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Abstract: This paper presents a comparison on the effects of blending chitin and/or starch with 
poly(lactic acid) (PLA). Three sets of composites (PLA–chitin, PLA–starch and PLA–chitin–starch) 
with 92%, 94%, 96% and 98% PLA by weight were prepared. The percentage weight (wt.%) amount 
of the chitin and starch incorporated ranges from 2% to 8%. The mechanical, dynamic mechanical, 
thermal and microstructural properties were analyzed. The results from the tensile strength, yield 
strength, Young's modulus, and impact showed that the PLA–chitin–starch blend has the best 
mechanical properties compared to PLA–chitin and PLA–starch blends. The dynamic mechanical 
analysis result shows a better damping property for PLA–chitin than PLA–chitin–starch and PLA–
starch. On the other hand, the thermal property analysis from thermogravimetry analysis (TGA) 
shows no significant improvement in a specific order, but the glass transition temperature of the 
composite increased compared to that of neat PLA. However, the degradation process was found 
to start with PLA–chitin for all composites, which suggests an improvement in PLA degradation. 
Significantly, the morphological analysis revealed a uniform mix with an obvious blend network in 
the three composites. Interestingly, the network was more significant in the PLA–chitin–starch 
blend, which may be responsible for its significantly enhanced mechanical properties compared 
with PLA–chitin and PLA–starch samples. 

Keywords: biopolymer; starch; biodegradable; chitin; degradation 
 

1. Introduction 

Polymers can be categorized into synthetic and non-synthetic, or biodegradable and non-
biodegradable [1]. The series of studies on synthetic polymers have brought about their various 
excellent applications in manufacturing industries. However, there is still an increasing quest for new 
materials for the manufacturing of products. As expected, this is accompanied by peculiar challenges. 
The major problem with synthetic polymers is their disposal after use. The problem of disposal has 
become a significant issue as most synthetics are not degradable or only minimally degradable even 
when exposed to heat. Poly(lactic acid) (PLA) is a polyester and biodegradable polymer which is one 
of the most promising natural polymers that can be used for plastic packaging with similar properties 
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as synthetic ones [2–4]. It is one of the most consumed natural polymers in industrial applications. It 
is sourced from starch by a direct condensation process. PLA degrades rapidly in suitable 
environments and can be recycled [5,6]. PLA has been used for several industrial manufacturing 
products, among which are packaging [7,8] and biomedical implants. The use of PLA as a packaging 
material or for biomedical implants is due to its limited mechanical strength. However, previous 
work on degradable polymers has revealed that PLA has great potential to replace some of the 
conventional synthetic polymers with improvement in its mechanical properties. In other to achieve 
this, the recent trend of research has focused on polymer blending and reinforcement. However, care 
is often taken to ensure that blending/reinforcement for improved mechanical properties does not 
tamper with the biodegradable nature of PLA. 

Starch is a natural biopolymer which is abundantly available at low cost [9,10]. A blend of starch 
with PLA has been reported to have improved biodegradation but with reduced mechanical 
properties [11,12]. Specifically, the mechanical properties were reported to reduce with increasing 
starch content. The reduced mechanical properties are mainly due to weak adhesive forces between 
the molecules of PLA and starch. This poor adhesion has been attributed to the hydrophilic nature of 
starch compared with PLA, which is hydrophobic [4]. 

Chitin is abundantly available in shrimps, crabs [13,14], and crustaceans [15] and is rated as the 
second most abundant polymer. It is non-toxic and biodegradable which makes it useful in 
biomedical applications. In a particular study, it was reported that incorporating a chitin nanofiber 
with PLA resulted in good dispersion but minimal improvement in mechanical properties [16]. 
Therefore, further study was recommended with a low percentage of PLA in the chitin nanofiber 
blend to study the functional properties [16]. 

