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Abstract: Recently, metal-organic frameworks (MOFs) have garnered enormous attention from
researchers owing to their superior physicochemical properties, which are of particular interest in
various fields such as catalysis and the diverse areas of biomedicine. Despite their position in the
utilization for various applications compared to other innovative nanocarriers such as dendrimers
and mesoporous silica nanoparticles (MSNs), in terms of advantageous physicochemical attributes,
as well as attractive textural properties, ease of characterization, and abundant surface chemistry for
functionalization and other benefits, MOFs yet suffer from several issues such as poor degradability,
which might lead to accumulation-induced biocompatibility risk. In addition, some of the MOFs suffer
from a shortcoming of poor colloidal stability in the aqueous solution, hindering their applicability in
diverse biomedical fields. To address these limitations, several advancements have been made to
fabricate polymeric nanocomposites of MOFs for their utility in various biomedical fields. In this
review, we aim to provide a brief emphasis on various organic polymers used for coating over MOFs
to improve their physicochemical attributes considering a series of recently reported intriguing
studies. Finally, we summarize with perspectives.

Keywords: metal-organic frameworks; porosity; biocompatibility; surface functionalization;
bio-interfaces

1. Introduction

In recent years, metal-organic frameworks (MOFs), a new class of highly porous architectures,
have garnered enormous interest from researchers, owing to their attractive physicochemical properties
and advantageous morphological attributes [1]. Notably, the large-sized interior cavity of these MOFs
resulting in an open and interconnected porous network was of particular interest initially in several
applications such as adsorption [2–6]. Further, the adsorption properties of MOFs, coupled with the
catalytic activity of their functional units at the ligand and second building unit (SBU) active metal sites,
have led to potential interest as highly functional porous materials in catalysis [7,8]. In this context,
researchers have also succeeded in increasing the maximum pore size within the MOF to 10 nm,
which could be highly feasible to be applied towards biomedical applications in terms of allowing
the carrying ability of larger biomolecules. These chronological advancements have gradually further
opened up new dimensions of MOFs towards diverse biomedical applications such as drug delivery,
and bioimaging, among others [9–11].

Broadly speaking, based on the chemical composition and intrinsic physicochemical attributes,
nanobiomaterials can be categorized into three different classes: organic nanosystems (liposomes,
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dendrimers, micelles, and polymeric constructs); inorganic nanoparticles (quantum dots, noble metal
nanoparticles, MNPs, iron oxide nanoparticles, silica nanoparticles, and upconverting nanoparticles,
UCNPs); and organic-inorganic hybrid composites [12–18]. Comparatively, organic matter-based
materials are considered for biomedical applications over inorganic nanomaterials owing to their
relatively higher biodegradability and compatibility [19,20]. However, they suffer from significant
limitations of inherent instability and poor encapsulation efficiency issues, which limited their
applicability. On the other hand, inorganic-based materials could address these intrinsic limitations of
organic materials and also offer specific characteristics such as magnetism, autofluorescence ability, and
plasmonic resonance, among others [21–24]. However, the intrinsic stability of such inorganic-based
materials often results in their low biodegradation rate, leading to long-term accumulation-induced
biosafety risk. In fact, inorganic nanoconstructs require an organic surface coating to ensure the
stability of the colloid, similar to biological media, as various organic molecules such as plasma
proteins are inevitably adsorbed onto the surface of inorganic nanoconstructs to substantially enhance
their compatibility and extend their circulation half-life in vivo [25,26]. Thus, tremendous attention
among researchers in the fabrication and utilization of these innovative organic-inorganic hybrid
nanobiomaterials continues to rise.

MOFs are of such novel classes of hybrid nanobiomaterials composed of covalently-linked
organic building units (such as organic linkers) to the nano-sized inorganic units, such as metal oxide
clusters [27,28]. Therefore, MOFs exhibit all the intrinsic properties of materials at the nanometer
level, in addition to the large specific surface area and high porosity of bulk MOF, which are of
particular interest in diverse applications such as adsorption [2–6,29–31], filtration [32], catalysis [7,8],
and various biomedical applications [33–36]. Typically, various metal ions (di-, tri-, tetravalent, and
others) can be used. In general, MOFs are fabricated by using some of the traditional methods based
on solvothermal or nonsolvothermal strategies. These approaches could result in the fabrication of
MOFs in different geometries, such as linear, square planar, and triangular, among others, based on
both the inorganic cluster and organic linkers. Owing to their diversity, it is highly feasible to fabricate
a large number of different structures. However, these approaches could not meet the on-demand
requirements for industrial production since they are time consuming and expensive. Thus, these
issues prompted researchers to seek new ways for synthesizing MOFs [37], such as microwave-assisted
synthesis [38], sonochemical synthesis [39], electrochemical synthesis [40], and mechanochemical
synthesis [41]. Since MOFs are composed of metal species or clusters of diverse organic ligands, the
structure of MOF is determined by the organic ligands for a certain class of metal-based MOFs [42], such
as ditopic carboxylate linkers [43], tritopic carboxylate linkers [44], tetratopic carboxylate linkers [45],
hexatopic carboxylate linkers [46], octatopic carboxylate linkers [47], desymmetrized linkers [48], and
N-heterocyclic linkers [49]. Selecting different metal ions and organic linkers, can endow MOFs for
various applications, such as stimuli-responsiveness in drug delivery [50], toward pH-responsive [51],
magnetic-responsive [52], molecular-responsive [53], thermos-responsive [54], and pressure-responsive
MOFs [55]. Compared to widely utilized polymeric dendrimers, and mesoporous silica-based materials
for drug delivery application, the crystalline MOF structures have better reproducibility, drug loading,
and release characteristics due to ordered and uniform-sized porous architectures [56–76]. Owing to
their peculiar textural properties of chemically-tunable large pore sizes, MOFs have attracted enormous
interest as drug carriers in conveying diverse therapeutic molecules in their interior frameworks [77–79].
More often, these carriers suffer from poor loading efficiency of drugs. In most of the instances, these
guest species are encapsulated within the MOF channels with physical interactions or electrostatic
interactions, which are significantly unstable during drug delivery. Moreover, the difference in
the concentration of the drug within the carrier and the solution boosts their leakage from the
frameworks [80,81]. In addition to poor encapsulation efficiency, this could lead to premature release
of the drug molecules during delivery in vivo, which is highly challenging for their application in the
field of biomedicine [82,83].
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In order to utilize MOFs as a drug-delivery platform, many research groups are currently aiming
at addressing the compatibility, stability, and degradability of the carrier in the biological environment,
and enabling the drug carrier to have an excellent distribution in vivo [84–88]. However, for different
MOFs, metal ions and organic ligands are randomly combined, which yield different physicochemical
attributes, some of which can be in a stable state for a certain period of time [89–93]. Under physiological
conditions, the instability of MOFs can be addressed by external surface coating with polymer to
endow them with unique properties for drug delivery. Moreover, the thickness of the coating can be
further increased, allowing the nanocarriers to convey the guest species appropriately to the target
site prior to their degradation [94–111]. In this review, we emphasize recent advances in fabricating
various MOFs with organic polymers to improve their physicochemical attributes considering a series
of recently reported intriguing studies, as shown in Figure 1. Although there exist numerous types of
MOFs based on composition, porosity, stability, and various physicochemical attributes, it should be
noted that this article highlights the advances of various predominantly chosen MOFs, such as ZIFs,
MILs, UiOs, and PCNs, among others, for biomedical applications.
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2. Surface-Coated MOFs

