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Abstract: Two star-shaped multi-triphenylamine derivatives 1 and 2 were prepared, where 2 has 
an additional phenyl unit between a pyrene core and surrounding triphenylamine units. The 
oxidative electropolymerization of 1 and 2 occurred smoothly to give thin films of polymers P1 
and P2. The electrochemistry and spectroelectrochemistry of P1 and P2 were examined, showing 
two-step absorption spectral changes in the near-infrared region. The electrochromic properties, 
including contrast ratio, response time, and cyclic stability of P1 and P2 were investigated and 
compared. Thin film of P2 displays slightly better electrochromic performance than P1, with a 
contrast ratio of 45% at 1475 nm being achieved. 

Keywords: electropolymerization; electrochromism; electrochemistry; triphenylamine; 
near-infrared 

 

1. Introduction 

Electrochromic materials show reversible color and absorption spectral changes driven by 
external potential or current stimulus [1]. They have a wide range of applications including smart 
window [2], information storage [3], and digital displays [4]. Compared to electrochromic 
inorganic oxides [5] and metal complexes [6], organic semiconductor polymers have shown their 
appealing advantages in electrochromism, such as easy processability, good flexibility, low cost, 
and the great capability to adjust color and absorption wavelength through chemical modifications 
[7,8]. 

Beyond the commonly-studied electrochromism in the visible region, electrochromic materials 
in the near infrared (NIR, 750–3000 nm) region have been recently developed and applied in optic 
fiber telecommunications and dynamic camouflage [9,10]. For instance, Liou and Hsiao and 
co-workers have demonstrated excellent NIR electrochromic properties using triarylamine-based 
polymers [11–13]. Wang and Wan and co-workers reported appealing NIR electrochromism with 
good contrast ratio based on thin films of diruthenium complexes [14,15]. We have used 
multi-center ruthenium compounds as the active materials for NIR electrochromism [16,17]. In this 
context, the development of NIR electrochromic films has received continued interest in term of 
easy processability and good electrochromic properties [18,19]. 

Drop casting, spin coating, self-assembly [20], and electropolymerization are representative 
methods to prepare thin films of functional materials [21]. Among them, electropolymerization 
stands out as a convenient method to achieve polymer formation and film deposition 
simultaneously. This decreases the experimental time and cost and partially solves the solubility 
problem of some compounds. A large number of electropolymerized films have been prepared 
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from monomers functionalized with thiophene or carbazole derivatives [22–28]. In addition, 
triphenylamine groups have been used as polymerizable units to prepare thin films of organic and 
metal complexes by electropolymerization [29–32]. Triphenylamine can be electrochemically 
oxidized into aminium cation radical, which acts as the key intermediate to form polymeric 
structures connected by tetraphenylbenzidine bridges (Figure 1) [29–32]. Interestingly, these 
newly-generated tetraphenylbenzidine units are electroactive and show strong NIR absorptions as a 
result of the intervalence charge transfer (IVCT) transitions in the mixed-valent state [33–35]. 
However, the use of this property in NIR electrochromism has not been fully exploited. 

We present, herein, two star-shaped compounds 1 and 2 with a pyrene core functionalized 
with four triphenylamine units for the preparation of NIR-electrochromic thin films by 
electropolymerization (Scheme 1). The electrochromic properties of the resulting polymers P1 and 
P2 are discussed. Pyrene derivatives are well-known organic semiconductors with interesting 
optoelectronic properties [36–38]. The combination of pyrene with triphenylamine polymers is 
expected to yield materials with appealing electrochromic properties. Compounds 1 and 2 have 
different length of the side arms. They are used to examine the structure-property relationship of 
the resulting polymeric films. 

 

Figure 1. Schematic representation of the electropolymerization of triphenylamine monomers.  
R stands for any building block between two triphenylamine units. 

 
Scheme 1. Synthetic routes of compounds 1 and 2. 
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2. Materials and Methods  

2.1. Materials and Instruments 

4′-(Diphenylamino)-1,1′-biphen-4-ylboronic acid was prepared according to the known 
procedure [39]. Other chemicals and reagents were purchased from commercial sources. Details of 
characterization methods of new compounds are provided in our previous reports [16,35]. 