Literature established that for the blending of PLA, the percentage of the polymer blend should 
be a ratio 1:9 by weight of the blend to ensure good miscibility [17]. Several researchers have worked 
on either a PLA blend with starch or a PLA blend with chitin. Previous work on PLA–starch showed 
that starch can be used to improve the biodegradability of PLA, but there is a challenge of miscibility 
[18,19]. However, it has been reported [4] that the PLA–starch miscibility is enhanced by the use of 
multifunctional alcohol as a plasticizer, but with adverse effect on the tensile strength of the 
composite. Also, [1] stated in their work that the hygroscopic nature and impact strength of starch 
decreases with PLA increase, but the storage, stress–strain, and flexural moduli properties are 
enhanced. The work of [17] on the extrusion of PLA–starch showed that the interdependence of starch 
and PLA increased with a decrease in starch percentage, especially when the ratio of starch to PLA is 
less than 1:10 and the water absorption was reduced. The reinforcing effect of starch is established in 
[20], where work on PLA–starch using glycerol as a plasticizer and a compression molding method 
were performed. The stiffness and strength of the composite were enhanced with the use of a 
plasticizer. Chitin, on the other hand, is mainly used because it is cheap and bioabsorbable. It has 
several applications in biomedical engineering and has been found to have a positive effect on the 
mechanical properties of PLA. 

Obviously, starch and chitin have been differently used by several researchers to enhance the 
mechanical and biodegradability of PLA [21–24], but their combined effect has not been studied. 
Also, the comparative effect of the blending of PLA–chitin, PLA–starch and PLA–chitin–starch on 
their mechanical properties has not been reported. Therefore, this study seeks to establish the 
combined effect of a starch–chitin blend on PLA, as well as to determine which of the blends (PLA–
starch or PLA–chitin) gives a better result in terms of mechanical and degradation properties. 

2. Materials and Methods  

2.1. Materials  

Commercial grade poly(lactic acid) (4032D) was supplied from Nature Works (Minnetonka, 
MN, USA) in pellet form. PLA (4032D) has excellent grease and oil resistance as well as optical, 
machinability, twist and dead fold. PLA has a melting point between 150–170 °C and a glass transition 
temperature of 60–65 °C. The tensile strength, yield strength, elastic modulus and impact strength of 
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the PLA used are 53.5 MPa, 60 Mpa, 3500 Mpa and 2.99 kJ/m2, respectively. The average molecular 
weight of PLA (4032D) is 100,000 g/mole. It has a specific gravity of 1.24, melt flow rate (MFR), g/10 
min (210 °C, 2.16 kg) of 7 and a melt density of 1.08 g/cc at 230 °C. Commercially available chitin was 
used (lifeline nutrients, Chicago, IL, USA) with a 90% degree of deacetylation. On the other hand, 
commercial high amylose starch from corn was supplied by Sigma Aldrich (Sigma Aldrich, 
Modderfontein, South Africa). The particle size distribution is presented in Table 1. 

Table 1. Particle size distribution. PLA = poly(lactic acid). 

Particle size 
<1 

µm 
1–45 
µm 

46–75 
µm 

76–150 
µm 151–500 µm 501–700 µm >700 µm 

PLA % 0.02 0.03 11.24 18.50 3.45 6.81 59.95 

Chitin % 71.2 0.28 25.6 0.9 1.56 0.46 0 

Starch% 11.01 34.8 49.64 0.31 4.24 0 0 

2.2. Composite Preparation 

Poly(lactic acid) from Nature Works was ground into a powder using an AA 150 Power 
granulator (Pulian, Taichung, Taiwan). The ground PLA was then dried for 4 h at 60 °C in a Thermo 
Electron Luxor 50 Motan Desiccant Dryer (Motan, Überlingen, Germany) with dry air at 50 m3/h. The 
PLA powder was mixed with chitin and starch in the proportions shown in Table 2 using the HAAKE 
Rheomix OS Lab Mixers system. The mixtures were then extruded using a Thermo Electron Process 
11 extruder (Thermo Fisher Scientific, Waltham, MA, USA) at a temperature range of 120 °C to 190 
°C, extrusion speed of 201 rpm, 6.1 Nm torque and 35 bar pressure. The extruded filament was 
pelletized using a Thermo Scientific Varicut Pelletizer 11M (Thermo Fisher Scientific, Waltham, MA, 
USA). The composite pellets were moulded into test samples using the Carver Press (model 3851-0) 
(Carver, Wabash, IN, USA) at a temperature of 170 °C and a pressure of 2 pascals. The test samples 
were characterized for tensile strength, impact strength, and dynamic mechanical analysis (DMA). 
The morphology was observed using scanning electron microscopy (SEM).  

