Electronic Supporting Information Selective Enrichment of Clenbuterol onto Molecularly Imprinted Polymer Microspheres with Tailor-made Structure and Oxygen Functionalities

Xiangyun Zhao¹, Yuliang Mai^{*,1}, Dongchu Chen², Min Zhang² and Huawen Hu^{*,2}

¹ Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of

Petrochemical and Fine Chemical Engineering, Guangzhou 510006, P. R. China

² School of Materials Science and Energy Engineering, Foshan University, Foshan, Guangdong 528000, PR. China

TOC figure

Figure S1. N2 adsorption-desorption isotherms measured for MIPMs and NIPMs.

Figure S2. Barrett–Joyner–Halenda (BJH) pore size distribution plots of MIPMs and NIPMs derived from the desorption branches.

Figure S3. Molecular structures of clenbuterol and its competing species with structural similarities, including terbutaline, salbutamol, and methyl red.

Figure S4. The adsorption isotherm measured for the adsorption system with the MIPMs-2 which was prepared in the second batch in order to evaluate the reliability of the fabrication method.

Figure S5. Investigation of the impact of the type of solution used as the medium for the adsorption experiment. The specific solution used as the media for the adsorption experiment is provided as follows: a—pure water; b—a water solution of ammonium acetate (4.6mmol/L); c—a water solution of Triton X-100 (4.6mmol/L); d—pure acetonitrile;e—an acetonitrile solution of ammonium acetate (4.6mmol/L).

Figure S6. EIS-MS spectra of the mixed analyte solution with clenbuterol, methylene blue, terbutaline and Salbutamol before (a), and after processing with NIPMs (b) or with MIPMs (c).

	Pseudo-first-order				Pseudo-second-order			
Adsorbents	q_{1e}	k_1	R^2		q _{2e}	k_2	R^2	
	(mg/g)	(1/min)			(mg/g)	(g/mg min)		
MIPMs	0.8619	0.1649	0.9977		0.9726	0.02159	0.9795	
NIPMs	0.6077	0.01171	0.9878		0.7074	0.01971	0.9908	

Table S1. Pseudo-first-order and Pseudo-second-order kinetic parameters obtained via the adsorption of the clenbuterol onto MIPMs and NIPMs.

Table S2. Langmuir and Freundlich parameters obtained via the adsorption of the clenbuterol onto MIPs and NIPs at different temperatures.

Adsorbent s	Т	La	ngmuir mode	el	Freundlich model			
	(K)	q_m (mg/g)	kL (L/g)	R^2	kf (L/g)	1/n	R^2	
	303	3.735	0.05126	0.9991	0.3772	0.5244	0.9851	
MIPs	318	4.338	0.05650	0.9981	0.4652	0.5203	0.9835	
	333	5.182	0.05573	0.9981	0.5229	0.5399	0.9911	
	303	2.701	0.03940	0.9836	0.2202	0.5513	0.9896	
NIPs	318	2.711	0.05584	0.9860	0.3188	0.4870	0.9904	
	333	4.142	0.03637	0.9879	0.2871	0.5906	0.9909	

Table S3. Comparison of the isothermal adsorption of clenbuterol onto the molecularly imprinted samples (i.e., MIPMs and MIPMs-2) prepared in two different batches.

Adsorbents	т	La	ngmuir mod	lel	Fre	Freundlich model		
	(K)	q_m (mg/g)	<i>k</i> _L (L/g)	R^2	k _F (L/g)	1/n	R^2	
	303	3.735	0.05126	0.9991	0.3772	0.5244	0.9851	
MIPMs	318	4.338	0.05650	0.9981	0.4652	0.5203	0.9835	
	333	5.182	0.05573	0.9981	0.5229	0.5399	0.9911	
	303	3.090	0.06667	0.9861	0.4249	0.4604	0.94039	
MIPMs-2	318	4.160	0.05716	0.9900	0.4532	0.5166	0.98465	
	333	5.370	0.04717	0.9987	0.4591	0.5679	0.99049	

Table S4. Thermodynamic parameter obtained via the adsorption of clenbuterol onto MIPs at different temperatures.

Co (mg/L)		ΔG° (kJ/mol)		ΔH°	ΔS°
	303 K	318 K	333 K	(KJ/MOI)	(J/mol)
10	4.843	4.458	4.041	12.94	26.70
20	5.387	4.958	4.663	12.73	24.30
30	6.008	5.685	5.342	12.73	22.17
40	6.426	6.151	5.912	11.62	17.18
50	6.883	6.625	6.288	12.87	19.73

	а	b	С	d	e
qe, MIPMs (mg/g)	0.85	0.77	0.81	0.36	0.30
qe, NIPMs (mg/g)	0.64	0.51	0.55	0.07	0.06
IF	1.33	1.52	1.48	4.82	4.83

Table S5. Study on the impact of the type of solution as the media for the adsorption of clenbuterolonto the MIPMs and NIPMs.

a-pure water;

b-a water solution of ammonium acetate (4.6mmol/L);

c—a water solution of Triton X-100 (4.6mmol/L);

d-pure acetonitrile;

e—an acetonitrile solution of ammonium acetate (4.6mmol/L).

Table S6. Distribution coefficient and selectivity coefficient data obtained via the adsorption of clenbuterol onto NIPs and MIPs in the presence of different competing species including terbutaline, salbutamol and methyl red.

	MIPs				NIPs		
Adsorbate	Ce	ka	Ŀ	Ce	ka	Ŀ	\mathbf{k}'
	(mg/L)	(L/g)	ĸ	(mg/L)	(L/g)	ĸ	ĸ
Clenbuterol	0.3699	0.8516		0.8204	0.1855		
Terbutaline	0.6341	0.2881	2.956	0.8489	0.1638	1.132	2.611
Salbutamol	0.6983	0.2756	3.090	0.7819	0.2695	0.6883	4.489
Methyl red	0.7591	0.1872	4.550	0.6625	0.1985	0.9346	4.869