2.2. Synthesis of Compounds 

2.2.1. Compound 1 

A mixture of 4-(diphenylamino)phenylboronic acid (144.6 mg, 0.50 mmol), 
1,3,6,8-tetrabromopyrene (51.8 mg, 0.10 mmol), [Pd(PPh3)4] (9.3 mg, 0.0080 mmol), 2 mL of aqueous 
K2CO3 solution (2.0 M) and 5 mL of THF was refluxed at 90 °C for 24 h. The product precipitated out 
from the solution and was collected by filtration and washing with copious dichloromethane. The 
product 1 (92 mg) was obtained as a yellow solid in 78% yield. 1H NMR (400 MHz, CDCl3) δ 8.29 (s, 
4H), 8.03 (s, 2H), 7.55 (d, J = 8.2 Hz, 8H), 7.31 (t, J = 7.7 Hz, 16H), 7.22 (t, J = 5.7 Hz, 24H), 7.06 (t, J = 7.2 
Hz, 8H) (Figure S4). MALDI-HRMS calcd. for C88H63N4 [M + H]+: 1175.50526. Found: 1175.49990 
(Figure S6). 13C NMR data has not been recorded due to the limited solubility of the sample. 

2.2.2. Compound 2 

A mixture of 4′-(diphenylamino)-1,1′-biphen-4-ylboronic acid (96 mg, 0.26 mmol), 
1,3,6,8-tetrabromopyrene (27 mg, 0.052 mmol), [Pd(PPh3)4] (4.8 mg, 0.0041 mmol), and 1 mL of 
aqueous K2CO3 (2.0 M) and 3 mL of THF was refluxed at 90 °C for 24 h. Product 2 was purified using 
the same method for the synthesis of 1. In this synthesis, 63 mg of 2 was obtained as a yellow solid 
yield in 81% yield. 1H NMR (400 MHz, CDCl3) δ 8.29 (s, 4H), 8.11 (s, 2H), 7.76 (s, 16H), 7.60 (d, J = 8.5 
Hz, 8H), 7.27 (16H), 7.18 (t, J = 8.3 Hz, 24H), 7.05 (t, J = 7.3 Hz, 8H) (Figure S5). MALDI-HRMS calcd. 
for C112H79N4 [M + H]+: 1479.60346. Found: 1479.62625 (Figure S7). Due to the limited solubility of 
the sample, 13C NMR data has not been recorded. 

2.3. Electrochemistry 

The details and equipment information for electrochemical measurements could be found in 
our previous publications [16,35]. 

2.4. Spectroelectrochemical Measurements 

The spectroelectrochemical measurements were performed in 0.1 M of nBu4NClO4/ClCH2CH2Cl. 
The polymeric film on the indium−tin-oxide (ITO) glass electrode was used as the working electrode. 
Other information on the spectrophotometer and potentiastat has been disclosed [16,35].  

3. Results 

3.1. Synthesis of Monomers 

Compounds 1 and 2 were synthesized in good yield by the Suzuki coupling reaction of 
1,3,6,8-tetrabromopyrene with 4-(diphenylamino)phenylboronic acid or 
4′-diphenylamino-1,1′-biphen-4-ylboronic acid (Scheme 1). These two compounds had a rather low 
solubility and precipitated out from the reaction mixture when the reaction was complete. A simple 
filtration procedure led to the isolation of the product, which was used as the monomer for the 
following electropolymerization experiments. The characterization data of these monomers are 
described in detail in the Supplementary Materials. 
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3.2. Electropolymerization 

Compounds 1 and 2 were readily electropolymerized on indium−tin-oxide (ITO) glass 
electrodes by repetitive cyclic voltammetric (CV) scan (Figure 2). The experiments were carried out 
in 0.1 M nBu4NClO4 in a 1:1 mixture of 1, 2-dichloroethane and chlorobenzene at a scan rate of 100 
mV/s. Chlorobenzene was used to increase the solubility of monomers. Taking monomer 1 as an 
example, the occurrence of the polymerization was supported by the continuous increase of the 
current upon cyclic potential scans between 0 and +1.6 V vs. Ag/AgCl (Figure 2a). The appearance 
of two new redox waves at +0.86 and +1.00 V (half-wave potential, E1/2) was observed during the 
reverse scan and the following positive scans. These two waves are assigned to the stepwise 
oxidations of the newly-formed tetraphenylbenzidine units in the polymeric structures. Similar new 
redox waves were recorded in the electropolymerization of monomer 2 (Figure 2b). 
Electropolymerization also occurred when the potential scan was reversed at a potential between 
+1.2 and +1.4 V (Figure S1). However, judging from the degree of current increase, the 
polymerization process is relatively slower compared to that scanned between 0 and +1.6 V. The 
obtained polymers P1 and P2 have very low solubility, which inhibits their further analysis by 
NMR or mass spectra. The degree of polymerization of P1 and P2 is not known at this stage. The 
polymer P1 film was examined by scanning electron microscope (SEM) analysis, which showed that 
the film adhered tightly to the ITO substrate (Figure S2). The film’s thickness was estimated to be 
around 50 nm. The polymer P2 film has a very similar morphology and thickness. 