As mentioned earlier, the highly ordered textural properties of MOFs allow them to conveniently
encapsulate the therapeutic guest species in the interior, implying their potential for utilization
in the field of drug delivery [77–79]. However, some of the MOFs suffer from stability issues
in the aqueous solution, leading to premature drug release, which hinders their applicability as
a drug carrier [80–83]. Functional polymer coating over MOFs is an effective method to address
various limitations of MOFs such as poor biocompatibility, instability, short circulation time, and
rapid degradability. Many polymers, like chitosan [112], heparin [113], poly(N-vinylpyrrolidone)
(PVP) [114], and poly(sodium 4-styrenesulfonate) (PSS) [115], among others, having excellent aqueous
solubility and biocompatibility, could be wrapped on the surface of MOFs. Since MOFs are composed
of various multivalent metal species and organic linkers, polymers possessing functional groups
such as –C=O, –COOH, could offer coordination interactions with such metal species in MOFs [36].
These polymer-coated MOFs provide several advantages such as long circulation time, avoiding
premature leakage of drugs, increased colloidal stability in physiological buffers with high ionic
strength, augmented biodistribution characteristics, anti-macrophage clearance, and controlled binding
efficiency with the proteins in the biological environment [116]. In addition, other specific advantages
of the polymer-coated MOFs in terms of therapeutic benefits include precise uptake by cancer cells
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over normal cells through specific interactions by the surface coated polymers with the overexpressed
proteins on the cancer cell surfaces [117]. Various other benefits comprise of specific shielding effects
against harsh biological environment, ease of integrating targeting as well as bioreactive domains over
the surface could enhance the therapeutic efficiency of the MOFs through appropriate delivery of guest
species at the target site [114].

In this framework, nano-sized MOFs can be coated with different polymers by functionalizing their
surfaces with covalent, as well as coordination linkages. In a case, Zimpel and coworkers [36] proposed
a method for establishing coordinating linkages of polymers on the surface of MOFs. As depicted in
Figure 2, the Zr-fum nanoparticles were synthesized using the precursors, ZrCl4, fumaric acid, and
formic acid. The authors proposed that different polymers could compete with formic acid based on
the principle of increase in the entropy. Further, these polymers after coordination were attached to the
outer surface of the MOFs. In this context, the coating procedure was investigated using four different
polymer groups of negatively- as well as positively-charged, neutral, and hybrid block copolymer)
and further explored the interactions between the functionalized MOFs and biological interfaces,
including aggregation, and interactions with membrane and substantial binding to cell surface proteins.
Evidently, no changes in the shape as well as position of the corresponding peaks of Zr-fum after
coating with different polymers, indicating that the polymers were bound efficiently to the MOF surface.
Moreover, no effect on the crystalline nature of MOF, and no changes in the morphology of Zr-fum
MOFs after coating with polymers were observed, attributing to the stable frameworks of MOFs.
The authors claimed that the method of polymer functionalization through coordination interactions
could be applied to other MOFs in fabricating highly efficient polymeric nanocomposites. In this
section, we discuss regarding various polymer-coated MOFs for their utilization in diverse biomedical
fields, highlighting the pros and cons. Different approaches for synthesizing polymer-coated MOFs
and their diversified advanced biomedical applications are listed Table 1.
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2.1. Chitosan