The composition variation for the PLA–starch composite was done based on previous studies 
[17,22]. It was stated that the tensile strength of PLA increased maximally when the percentage of 
starch in the blend was 10%. However, a further investigation of the mechanical properties of PLA–
starch at less than 10% of starch blending was not reported. On the other hand, a study on a PLA–
chitin composite showed that with a lower percentage of chitin (1% and 5% ), the mechanical strength 
was improved compared to when the percentage of chitin was higher than 10% [25]. A similar result 
was also reported by [16] for a PLA–chitin nanofiber with 2% and 5% chitin. 

The composition variation for the percentage proportion by weight of PLA–chitin–starch in this 
study is shown in Table 2. The aim is to study the effect of composition variation on mechanical 
strength. Three types of composite blends with four sets of samples were produced to compare the 
binary and ternary blending of chitin and/or starch with PLA as shown in Table 2. 

Table 2. Composition variation. 

Composite  Proportion (wt.%) 
PLA–chitin 92:8 94:6 96:4 98:2 
PLA–starch 92:8 94:6 96:4 98:2 
PLA–chitin–starch 92:4:4 94:3:3 96:2:2 98:1:1 

2.3. Characterization  

2.3.1. Tensile Test 
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Tensile samples were prepared according to the American Society for Testing and Materials 
ASTM D3039 method for plastic using the Carver Press machine. The tensile test method was used 
with standard dimensions and loaded using an Instron Universal Testing Machine (model 5966) 
(Instron, Norwood, CO, USA) with a force capacity of 10 kN for five replicates per sample.  

2.3.2. Impact Test 

The impact test was done using Ceast Resil Impactor 7181 (Corporate Consulting, Service and 
Instruments (CCSi), Akron, OH, USA), which uses an instrumented hammer. The test is to determine 
the energy absorbed in breaking. The energy required to break the specimen is obtained from the loss 
of energy in the pendulum. This energy is simply the difference in potential energy of the hammer 
before and after the impact. The values are reported in terms of absorbed energy per unit cross-
sectional area at the notch (J/m2). The dimensions of an ASTM D256 standard specimen was used.  

2.3.3. Dynamic Mechanical Analysis 

Dynamic mechanical analysis was used in this study for structural and mechanical analysis of 
polymers, and to compare the miscibility of the polymeric blend system. Dynamic mechanical 
analysis shows the mechanical properties of the composites at different temperatures. This was done 
using a PerkinElmer Dynamic Mechanical Analyzer (DMA 8000) (PerkinElmer Inc., OH, USA). 
Sample shape and dimension were prepared according to the ASTM D4065 standard for polymer 
composites at a frequency of 10 Hz and a temperature range of −50 °C to 150 °C. 

2.3.4. Thermogravimetry Analysis Test 

The thermal properties of the samples were measured using a PerkinElmer TG-IR-GCMS 
Interface Q500, TA Instruments (PerkinElmer Inc., OH, USA). The result was plotted and analyzed 
with TA universal analysis software (TA instruments, Lukens Drive New Castle, PA, USA). Sample 
quantities between 20 mg and 21 mg were heated at a rate of 10 °C/min from room temperature to 
600 °C under air. 

2.3.1. Microstructural Analysis 

The microstructure of the fractured surface (after the tensile test) of samples were thoroughly 
investigated using SEM. The samples were carbon-coated, and microstructural examination was 
performed on carbon-coated samples using a JEOL Field Emission Scanning Electron Microscope 
(JSM7500F, JEOL, Boston, MA, USA). 