 

Figure 2. Cyclic voltammograms (CVs) recorded during the oxidative electropolymerization of (a) 1 
and (b) 2 on an indium−tin-oxide (ITO) glass electrode by 20 repeated potential scan cycles between 0 
and +1.6 V at 100 mV/s. The plots in red color are the first cyclic scan. 

Figure 3 shows the CVs of the above-obtained polymeric films P1 and P2 on ITO glass in clean 
electrolyte solution (0.1 M nBu4NClO4 in dichloroethane). Both polymers exhibited two redox waves 
at +0.86 and +1.00 V, which were well separated at a slow scan rate of 10 mV/s. As the scan rate 
increased, the potential separation between two redox couples became less-defined. However, a 
linear dependence of both anodic and cathodic currents of two redox couples as a function of the 
scan rate could be derived. This indicates that the redox events are controlled by the 
surface-confined electron transfer kinetics rather than diffusion process. On the basis of the charge 
integration associated with these redox waves, the electrochemical surface coverage (Γechem) of both 
films was estimated to be around 7.0 × 10−9 mol/cm2. 
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Figure 3. CVs obtained at different scan rates of (a) P1 (10, 30, 50, 80, and 110 mV/s, respectively) 
and (d) P2 (10, 30, 50, 70, and 90 mV/s, respectively). Linear dependence of peak currents of (b,e) the 
first redox wave and (c,f) the second redox wave of (b,c) P1 and (e,f) P2 as a function of scan rate. 
Ox1, Red1, Ox2, Red2 stand for the first oxidation, first reduction, second oxidation, and second 
reduction peak, respectively. The R2 values are over 0.98 for all linear fit. The polymeric films on 
ITO glass electrode were used as the working electrode. 

3.3. Spectroelectrochemistry 

Spectroelectrochemistry of P1 and P2 films on the ITO glass electrodes were tested in 
dichloroethane. Figure 4 shows the changes in absorption spectra and color of P1 and P2 in 
response to different applied potentials. Two-step changes are clearly observed from these 
experiments. Taking P1 as an example (Figure 4a–c), when the potential was increased from 0 V to 
+0.93 V, the absorption peak at 360 nm decreased continuously. During this process, two new 
absorption peaks appeared at 480 and 1450 nm. They are ascribed to the tetraphenylbenzidine 
radical cation-localized absorptions and the IVCT band, respectively. The color change of the film 
from pale yellow to brown was observed in this step. When the potential was further increased to 
+1.23 V, the IVCT absorption band at 1450 nm decreased significantly, and a new absorption peak 
at 776 nm was observed. The latter peak is considered to be originated from the formation of 
tetraphenylbenzidine dicationic species. The color of the film turned blue in the double oxidation 
step. Thin film P2 also showed a similar two-step spectral and color changes (Figure 4d–f). One 
difference is that the new absorption peak observed during the double oxidation step located at 862 
nm, which is slightly red-shifted with respect to that of P1. 
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Figure 4. (a,b,d,e) Absorption spectral changes and (c,f) pictures at different applied potentials of 
(a–c) P1/ITO and (d–f) P2/ITO films recorded during spectroelectrochemical measurements. The 
applied potentials are referenced versus Ag/AgCl. 

3.4. Electrochromic Switching 

The electrochromic switching properties, including the contrast ratio (∆T%), response time and 
cyclic stability of P1 and P2 films were further examined by double-potential step 
chronoamperometry (Figures 5 and 6). When the potential was varied, corresponding percent 
transmittance (T%) changes of the film at a specific wavelength were monitored. When the potential 
was switched between +0.6 V to +0.93 V vs. Ag/AgCl (the first oxidation step), the contrast ratio of 
P1 is 31% at 1450 nm and the response time was estimated to be 3.8 and 14.7 s for the reduction 
(bleaching, tb) and oxidation (coloring, tc) process, respectively. The response time was estimated by 
the duration to reach 90% of the maximum contrast ratio. The coloration efficiency (CE) for this 
process was calculated to be 390 cm2/C according to CE(λ) = ΔOD/Qd = log[Tb/Tc]/Qd (Qd is the 
charge density in C/cm2; Tb and Tc are the transmittance values in the bleached and colored states, 
respectively). As the applied potential was switched between +0.93 to +1.23 V (the second oxidation 
step), the transmittance of P1 was monitored at 776 nm. In this process, we achieved a contrast ratio 
of 35% with a CE value of 210 cm2/C at 776 nm. The response time is 3.9 and 11.2 s for the bleaching 
and coloring step, respectively (Figure 5). 