Chitosan, extracted from crustacean shells, is a polysaccharide that is predominantly used in
biomedical applications owing to its degradability and compatibility [118]. In addition, it has been
marketed as a binder in the cholesterol-lowering formulations [119]. The pH-responsive nature of
this promising biopolymer, i.e., dissolution in the acidic pH, has garnered enormous attention from
researchers in its utilization in diverse biomedical fields [120]. Biocompatible MOFs nanoparticles
(nanoMOFs) are ideal pharmaceutical carriers for drug delivery, owing to their intrinsic stability
and small size facilitating cross biological barriers [77–79]. To date, most of the reported studies
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have focused only on their administration to the intravenous route involving pain and serious
complications. However, the most convenient oral administration of nanomembranes are often
disregarded due to multiple biological barriers resulting in the poor bioavailability of delivered
drugs [121]. In an attempt to address this issue, Hidalgo and colleagues [112] proposed a bio-friendly
nanocarrier based on biocompatible mesoporous iron (III) trimethylsulfonate nanoparticles coated
with bio-adhesive polysaccharide chitosan for oral drug delivery applications. This method of
administration has shown no effect on the structural properties and adsorption/release capabilities of
nanocomposites owing to their surface engineering with the biopolymer chitosan. The interactions
between the MOF surface and chitosan were systematically characterized by computational simulation
and high-resolution soft X-ray absorption techniques. Further, the effects of chitosan coating on
the colloidal and chemical stabilities under oral simulation conditions were confirmed. Finally, the
biocompatibility, as well as the intestinal barrier bypass ability of these chitosan-coated MOFs were
evaluated in vitro, which resulted in higher intestinal permeability compared to uncoated materials,
maintaining optimal biocompatibility. Moreover, the chitosan-coated nanoparticles offer excellent
physicochemical properties, good colloidal stability and biodegradability, and good intestinal barrier
bypass function, which make these nanocomposites promising nanocarriers for drug delivery through
oral administration [112].

2.2. Heparin

Heparin is one of the naturally occurring sulfate-rich polysaccharides used in diverse biomedical
fields [122]. Currently, there are two main forms of heparin in clinical use, including unseparated
heparin and low Mol. Wt. heparin. The average Mol. Wt. of unseparated heparin ranges from
3–30 kDa, while the low Mol. Wt. heparin ranges from 4–5 kDa [123]. Although it is highly convenient
to encapsulate MOFs using various polysaccharides, it is highly challenging to modify the outer surface
of nanoMOFs without changing the porous architectures of MOFs. Elena and colleagues [113] reported
a method for functionalizing the surface of MIL-100 (Fe)-based MOFs without altering their porous
architectures. As shown in Figure 3, the fabricated MIL-100 (Fe) MOFs were coated with heparin on
their surface, using the hydrophilic functionality of heparin to prolong their circulation time in the
body. The final particle size of uncoated MIL-100(Fe) was varied with the dispersion media, resulting
in 141 ± 13, 155 ± 61, and 162 ± 60 nm in water, PBS, and PBS + albumin mixture dispersion media,
respectively. Further, two different approaches were used for fabricating heparin-coated MIL-100(Fe)
nanoparticles. In one of the methods, heparin was selectively coated initially on the surface of
MOFs, and then loaded with caffeine. In another approach, MOFs were preloaded with furazan
and then coated with rhodamine-labeled heparin on their surface. Remarkably, after encapsulation
with heparin, the original crystal structure and porosity of MOFs were remained uninterrupted.
Moreover, these polymer-wrapped MOFs offered controlled release ability of encapsulated guest
species. In addition, the colloidal stability of these functional nanocomposites was significantly
improved. These experimental results revealed that the coating of polymers over the surface of
a nanofilm using a direct method could augment the versatility, thereby increasing their potential of
highly porous MOFs in the biomedical field.
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2.3. Hyaluronic acid

Hyaluronic acid (HA), a non-sulfated glycosaminoglycan polysaccharide composed of
β-1,4-D-glucuronic acid-β-1,3-N-acetyl-D-glucosamine disaccharide units linearly, is widely distributed
in the body such as eye vitreous and extracellular matrix (ECM) of the cartilage tissue [124]. HA (Mol. Wt.
of 100 to 8000 kDa), a highly hydrophilic polymer macromolecule, is capable of binding to a large amount
of water [125]. This attractive property of HA can prolong the circulation time of the encapsulated
nanoparticles in the blood and increase their drug delivery efficiency. Moreover, HA coating enhances
the stability of the drug carrier in solution, ensuring its safety before reaching the tumor site. In addition,
HA acts as a targeting agent, allowing the drug carrier to target the tumor site, not only improving the
drug delivery at the target site, but also prevents the drug carrier from being entry to normal cells,
resulting in reduced adverse effects. Moreover, HA provides a molecular-responsive release function
for the drug carrier as the internalized MOF@HA can be degraded by the hyaluronidase enzyme,
resulting in the release of the drug specifically in the intracellular microenvironment.

To demonstrate these interesting attributes of HA-coated MOFs, Kim and colleagues [126] reported
a method of wrapping drug species-encapsulated MOFs with HA to prevent the premature release
of drug molecules and substantial efficient delivery at the target site. As shown in Figure 4, Zr4+ as
a metal source and photosensitizer tetrakis(4-carboxyphenyl) porphyrin (TCPP) as organic linkers
were initially used to fabricate PCN-224-based MOFs with large-sized pores through coordination
between them. Further, the anticancer drug doxorubicin (DOX) was doped within the pores of
these MOFs through electrostatic adsorption, and the surface was then coated with a layer of HA,
for limiting the diffusion of encapsulated DOX molecules from the MOF channels. Herein, the HA
on the surface not only effectively prevented the early release of the drug but also facilitated the
targeting of specifically overexpressed HA receptor on cancer cells, which significantly enriched
the internalization efficiency of MOFs into cancer cells. The internalized HA-encapsulated MOFs
significantly delivered DOX species intracellularly after when the hyaluronidase enzyme degraded
the surface HA, promoting the MOFs exposure to cytosol. Further, TCPP absorbed the irradiated
light at a specific wavelength effectively converted O2 to deadly singlet oxygen (1O2) species, which
resulted in substantial ablation of cancer cells by interacting with mitochondria DNA thereby enabling
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cell apoptosis. Using the combinatorial strategy of chemotherapy and photodynamic therapy (PDT),
it could be highly convenient to significantly ablate cancer cells.
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Compared to other porous materials such as MSNs, MOFs could offer numerous advantages for
their application in drug delivery [127]. Considering the example of HA-coated composites, on one
hand, in addition to targeting ability, some of the organic ligands in MOFs (such as TCPP) could
convert O2 to 1O2 and participated in synergistic tumor ablation effects while the MSN frameworks
could only encapsulate and delivery the therapeutic guest species. Further, these composites (both the
coated HA and the core MOF) could be degraded in the physiological environment and the degraded
products could be expediently eliminated from the body. On the other hand, when compared with other
advanced metal oxide, such as MnO2, the MOFs coated with polymers could provide additional benefits
in terms of degradability and compatibility attributes. In an example, Min et al. [128] encapsulated
MOFs within the MnO2 shell for biomedical applications. MOFs had shown no significant toxic
effects on 4T1 cells with >95% viability at a concentration of 50 µg/mL, while the MOFs coated
with a layer of MnO2 resulted in reduced viability of 4T1 cells at a similar concentration. Further
attempts of cell membrane coating were made to augment the compatibility. However, the viability
of cells was relatively incomparable to pure MOFs. In another case, Hidalgo and colleagues [112]
coated MIL-100 (Fe) with chitosan polymer, which resulted in excellent biocompatibility with viability
greater than 95%, even at the concentration of 1200 µg/mL. These findings explicitly clarify that the
polymer-coated composites are highly compatible and such advancements are highly beneficial over
others for biomedical applications (Table 1).