3. Results and Discussion 

3.1. Tensile Properties of the Composite 

Table 3 shows the values of the tensile modulus, yield strength and tensile strength for each of 
the composites (PLA–chitin–starch, PLA–chitin and PLA–starch). The pure PLA used in this research 
has a tensile strength in of 53.5 MPa. Generally, it can be seen that for each of the sets, the blend with 
both chitin and starch has the highest tensile strength, followed by that of chitin. The polymer 
composite sample with 94% PLA–3% chitin–3% starch has the best tensile strength of all the samples. 
Also, it can be deduced that the tensile strength reduces with an increase in PLA percentage, similar 
to what was previously reported [4,17]. The work of previous researchers has established that the 
tensile strength of the PLA–starch composite reduces with increasing starch content above 10%. 
However, there is no literature to account for the optimum percentage composition of starch below 
10% in a PLA–starch blend. The tensile graph established that PLA–starch has the highest tensile 
strength at 96% PLA–4% starch, which is probably due to a more even distribution of the starch in 
the PLA. This cannot be fully established as the variation from the deviation is quite significant 
compared to the other two sets of values Also, for PLA–chitin, the tensile strength is found to decrease 
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with a reduction in chitin content, which correlates with previous studies [16,25]. This shows that 
chitin has good dispersion in PLA. 

The yield strength of the composite samples of the blend of the three polymers (PLA–chitin–
starch) has the highest value compared with PLA–starch and PLA–chitin. PLA–starch and PLA–
chitin show the same trend as that of the tensile result. This result of yield strength for PLA–chitin is 
in accordance with [25]. However, the trend of yield strength for PLA–starch is a newly established 
trend when the percentage of starch is less than 10%. 

The value of the elongation shows that the value for PLA–chitin–starch falls between that of 
PLA–chitin and PLA–starch as shown in Table 3. The value of the elongation reduces with the 
addition of starch. This can be explained as the addition of starch increases the brittleness of PLA, 
while chitin reduced it. This aligns with reports in the literature [26–28]. 
The Young's modulus value is a critical factor for high strength applications. The value of the Young's 
modulus follows a different trend from the tensile strength and elongation. There is no significant 
trend with variation in composition for PLA–starch–chitin and PLA–starch, but samples have the 
highest values at 96% PLA–2% chitin–2% starch and 96% PLA–4% starch. However, it is worthy of 
note that the value of Young’s modulus for the PLA–chitin composite increases with decreasing chitin 
content. The results shown in [16] and [25] have a similar trend for the PLA–chitin composite for a 
percentage of chitin between 1% to 10%. 

Table 3. Tensile properties of PLA–chitin (C)–starch (S) composites. 

Samples Tensile Modulus Yield Strength 
Elongation 

(%) 
Tensile Strength 

 (MPa) (MPa)  (MPa) 
92% PLA–4%C–4% S 2138.1 ± 107.3 75.3 ± 2.9 4.3 ± 0.3 75.3 ± 2.92 

92% PLA–8% C 2898.6 ± 104.9 82.8 ± 2.6 5.5 ± 0.7 82.9 ± 2.26 
92% PLA–8% S 2412.2 ± 117.9 82.8 ± 2.1 4.1 ± 0.3 82.8 ± 2.12 

94% PLA–3% C–3% S 2458.1 ± 108 84.4 ± 1.7 5.0 ± 0.9 84.4 ± 1.7 
94% PLA–6% C 2310.7 ± 101.6 83.0 ± 1.6 7.1 ± 1.4 83.0 ± 1.6 
94% PLA–6% S 2417.3 ± 101.6 70.6 ± 1.9 3.9 ± 0.3 70.6 ± 1.9 

96% PLA–2% C–2% S 2613.3 ± 103.3 83.0 ± 1.3 5.3 ± 1.8 83.0 ± 1.3 
96% PLA–4% C 2448.9 ± 102.1 80.8 ± 1.9 6.3 ± 2.2 80.8 ± 1.9 
96% PLA–4% S 2586.4 ± 106 79.7 ± 1.4 4.2 ± 0.4 79.7 ± 1.4 

98% PLA–1% C–1% S 2536.3 ± 108.3 82.6 ± 2.9 4.8 ± 0.4 82.6 ± 2.9 
98% PLA–2% C 2524.0 ± 105.8 77.4 ± 2.1 5.5 ± 1.2 77.4 ± 2.0 
98% PLA–2% S 2058.4 ± 104.3 72.1 ± 1.5 4.2 ± 0.3 72.1 ± 1.5 

