis processes. Elsherbiny et al. found a ~210%–240%
improvement in water permeability for the patterned membrane as compared to a flat TFC membrane
without sacrificing the membrane selectivity [31]. Maruf et al. imposed a pattern on a TFC membrane
using interfacial polymerization by utilizing patterned ultrafiltration as a support and reported a 22%
improvement in permeability [86].

Kharraz et al. applied membrane surface patterning for fouling control in membrane bioreactor.
They reported a 50% improvement in the membrane effective surface area, contributing to a 5–6-fold
higher permeance than a flat reference membrane [66]. Kim et al. patterned a hollow-fiber membrane
for membrane bioreactor application and found a 25% improvement in water flux of the patterned
membrane against the flat membrane [81]. Similarly, ribbed membrane also provide advantages in
membrane bioreactor using a novel silica membrane material [45].

Choi et al. patterned ultrafiltration membranes and evaluated the performance of the patterned
and flat membranes by subjecting them to a crossflow filtration set-up with 1.1 µm polystyrene latex
beads as feed. Improvement in water flux of 38.6% of the patterned membrane against the flat one
was observed. The mass of particle deposition on the patterned membrane surface was found to be
10 µg/cm2, corresponding to one-third of the flat membrane [44].

Surface patterning has been reported to improve the performance of the membrane distillation
process. Xie et al. applied membrane surface patterning in a membrane distillation process.
The patterned membrane maintained a steady-state water flux of almost 25 L.m−2

·h−1, 67% higher than
a reference flat membrane. The BSA rejection was found to be a 4.2-fold improvement for the patterned
membrane as compared to the pristine membrane [88]. Nawi et al. reported an 87.5% improvement
in permeance for a corrugated membrane against the pristine in a prolonged operation of 50 h in a
membrane distillation process [40].

Izak et al. patterned, in an organophilic pervaporation process, a membrane for hexyl acetate
recovery from C4mim-BF4. The result showed a 14% improvement in hexyl acetate recovery against
the flat membrane tested under the same conditions [89]. Overall, reports show conclusive results on
the positive impact of surface patterning in enhancing membrane processes′ hydraulic performance
(i.e., pressure-driven, temperature-driven, and pervaporation performance) without altering the
rejection performance.

5. Conclusions and Perspectives

Membrane surface patterning has the potential to mitigate fouling and improve energy saving by
inducing turbulence near the membrane surface, improving the effective surface are and preventing
liquid wetting (membrane distillation) and crystallization (desalination) as discussed in this review.
However, there are challenges remaining for the implementation of available surface patterning
techniques. The EM process has the limitations of shape designs, pore deformation, low fidelity,
and high energy consumption. PSmM has the limitations of low speed, low fidelity, and shape
designs. Three-dimensional printing has the limitations of low resolution, low speed, and limited
polymers adoption. Researchers are focusing on improvement of PSmM to fabricate complex designs,
high fidelity, and speed; of EM pore deformation, the construction of complex designs, high fidelity,
and energy consumption; and of 3D resolution, speed, and adoption of all polymers.
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3D Three-dimensional
BSA Bovine serum albumin
CLIP Continuous liquid interface production
DLP Direct light processing
EM Embossing micromolding
NIL Nanoimprinting lithography
PDMS Polydimethylsiloxane
PES Polyethersulfone
PRR Permeance recovery ratio
PSmM Phase separation micromolding
PWP Pure water permeance
SCmM Solution casting micromolding
SLA Stereolithography
TEM Thermal embossing micromolding
TFC Thin film composite
VI-PSmM Vapor-induced phase separation micromolding
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