2.4. PVP

PVP is an amphiphilic, non-ionic polymer synthesized using acetylene [129]. PVP shows excellent
physicochemical properties, such as excellent aqueous solubility, low toxicity, and good chemical
stability, which are of particular interest in diverse biomedical applications [114]. This polymer can be
used as a surfactant for stabilizing diverse nanoparticles in the polar solvents, and also as a capping
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agent in controlling their morphology (size and shape) during fabrication. In an attempt to encapsulate
MOFs in PVP, Chen and colleagues [130] designed highly stable nanoparticles by modifying the surface
of BSA@ZIF-8 MOFs by coating with biocompatible PVP. Further, the authors investigated the stability
of nanoMOFs for the first time in cell media supplemented with 10% fetal bovine serum for more
than 3 months ensuring the long-term stability of such PVP-based nanocomposites in cellular media
for their application in biomedical field. From the scanning electron microscopy (SEM) observations
(Figure 5), it could be observed that no severe aggregation and changes in the final particle sizes of
BSA@ZIF-8 were observed, attributing to the stability of PVP coating over the designed MOFs in the
culture media.
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multiple effects using a single therapy and by substantially avoiding side effects. In this framework, 
several metal nanoparticles-based core-shell structures have been fabricated for improving the 
therapeutic efficiency of the formulation. In a certain case, Li and colleagues [131] synthesized 
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potential toxicity of cationic CTAB to cells and the excellent binding ability of PVP to AuNRs, the 
stabilizer CTAB molecules on the surface of AuNRs were exchanged with PVP. Then, 2-MIM (2-

Figure 5. Long-term stability of PVP-coated BSA@ZIF-8 nanoparticles. (a) TEM images of PVP-coated
BSA@ZIF-8 nanoparticles in PBS at different times; (b) High-resolution TEM images of PVP-coated
BSA@ZIF-8 nanoparticles in PBS at different times; (c) TEM images of PVP-coated BSA@ZIF-8
nanoparticles in human serum (10%) at different times; (d) High-resolution TEM images of PVP-coated
BSA@ZIF-8 nanoparticles in human serum (10%) at different time. Reproduced with permission from
Ref. [130] Copyright 2018, American Chemical Society.

In addition to coating over MOFs, PVP can be used as surfactant or a structure-directing agent,
to coat over the core materials for stabilizing the shell structures. This polymer predominantly offers
a significant advantage of biocompatibility over other stabilizers such as CTAB, which is of particular
interest in the biomedical applications. Indeed, numerous conventional therapies have been used
so far for eradicating several dreadful diseases like cancer, including radiation therapy, surgery,
immunotherapy and chemotherapy. Recently, several progressions have been made in developing
various advanced therapeutic strategies by formulating numerous designs that could exhibit multiple
effects using a single therapy and by substantially avoiding side effects. In this framework, several
metal nanoparticles-based core-shell structures have been fabricated for improving the therapeutic
efficiency of the formulation. In a certain case, Li and colleagues [131] synthesized AuNR@ZIF-8-based
core-shell nanoarchitectures (Figure 6A). Initially, cetyltrimethylammonium bromide (CTAB)-stabilized
gold nanorods (AuNRs) were prepared. Subsequently, considering the potential toxicity of cationic
CTAB to cells and the excellent binding ability of PVP to AuNRs, the stabilizer CTAB molecules on
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the surface of AuNRs were exchanged with PVP. Then, 2-MIM (2-methyl imidazole) was rigorously
stirred with PVP-stabilized AuNRs. Further, the aqueous Zn(II) solution was added to the mixture in
methanol, resulting in the AuNR@ZIF-8 nanocomposites. These innovative MOF-based core–shell
nanoarchitectures have shown synergistic chemo-photothermal therapy.
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Figure 6. (A) Strategy for fabrication of AuNR@ZIF-8 core-shell nanostructures as a novel
multifunctional nanoplatform for synergistic chemo-photothermal cancer therapy both in vitro and
in vivo. Reproduced with permission from Ref. [131] Copyright 2018, Springer Nature. (B) Scheme of
the controlled encapsulation of nanoparticles in ZIF-8 crystals. The spatial distribution of incorporated
PVP-modified nanoparticles within ZIF-8 crystals can also be controlled by their addition sequence
(that is, addition at the beginning (T0) or after a certain time (T) during the MOF synthesis). Reproduced
with permission from Ref. [132] Copyright 2012, Nature publishing group. (C) Schematic illustration of
multifunctional nanoparticles consisting of a PPy core and a mesoporous MIL-100 shell, designed for
simultaneous PTT and chemotherapy of cancer cells. (D) TEM images of PPy nanoparticles (i and iv),
of PPy@MIL-100 for 1.5 h of reaction time (ii and v), and of PPy@MIL-100 for 24 h of reaction time
(iii and vi). Reproduced with permission from Ref. [133] Copyright 2016, American Chemical Society.