100% PLA 3500.0 ± 100.1 53.5 ± 1.1 6.0 ± 0.2 60.0 ± 1.12 

3.2. Impact Test 

The impact strength is a measure of the resistance of a material to the sudden force. The result 
of the impact strength for each of the samples is shown in Figure 1. The impact strength shows no 
specific pattern except that the impact strength increases with an increase in PLA percentage with a 
sudden decline at 98%. The drop probably means that the blending process causes distortion rather 
than a toughening effect. Notably, the graph shows 96% sets as having the highest impact strength, 
and this shows an adequate toughening percentage of the blend. The effect of starch on the impact 
strength of the samples is more significant in each of the sets of samples. This is as a result of the 
brittle nature of the PLA–starch composite as reported previously [17,27]; the addition of starch 
increases the degree of crystallinity of PLA. Therefore, PLA–chitin–starch has values in between the 
other two composites. 
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Figure 1. Comparative impact strength. 

3.3. Dynamic Mechanical Analysis 

The result of the dynamic mechanical analysis for the twelve samples is shown in Figure 2–5. 
The DMA analysis for 92% PLA–4% chitin–4% starch, 92% PLA–8% chitin and 92% PLA–8% starch 
is shown in Figure 2a–c. The storage modulus value is seen to be high for 92% PLA–4% chitin–4% 
starch compared to other samples with an unusual high glass temperature from the loss modulus 
and loss factor. This could be as a result of uneven distribution of the polymer blend. This is therefore 
believed to be responsible for the low mechanical strength recorded for the tensile, yield and Young's 
modulus as presented in Table 2. 

 
Figure 2. (a) Storage modulus (E’); (b) loss modulus (E”); (c) loss factor tan δ for 92% PLA–4% chitin–
4% starch, 92% PLA–8% chitin and 92% PLA–8% starch. 
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Figure 3. (a) Storage modulus (E’); (b) loss modulus (E”); (c) loss factor tan δ for 94% PLA–3% chitin–
3% starch, 94% PLA–6% chitin and 94% PLA–6% starch. 

 
Figure 4. (a) Storage modulus (E’); (b) loss modulus (E”); (c) loss factor tan δ for 96% PLA–2% chitin–
2% starch, 96% PLA–4% chitin and 96% PLA–4% starch. 
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Figure 5. (a) Storage modulus (E’); (b) loss modulus (E”); (c) loss factor tan δ for 98% PLA–1% chitin–
1% starch, 98% PLA–2% chitin and 98% PLA–2% starch. 

Figure 3a–c shows the storage modulus (E'), loss modulus (E") and loss factor (tan δ) for 94% 
PLA–3% chitin–3% starch, 94% PLA–6% chitin and 94% PLA–6% starch, respectively. Generally, the 
curve shows a typical amorphous characteristic of a polymer composite with a significant drop in the 
storage modulus at the glass temperature. Also, a single glass temperature for the polymer blends 
indicates that the three polymers are highly miscible. Since the material blend did not show more 
than one damping peak, it shows the compatibility of the blend [27]. The value of the storage modulus 
is directly proportional to the stiffness of the material. The value (Figure 3a) of the storage modulus 
(E') for 94% PLA–6% starch is found to be highest at the glassy and rubbery region, which indicates 
that 94% PLA–6% starch is more brittle than other samples. 

The loss modulus indicates heat dissipated per unit deformation, and its peak is referred to as 
the glass temperature, Tg. The loss modulus and loss factor curve (Figure 3b,c) show a single peak, 
which indicates the high miscibility of the polymers. The peak of the tan delta curve represents the 
midpoint of the glass transition temperature Tg [28]. The Tg is one of the significant properties of a 
polymer composite which determine its application. The value of the glass transition temperature 
from the loss factor graph is shown in Table 3. A significant increase is noticed in the glass transition 
temperature for all the samples compared to neat PLA. This increase in the value of Tg is an indication 
of improvement in the intermolecular bonding within the composite. The trend in storage modulus, 
loss modulus and loss factor are the same for samples with 96% and 98% PLA in Figures 4 and 5, 
respectively. The exception is that the storage modulus for 96% PLA–4% starch is more than the other 
composites at the glassy region, but blends up with the other composites at the transition and rubbery 
region. This shows that the brittleness is retained at a lower temperature. Also, from the loss modulus 
and the loss factor curves, the glass transition temperature (Tg) is found not to be affected 
significantly by the composition variation of the polymers. Table 4 shows the glass transition for the 
twelve samples. 
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Table 4. Glass transition temperature for the samples. 