The P2 film showed slightly better electrochromic properties than P1. During the first 
oxidation step, a contrast ratio of 45% at 1475 nm was achieved with tb = 1.9 s, tc = 12 s, and CE = 440 
cm2/C. During the second oxidation step, it exhibited a ∆T% of 46% at 862 nm with tb = 1.9 s, tc = 7.6 
s, and CE = 300 cm2/C (Figure 6). In addition, P2 shows a better cyclic stability than P1. After 50 
cycles potential switching in the first oxidation step, the contrast ratio of P1 at 1450 nm dropped 
from 31% to 25% (around 20% drop of the original performance). In contrast, the contrast ratio of P2 
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at 1475 nm only dropped 4% of its original value (from 45% to 43%) after the similar 50 cycles of 
switching (Figure S3). 

 

Figure 5. Electrochromic switching of P1 between (a–c) +0.60 and +0.93 V vs Ag/AgCl and (d–f) 
between +0.93 and +1.23 V in 0.1 M nBu4NClO4/ClCH2CH2Cl. (a,d) Current assumption. (b,c) 
Transmittance changes monitored at 1450 nm. (e,f) Transmittance changes monitored at 776 nm. 

 

Figure 6. Electrochromic switching of P2 between (a–c) +0.60 and +0.92 V vs Ag/AgCl and (d–f) 
between +0.92 and +1.20 V in 0.1 M nBu4NClO4/ClCH2CH2Cl. (a,d) Current assumption. (b,c) 
Transmittance changes monitored at 1475 nm. (e,f) Transmittance changes monitored at 862 nm. 

4. Discussion 

Polymers P1 and P2 show similar electrochemistry and absorption spectral changes upon 
stepwise oxidations. In contrast, P2 exhibits slightly better electrochromic properties than P1, 
including higher contrast ratio, shorter response time, and better cyclic stability. Both polymers are 
believed to have a polymeric network connected by the redox-active tetraphenylbenzidine bridge. 
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Compound 2 has a longer side arm than 1. As a result, P2 should have a more porous structure than 
P1, which will facilitate the counter ion diffusion during the heteogenerous oxidation and reduction 
processes. This may be responsible for the observed faster response of P2 versus P1. It is unknown 
at this stage whether the pyrene framework is involved in the electron transfer processes. In 
addition, the polymerization of compound 2 with a longer sidearm may lead to some entangled or 
interdigitated structure, which could enhance the cyclic stability of P2. The electrochromic contrast 
ratio of P1 and P2 is in the range of 30% to 50%, which is comparable to known NIR electrochromic 
materials at a similar wavelength. For instance, the electrochromic ruthenium materials reported by 
Wang and coworkers displayed a contrast ratio of around 40% at 1550 nm [15]. In addition, Xu and 
coworkers reported electrochromism of isoindigo polymers with a contrast ratio range of 59% at 
1500 nm [19]. 

In the first step electrochromism, both films display electrochromism at the very similar 
wavelength around 1500 nm, which is the typical wavelength of the IVCT of tetraphenylbenzidine 
[30,35]. This suggests the presence of the pyrene does not distinctly affect the NIR absorption. The 
role of pyrene is simply to act as a multi-branched unit to form a polymeric network. In the second 
step, the electrochromic wavelength of P2 is about 90 nm red-shifted with respect to that of P1. The 
red-shift is possibly caused by the increased π-conjugation of the sidearm group of P2 with respect 
to that of P1. 

5. Conclusions 

In conclusion, thin films of two pyrene-cored multi-triphenylamine derivatives have been 
prepared by oxidative electropolymeriztion. These films show two consecutive redox waves and 
two-step electrochromism in the NIR region with moderate contrast ratio. In contrast, the polymeric 
film prepared from the monomer with longer side-arms exhibits better electrochromic properties, 
including higher contrast ratio, shorter response time, and better cyclic stability, making it 
potentially useful in optic telecommunication. This information is also important for the molecular 
design of electrochromic materials. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/11/1/73/s1, Figure 
S1. CVs recorded during the oxidative electropolymerization of 1 and 2 at different potential regions. Figure S2. 
SEM images of P1/ITO glass film. Figure S3. Transmittance changes of P1 and P2 after 50 cycles of 
double-potential switching. Figure S4. 1H NMR of compound 1; Figure S5. 1H NMR of compound 2; Figure S6. 
HRMS data of compound 1; Figure S7. HRMS data of compound 2. 
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