Indeed, PVP can be used as a stabilizer during the fabrication of nanomaterials to control the
morphological attributes of the nanoconstructs [134]. Interestingly, Lu and coworkers [132] proposed
an innovative controlled encapsulation strategy, for the fabrication of various hierarchical architectures
based on PVP-coated nanoparticles with different sizes and shapes, which were substantially wrapped
with a layer of ZIF-8 on their surface (Figure 6B). In this work, they showed that different shapes
of PVP-modified nanoparticles could be wrapped in MOF in a well-dispersed fashion mediated by
the coordination bonds between PVP and zinc ions. In addition, the non-polar component in PVP
could be bound to the organic ligand of MOF by the hydrophobic interactions. In another case,
Zhu and coworkers [133] used PVP as a template to promote the self-assembly of Fe3+ ions and H3BTC.
The surface of polypyrrole (PPy) nanoparticles was initially modified with PVP to enhance their stability
and substantially augment the binding efficiency of the precursor of MIL-100 (Figure 6C). On one end,
Fe3+ remaining on PPy could be used as a metal source for the synthesis of MIL-100. To this end, PVP
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adsorbed on the surface of PPy could enhance the affinity of nanoparticles with MIL-100 precursor
by weak coordination interaction between pyrrolidone ring (C=O) and Fe3+ of PVP. The polypyrrole
reacted with the MIL-100 precursor to form a shell structure, indicating the formation of PPy@MIL-100
nanocomposites with a core-shell structure. From Figure 6D, the fabricated nanoparticles have shown
a thin layer of shell on the surface, and the shell thickness was gradually increased with the coating time.
Similarly, Deng and colleagues [135] fabricated core-shell nanoarchitectures based on the mesoporous
MOF as a shell and the UCNPs as cores using the PVP as a stabilizer over UCNPs. The authors
demonstrated that the PVP was uniformly distributed on UCNPs, resulting in the composites with
an average size of 30 nm and excellent monodispersity. It should be noted that the particle size of
UCNPs@MOF nanoclusters was increased with the increase of reaction time.

2.5. PSS

PSS is another negatively-charged polymer, which can be used to coat over the surface of MOFs,
enabling the ease of adsorption of cations from the environment through the electrostatic adsorption.
More often, this ability of adsorption facilitates the convenient growth of MOFs in situ. Long and
coworkers [115] used PSS to prepare a layer of Pt/CeO2 toward microwave-assisted fabrication of
Pt-CeO2@MOF core-shell hybrid architectures. From Figure 7, the Pt-CeO2 nanoparticles were spherical
in shape with a large hollow cavity. After the surface was wrapped with PSS, Zr4+ could be adsorbed,
resulting in a uniform layer on the surface of Pt-CeO2, however, the thickness remained unchanged.
Moreover, the utilization of PSS further played a critical role in the formation of complete UiO-66-NH2

shell over these Pt-CeO2@MOF structures. The formation of hierarchical structures was substantially
confirmed using various characterization techniques. Interestingly, PSS acted as a connecter, which
eventually reduced the interfacial energy between the Pt-CeO2 and UiO-66-NH2, thus promoting the
growth of UiO-66-NH2 on Pt-CeO2 through electrostatic interactions.
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In another case, Elsaidi and colleagues [136] synthesized microspheres with clear interface
using Fe3O4 as the core and MIL-101-SO3 as the shell and subsequently functionalized these MOFs.
The synthesized Fe3O4 microspheres were spherical and possessed a diameter of around 300 to 500 nm.
In order to grow a MOF shell on the outer layer of Fe3O4, they added PSS as a linker. PSS can not only
absorb metal ions, promoting the formation of MOF shell, but also provide sulfonic acid (SO3

−) groups,
which can balance the charge of Na+ or H+ cations [137]. These cations make material more stable in the
aqueous solution [138], which broaden their application in biomedical applications (Table 1). After the
MOF was wrapped on the surface of Fe3O4, the diameter of the microspheres increased to 800–900 nm,
and its shape has not changed significantly, and remained spherical (Figure 8). Further, these stable
magnetite@MOF composites were applied toward the extraction of rare earth elements [139]. Due to
the uniform distribution of many negatively-charged sulfonic acid (SO3-) groups, these MIL-101-SO3

shells could efficiently exchange the rare earth ions in water. Interestingly, the magnetic property of
the Fe3O4 core could facilitate their ease of separation from the aqueous solution mixture.
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Figure 8. (A) Schematic representation of the Fe3O4@MIL-101-SO3 core formation. (B) SEM,
Transmission Electron Microscope (TEM), and Energy Dispersive X-ray (EDX) studies of the magnetic
core-shell microsphere. (a–c) SEM images of Fe3O4, Fe3O4–PSS, and Fe3O4@MIL-101-SO3. (d–f) TEM
images of Fe3O4, Fe3O4–PSS, and Fe3O4@MIL-101-SO3. (g) TEM and corresponding EDX data showing
elemental composition of Fe3O4@MIL-101-SO3. Reproduced with permission from Ref. [136] Copyright
2017, American Chemical Society.
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Table 1. Polymer-coated MOFs synthesized using various approaches for diverse advanced biomedical applications.