Serial Number Samples Glass Transition Temperature 
  (°C) 
1 92% PLA–4% C–4% S 73.0 
2 92% PLA–8% C 74.0 
3 92% PLA–8% S 91.6 
4 94% PLA–3% C–3% S 75.5 
5 94% PLA–6% C 76.4 
6 94% PLA–6% S 76.7 
7 96% PLA–2% C–2% S 67.0 
8 96% PLA–4% C 69.8 
9 96% PLA–4% S 76.7 
10 98% PLA–1% C–1% S 77.2 
11 98% PLA–2% C 76.9 
12 98% PLA–2% S 76.6 
13 100% PLA 60.0 

3.4. Thermogravimetry Analysis 

The Thermogravimetry Analysis (TGA) and Derivative Thermogravimetry Analysis (DTA) 
results for the twelve samples are shown in Figure 6a–d and Figure 7a–d. The thermal stability of 
pure PLA–chitin–starch, PLA–chitin, and PLA–starch are similar for the twelve samples. Generally, 
the TGA curves have a single thermal degradation from the weight loss with a definite peak 
temperature on the DTA curves. This implies that the polymers are compatible with each other with 
no segregation. Like the DMA curves, the PLA–starch curves have the highest weight loss and it is 
more significant with 94% PLA curves, with obvious reduction as the percentage of PLA increases to 
98%. 

 

Figure 6. Thermogravimetry analysis for (a) 92%, (b) 94%, (c) 96% and (d) 98% PLA sets of samples. 
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Figure 7. Derivative Thermogravimetry Analysis (DTA) for (a) 92%, (b) 94%, (c) 96% and (d) 98% 
PLA sets of samples. 

The change in composition can be seen to affect the melting peaks in the DTA curves and it is 
more obvious in the 94% PLA and 98% PLA set of samples, but lower for the 96% samples. As evident 
in Figure 6a, 92% PLA–8% chitin started to decompose around 336 °C, whereas 92% PLA–4% 
chitin/4% starch and 92% PLA–8% starch started around 343 °C and 369 °C, respectively. Also, a 
similar trend can be seen for 94%, 96% and 98% PLA samples as 94% PLA–6% chitin, 94% PLA–3% 
chitin–3% starch, and 94% PLA–6% starch started to decompose at 292 °C, 313 °C, and 322 °C, 
respectively; 96% PLA–4% chitin, 96% PLA–2% chitin–2% starch ,and 96% PLA–4% starch at 289 °C, 
287 °C, and 315 °C, respectively; and 98% PLA–2% chitin, 98% PLA–1% chitin–1% starch, and 98% 
PLA–2% starch at 292 °C, 312 °C, and 326 °C, respectively. The curves do not show much difference 
as they are close to each other with similar path behavior with respect to the significant drop in 
weight, which is mainly due to material degradation. As the process approached transition, the 
curves cannot be distinctively differentiated, but distinctive peaks could be seen on the DTA curves. 
This behavior is also seen for the degradation products, which is probably due to the formation of 
char. Generally, the thermal stability of the PLA blends with chitin and starch seems to improve with 
the addition of starch content and reduce with chitin content. This improvement in the thermal 
stability is evident in the DTA melting peaks. It is however worthy of note that the thermal stability 
of the blend decreased with an increase in the percentage of PLA. However, the nature of the TGA 
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and DTA curves shows that variation in composition has no significant influence on the degradation 
behavior of the composite (compared with neat PLA). This observation is similar to what has been 
previously reported [25,29]. 

The miscibility can be explained using the nature of the polymer blends. PLA is hydrophobic, 
whereas starch is hydrophilic, which makes them thermodynamically immiscible [30]. However, the 
miscibility of the blend can be explained from the works of [30,31]. It was stated that the improvement 
in the adhesion properties of PLA–starch can be achieved using a material with strong compatibility 
with PLA and starch [31]. Chitin fits suitably into this category based on its excellent adhesion with 
PLA [25,32] and starch [33]. Therefore, the chitin in this blend serves as an interfacial compatibilizer 
between PLA and starch, bridging inter-facial transitions [31,34]. 

