Supplementary Materials

The first synthesis of periodic and alternating glycopolymers by RAFT polymerization: A novel synthetic pathway for glycosaminoglycan mimics

Masahiko Minoda^{1,} * Tomomi Otsubo¹, Yohei Yamamoto¹, Jianxin Zhao², Yoshitomo Honda³, Tomonari Tanaka⁴ and Jin Motoyanagi¹

- ¹ Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; m7618002@edu.kit.ac.jp (T. O.); m5618030@edu.kit.ac.jp (Y. Y.); jinmoto@kit.ac.jp (J. M.)
- ² Department of Orthodontics, Osaka Dental University; 8-1, Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan; jianxinzhao@hotmail.com
- ³ Institute of Dental Research, Osaka Dental University, 8-1, Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan; honda-y@cc.osaka-dent.ac.jp
- ⁴ Department of Biobased Materials Science, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; t-tanaka@kit.ac.jp
- * Correspondence: minoda@kit.ac.jp; Tel.: +81-75-724-7513 (M. M.)

1. ¹H and ¹³C NMR spectra of vinyl monomers (MalVE, LacVE and MalMI)

Fig. S1-1. ¹H NMR spectrum of **MalVE** in D₂O (x and *; remaining solvents).

Fig. S1-2. ¹³C NMR spectrum of MalVE in D₂O.

Fig. S1-3. ¹H NMR spectrum of LacVE in D₂O (x; remaining solvent).

Fig. S1-4. ¹³C NMR spectrum of LacVE in D₂O.

Fig. S1-5. ¹H NMR spectrum of **MalMI** in D₂O (x; remaining solvent).

Fig. S1-6. ¹³C NMR spectrum of MalMI in D₂O.

2. Comparison of copolymerization of MalVE and EtMI with and without RAFT agent

Fig. S2. SEC curves of poly(MalVE-*co*-EtMI) obtained in the radical copolymerization (a) without and (b) with RAFT agent using $0.2 \text{ mol } L^{-1} \text{ NaNO}_3$ aq. as the eluent.

Scheme S1. Schematics of radical copolymerization of MalVE (M1) and EtMI (M2).

3. RAFT copolymerization of LacVE and EtMI.

Fig. S3. Time-conversion curves for the RAFT copolymerization of LacVE and EtMI with BTSE.

Fig. S4. Experimentally observed M_n and M_w/M_n value of poly(LacVE-*co*-EtMI) plotted against theoretical M_n of poly(LacVE-*co*-EtMI). Filled circles and squares correspond to the M_n data obtained by ¹H NMR and SEC, respectively.

4. RAFT copolymerization of LacVE and MalMI.

Fig. S5. Time-conversion curves for the RAFT copolymerization of LacVE and MalMI with BTSE.

Fig. S6. SEC curves of poly(LacVE-*co*-MalMI) using 0.2 mol L⁻¹ NaNO₃ aq. as the eluent.

5. Lectin binding assay

Fig. S7. Photography of (a) poly(MalVE-*co*-EtMI) and (b) poly(LacVE-*co*-EtMI) solution before and after the addition of FITC-unlabeled Con A or PNA.