MOF@Polymer Organic Linkers Synthetic Process
Particle Size (nm)

Outcome Reference
MOFs MOF@Polymer

MIL-100(Fe)@ chitosan BTC MAS 135 ± 20 204 ± 32 Improved biocompatibility of
oral nanocarriers [112]

MIL-100(Fe)@ heparin BTC MAS 155 ± 61 178 ± 44 Toward stealth drug
nanocarriers [113]

PCN-224@HA TCPP STS 164 ±20 250 ± 20 Advanced anticancer therapy [126]

BSA@ZIF-8@PVP 2-MIM MCS 53±3.1 10 ± 1.6
Intracellular delivery and
endo-lysosomal release of

native active proteins
[130]

Zr-UiO-66/Py-PGA-PEG-F3 BDC STS 220 250
In vivo targeting and positron
emission tomography imaging

of tumor
[140]

GdMOF@PAA BDC STS 155 ± 30 (l) and
30 ± 11 (w)

158 ± 30 (l) and
33 ± 11 (w)

Contrast agents for computed
tomography and magnetic

resonance bimodal imaging
[141]

UiO-66-L1-PolyLact BDC STS 143 ± 31 177 ± 25
Selective anticancer

cytotoxicity and immune
system response

[142]

UiO-66-L2-PNIPAM BDC STS 142 ± 14 177 ± 24
Selective anticancer

cytotoxicity and immune
system response

[142]

Note: l refers to length, W refers to Width.
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3. Cross Linking MOF to Polymer

Except a few specific types of MOFs, such as Fe- and Zr-based MOFs, most of the MOF composites
suffer from poor aqueous stability, which seriously hinders their application in diverse biomedical
fields (Table 1) [143,144]. Although several advancements have been made through proposed ways to
improve their aqueous stability, MOFs still suffer from this issue. Even the surface-coated polymers
on MOFs through self-assembly (discussed in Section 2) have not solved this issue to a considerable
extent. However, several efforts have been dedicated such as crosslinking the organic ligands of
MOF, facilitating the formation of polymeric composite of 3D structure, which could essentially
improve the stability of MOFs in the aqueous solution. In this context, Ishiwata and coworkers [145]
transformed Zn-based MOFs to polymer gel (PG) using the cross-linking approach (Figure 9). Initially,
azide-tagged MOF (AzM) structures were fabricated by the self-assembly of Zn2+ with the organic
ligand diazide-triphenyldicarboxylic acid ligand (AzTPDC). Further, different crosslinking agents,
such as tetra-acetylene cross-linker (CL4) and diacetylene cross-linker (CL2), were used, resulting in
the cross-linked MOF (CLM) complexes. Finally, Zn2+ species were removed to obtain MOF-templated
polymer (MTP). After removal of Zn2+, MTP became amorphous, indicating that the crystal structure
of MOF was demolished and has transformed from a hard material to a soft PG material. Moreover, the
colloidal particles or macromolecules in the solution were connected, resulting in a spatial network-like
architecture. Moreover, the structural voids were filled with a liquid, and such a special dispersion
system called as PG. Since the organic linkers in MTP were connected to each other, the water molecules
could not disrupt the binding sites between the metal species and organic linkers. This could be the
plausible reason for the aqueous stability of MTP, and cleared the barriers for the application of MTP
in the biomedical field. Contrarily, in a case, Howarth and coworkers [146] demonstrated that the
intermolecular interactions between the metal ions and organic ligands in MOFs were relatively weak.
Such junctures could be hydrolyzed in the aqueous environment, resulting in their corresponding
protonated linkers or hydroxide forms, and may eventually collapse the intrinsic structure of MOFs.
Although the MOFs and polymer gel are totally two different materials with hard and soft in nature,
respectively, and their conversion would be highly challenging, however, the MOFs were transformed
to gels by simple crosslinking and removal of the metal species.
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Figure 9. (A) Schematic illustration of cross-linking of the organic linkers in MOF (AzM) and
subsequent decomposition to obtain polymer gel (PG). (B) Molecular structures of the organic ligand
(AzTPDC) and the cross-linkers. Reproduced with permission from Ref. [145] Copyright 2013, American
Chemical Society.

The water-susceptible sites in MOFs are easy to be hydrolyzed in the aqueous solution, and
facilitate the release of the metal ions, which may significantly affect the cell growth. Although
researchers have made colossal efforts to reduce these effects, such as coating of polymer on MOFs [147].
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However, it still remains unaddressed. Further, these consequences drive researchers in search for
a metal-free way to synthesis a medium for biomedical applications. Tsotsalas and colleagues [148]
synthesized a copper-free polymer gel with excellent stability through a click reaction (Figure 10).
These gels could be used to adhere bacteria without the release of metal ions, ensuring its applicability
in the biomedical field. In addition, the polymer films presented better aqueous stability than those
of traditional MOFs and they could be stable in the cytoplasmic solution without collapse [148].
The authors demonstrated an innovative method for preparing a porous polymer film, in which the
resultant films from the precursor of MOF retained the advantage of their high porosity, improving in
the flexibility, facilitating easy to stretch. These advantages would specifically enable the broadening of
their industrial application prospects as well. In summary, these highly porous polymer films prepared
by using MOF as a precursor has overcome the inherent disadvantages of MOF, and are very promising
in biomedical applications.
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Figure 10. Schematic representation showing the copper-free click reaction between the
diazido-stilbenedicarboxylic acid (DA-SBDC) and the cross-linker trimethylolethane tripropiolate.
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4. Metal-Polymer Ligands

Although the method of cross-linking MOF to polymer can conveniently transform MOFs to
innovative PGs. However, the size of fabricated PGs is generally large reaching tens to hundreds
of micrometers, which might not be optimal for biomedical applications such as drug delivery.
Nevertheless, this size enables them to be applied for tissue engineering application. In an attempt to
address this issue, Furukawa and colleagues [149], fabricated a variety of polyhedral shape-controllable
gel particles using MOF crystals as templates. They initially fabricated polymeric network by controlling
the grain size of the MOF and then cross-linked the hydroxyl group and the phenolate group of
cyclodextrin (CD) to reduce their solubility in water (Figure 11). It could be observed that by using
internal cross-linking of CD-MOF crystals, uniform cubic gel particles with sharp edges and square
surfaces were prepared without coordination of metal ions. The cubic gel particles retained the
morphology of the original CD-MOF composite crystal, demonstrating that by stringently monitoring
the recrystallization conditions, the average of CGPs could be conveniently reduced to nanometer
range from millimeters. As CD-MOFs without crosslinking are readily soluble in water, while the
cross-linked CD-MOFs were hydrophobic and swollen in water. Cubic gel particles (CGP) upon
swelling turned out to be amorphous, indicating that the crystal structure of MOF was destroyed and
has changed from a hard material to a soft material. This method significantly opens up new fields for