3.5. Scanning Electron Microscopy 

The fractured surface images of the samples are presented in Figure 8–10. The properties of each 
sample are dependent on the extent of dispersion blends within the composite. In general, the SEM 
images show that a good dispersion is achieved using the methodology of double-step mixing using 
a rheomixer and an extruder. There is a bright appearance of compatibility or adhesion of the three-
polymer blend in the PLA–chitin–starch blend as well as in the PLA–chitin and PLA–starch samples. 
The tensile fracture surface morphology for the PLA–chitin–starch (Figure 8a,d and Figure 9a,d) and 
PLA–starch (Figure 8c,f and Figure 9c,f) samples reveals a network of a well-dispersed blending of 
chitin and starch, respectively, with few voids on the fractured surface. The bridging effect of the 
networks prevents cracking and enables effective stress transfer [29]. PLA–chitin (Figure 8b,e and 
Figure 9b,e) has a smoother surface with fewer voids when compared to the that of PLA–chitin–starch 
and PLA–starch. This can be explained by the thermal degradation curve which shows the 
improvement in the degradation property of PLA, and this is also documented in the reports of [16] 
and [25]. This is more significant in the 98% PLA–2% chitin sample with no noticeable void. 
According to previous research, chitin is mainly used to improve the degradation properties of PLA, 
and this suggests a better chemical interaction between PLA and chitin blends [27].  

The SEM images shows an uneven distribution in the 92% PLA–4% chitin–4% starch sample 
(Figure 8a), which is probably responsible for the low mechanical strength. Generally, the composite 
samples for 94% (Figure 8d–f), 96% (Figure 9a–c) and 98% (Figure 9d–f) PLA is accompanied with a 
network of dispersion which peaks at 98% with smooth co-continuous morphology with flakes and 
less defined edges [27]. The dispersion network may be responsible for the better mechanical 
performance, especially considering the enhanced intermolecular bonding as evident in the network. 
Also, the PLA–chitin blend shows a lesser dispersed network dominated by PLA. The morphology 
shows high mixing in the blend such that presence of chitin is not noticeable. This suggests adhesion 
and good interaction. PLA–starch, on the other hand, has significant edges and wedges with good 
segmental dispersion. Higher magnification of the PLA–chitin–starch blend is shown in Figure 10. 
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Figure 8. Scanning electron microscopy (SEM) fracture images. (a) 92% PLA–4% chitin–4% starch; (b) 
92% PLA–8% chitin; (c) 92% PLA–8% starch; (d) 94% PLA–3% chitin–3% starch; (e) 94% PLA–6% 
chitin; (f) 94% PLA–6% starch. 
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Figure 9. SEM fracture images. (a) 96% PLA–2% chitin–2% starch; (b) 96% PLA–4% chitin; (c) 96% 
PLA–4% starch; (d) 98% PLA–1% chitin–1% starch; (e) 98% PLA–2% chitin; (f) 98% PLA–2% starch. 

 

Figure 10. SEM fracture images of high magnification PLA–chitin–starch. 
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4. Conclusions 

The comparative analysis of the effect of PLA blending with chitin and starch shows that PLA–
chitin–starch composites are miscible with each other without segregation of the particles. The 
composite, molded using two-step mixing and a Carver Press, results in a more uniform composite. 
The mechanical properties of the polymer composites increased significantly compared to pure PLA 
for all samples. The mechanical strength result of PLA–chitin–starch revealed a significant 
improvement compared with binary blends such as PLA–chitin and PLA–starch. However, the 
dynamic mechanical properties of the composites showed notable improvement with an increase in 
chitin content and decrease in starch content. Also, the DMA result shows the high amorphous flow 
of the polymer blend with excellent mechanical strength over a range of temperatures. The TGA/DTA 
result shows one single degradation curve with a single glass temperature, which conforms with the 
DMA result and indicates miscibility and compatibility of the three polymers. The SEM images show 
excellent blending properties with a dispersed network of starch and chitin. Overall, the combined 
effect of PLA–chitin–starch gave a better result than PLA–chitin or PLA–starch.  
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