Polymers 2019, 11, 1627 15 of 27

the preparation of micro- and nano-polyhedral polymer gels with appropriate morphology suitable for
biomedical applications.Polymers 2019, 11, x FOR PEER REVIEW 2 of 28 
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Figure 11. (A) Schematic illustrating the synthesis of cubic gel particles. (a) Crystallization,
(b) Cross-linking reaction, and (c) Removal of coordinated metal ions. (B) SEM images of (d)
CD-MOF-Micro1, (e) CD-MOF-Micro2, and (f) CD-MOF-Nano. Reproduced with permission from
Ref. [149] Copyright 2012, John Wiley & sons.

5. PolyMOF

In addition to coating polymers over the surface of MOFs to improve their physicochemical
characteristics, it is feasible to fabricate innovative composites of MOFs using polymeric monomers
resulting in the polymer-MOF as a repeating unit as the monomer can endow MOF numerous properties
such as chemical protection, decontamination, and hydrophobic property, among others [150,151].
The composite material of MOFs with polymer exhibits the combination of excellent properties of MOFs
and polymer. Nevertheless, the fabrication of such MOF-polymer composites (polyMOF) requires
a high degree of dispersion and interaction between the MOF particles and the polymer matrix, which
remains a significant challenge. In an attempt to solve this issue, Kalaj and colleagues [152] synthesized
nylon-MOF by interfacial polymerization technology. During the processing, the surface-modified
UiO-66-NH2 MOFs were copolymerized with the budding polyamide fiber (PA-66) in the aqueous
solution, resulting in PA-66-UiO-66-NH2 (Figure 12).

In general, the chemotherapeutic drugs do not specifically recognize tumor cells, resulting in
damage to normal cells while killing cancer cells. For example, DOX is one of such agents binds to the
mitochondrial DNA of the cell upon internalization, producing Reactive oxygen species (ROS), which
are highly cytotoxic and cause apoptosis. However, whether in normal cells or cancer cells, DOX is
capable of producing ROS, which inevitably cause damage to the cells that internalized DOX. Luo and
coworkers [153] designed a rational drug controlled release system, which is of great significance for
cancer treatment (Figure 13). The core-shell nanoparticle-based controlled drug delivery system using
di-(1-hydroxylundecyl) selenide (DH-Se), poly(ethylene glycol) (PEG), and poly(propylene glycol)
(PPG) as polymers and Zr-TCPP as a core was fabricated. Zr salt was selected as Zr-MOFs could result
in excellent stability in the aqueous solution, without any signs of collapse of porous architectures of
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MOFs. On the other hand, TCPP was selected as the organic ligand because TCPP, a photosensitive
agent, could efficiently ablate tumor cells upon light irradiation at a specific wavelength through
producing 1O2. In addition, the surface-coated PEG not only enhanced their stability in the aqueous
environment but also extended their long-term circulation in blood. Interestingly, the polymers were
selected in a way to exhibit the synergistic effects in protecting the eventual formulation by offering
stability and exhibiting the therapeutic effects. The outer hydrophilic PEG layer extended the circulation
time, while the inner hydrophobic PPG layer prevented the surrounding water into the interior of the
nanoparticle, avoiding the premature drug release and collapse of MOFs. The generation of deadly
1O2 from O2 by TCPP in the presence of light and strong redox responsiveness of Se, facilitated the
decomposition of the outer shell, resulting in the controlled release of drugs. This is the first time that
MOF and selenium-substituted polymers have been used as controllable drug release carriers, which
may contribute to the combination of precision chemotherapy and photodynamic therapy.Polymers 2019, 11, x FOR PEER REVIEW 3 of 28 
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could be broken with 488 nm light illumination and release the encapsulated anticancer drug DOX for
precise chemotherapy. Reproduced with permission from Ref. [153] Copyright 2019, John Wiley & sons.

6. Characterization of Polymer-Coated MOFs

More often, various characterization techniques can be used to confirm substantial modifications
of polymeric coatings made on the surfaces of MOFs. There are several predominantly used approaches
for determining various morphological and physicochemical attributes of MOFs and their subsequent
polymeric-coated composites. In this section, a brief account on the predominantly used characterization
techniques is given. Predominantly, the morphological attributes are often observed using SEM and
TEM recordings, which give an explicit view on the overall particle diameter as well as the shape of the
MOFs as well as the polymer-coated MOFs. In addition, they would also provide information of stability
attributes such as aggregation of MOFs. In general, MOFs possess different crystal faces due to variation
in the crystal growth rates, resulting in diverse morphologies such as different shaped crystalline
architectures such as spheres, rods, and cubes, among others. More often, the encapsulation of MOFs in
polymer tend to result in the intrinsic shape of MOFs. However, in some cases, owing to the amorphous
nature of polymers, the wrapped MOFs tend to be spherical due to the even distribution of polymer
over the surface of MOFs. In a case, after encapsulating the MOFs with polymer, the angular edges of
MOFs gradually softened and the eventual morphology tended to be spherical [142] (Figure 14A,B).
Contrarily, the TEM observations can be used to demonstrate the internal structure as well as the final
size of the MOF-polymer composite. In addition to morphology, the physico-chemical attributes can be
demonstrated by various techniques. The recording of powder X-ray diffraction (PXRD) patterns is one
such approach for determining the crystallographic validations of MOFs. Owing to differences in their
composition, the polymers as well as MOFs possess different crystalline forms, which would result in
varied crystalline patterns. In some instances, it is feasible to demonstrate the successful encapsulation
of MOFs within the polymeric frameworks. In an example, the characteristic PXRD patterns of PCN-224
remained unchanged after coating with HA polymer, indicating that the coating of HA has no influence
on the crystallinity of PCN-224 [126] (Figure 14C). However, a slight reduction in the intensities of
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corresponding peaks would represent the successful encapsulation of MOFs in the polymer. Owing
to their high porosity, large specific surface area, and ability of adsorption as well as retention of
gases, it can be feasible to evaluate the morphological attributes of MOFs and the polymer-coated
MOFs in terms of porosity using nitrogen (N2) adsorption-desorption isotherms. The changes in the
porosity and reduction in the specific area due to partial blockage of the pores in MOFs after coating
with polymers can be evaluated. In general, the specific surface area of MOFs is around 1000 m2/g,
which could be significantly reduced after coating with polymers. In a case, UiO-66 MOFs resulted in
their surface area of 988.625 m2/g, which drastically reduced to 438.978 m2/g after coating with the
polymeric composite of Py-PGA-PEG-F3 [140] (Figure 14D). Further, various other physicochemical
characterization techniques such as thermogravimetric analysis (TGA), solid state nuclear magnetic
resonance (NMR), and Fourier transform infrared (FTIR) spectroscopic analyses can also be used to
demonstrate the stability as well as chemical functionalities of the MOF-polymer composites.
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Figure 14. SEM images of (A) UiO-66-L2 and (B) UiO-66-L2-PNIPAM. Reproduced with permission
from Ref. [142] Copyright 2018, American Chemical Society. (C) PXRD pattern of PCN-224,
HA-Dox-PCN-224. Reproduced with permission from Ref. [126] Copyright 2019, American Chemical
Society. (D) Nitrogen adsorption-desorption isotherms of UiO-66, UiO-66/Py-PGA-PEG-F3, and
DOX-loaded UiO-66/Py-PGA-PEG-F3. Reproduced with permission from Ref. [140] Copyright 2017,
American Chemical Society.

7. Conclusions and Perspectives

In summary, this review gave an overview of the various combinations of MOF and polymer,
including coating, cross-linking MOF to polymer, metal-polymer ligands, and polyMOF, with excellent
physicochemical attributes toward their applicability in the field of biomedicine. By considering various
synthetic strategies, polymers were integrated with MOFs, endowing MOFs numerous fascinating
functional attributes and improving their aqueous stability, which could compensate for their natural
defects. However, most of the MOFs currently used in the biomedical field are Fe-based MOFs and
Zr-based MOFs because of their excellent water stability, and the use of other metal-based MOFs in the
biomedical field is rarely reported.
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Although polymer-coated MOFs have shown excellent performance efficiency in improving the
colloidal stability biocompatibility of MOFs, these composites still suffer from limitations. The precise
control of polymer encapsulation on separate MOFs becomes a significant challenge. At present,
the biggest problem is that it is easy to wrap several MOF nanoparticles with a polymer. However,
the encapsulation of MOFs in polymers may causes agglomeration of the nanoparticles. With the
advent of more coating methods, the encapsulation of the polymer on the MOF will be more uniform
and can be more widely used in the diverse biomedical fields. With the deepening of MOF and polymer
research, more and more MOFs will be applied in the field of biomedicine, and the application of MOF
in biomedical fields will continue to be endorsed.
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Abbreviations

1O2 Singlet oxygen
2-MIM 2-methyl imidazole
AuNRs Gold nanorods
AzM Azide-tagged MOF
AzTPDC diazide-triphenyl dicarboxylic acid
BDC 1,4-benzene dicarboxylic acid
BSA Bovine serum albumin
BTC 1,3,5-benzene tricarboxylic acid
CD Cyclodextrin
CGP Cubic gel particles
CL4 Acetylene cross-linker
CL2 Diacetylene cross-linker
CLM Cross-linked MOF
CTAB Cetyltrimethylammonium bromide
DA-SBDC Diazido-stilbenedicarboxylic acid
DH-Se Di-(1-hydroxylundecyl) selenide
DOX Doxorubicin
ECM Extracellular matrix
EDX Energy dispersive X-ray spectroscopy
FTIR Fourier transform infrared
HA Hyaluronic acid
PSS Poly(sodium 4-styrenesulfonate)
PVP Poly(N-vinylpyrrolidone)
PXRD Powder X-ray diffraction
MAS Microwave-assisted synthesis
MCS Mechanochemical synthesis
ZIF Zeolitic imidazolate framework
MOFs Metal-organic frameworks
MSNs Mesoporous silica nanoparticles
MTP MOF-templated polymer
NMR Nuclear magnetic resonance
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PA-66 Polyamide fiber
PAA Poly(acrylic acid)
PCN Porous coordination network
PDT Photodynamic therapy
PEG Poly(ethylene glycol)
PG Polymer gel
PNIPAM Poly-N-isopropylacrylamide
PolyLact Poly-l-lactide
polyMOF MOF-polymer composites
PPG Poly(propylene glycol)
Ppy Polypyrrole
PSM Post-synthetic modification
PSP Post-synthetic polymerization
Py–PGA-PEG-F3 Pyrene-derived polyethylene glycol-F3
ROS Reactive oxygen species
SBU Second building unit
SEM Scanning electron microscope
STS Solvothermal synthesis
TCPP Tetrakis(4-carboxyphenyl) porphyrin
TEM Transmission electron microscope
UCNPs Upconverting nanoparticles
UiO University of Oslo
ZIF Zeolitic imidazolate framework
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