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Abstract: Polyelectrolytes are an important class of polymeric materials and are increasingly used in
complex industrial formulations. A core use of these materials is in mixtures with surfactants, where
a combination of hydrophobic and electrostatic interactions drives unique solution behavior and
structure formation. In this review, we apply a molecular level perspective to the broad literature
on polyelectrolyte-surfactant complexes, discussing explicitly the hydrophobic and electrostatic
interaction contributions to polyelectrolyte surfactant complexes (PESCs), as well as the interplay
between the two molecular interaction types. These interactions are sensitive to a variety of solution
conditions, such as pH, ionic strength, mixing procedure, charge density, etc. and these parameters
can readily be used to control the concentration at which structures form as well as the type of
structure in the bulk solution.
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1. Introduction

The uses for surfactants are far-reaching and have numerous industrial applications. Surfactants
are used in detergents [1,2], emulsions [3,4], waste-water treatment [5], and more and their performance
can be bolstered with the addition of polymers to the formulation. While surfactants and their micelles
can change the surface tension, phase behavior and rheology of a solution [3,6,7], the addition of
polymers, particularly charged polymers (polyelectrolytes), has been shown to enhance bulk and
interfacial properties for a variety of applications [8–14], including cosmetics [15], perfumes [16,17],
biofuel extraction [18] and oil recovery [19,20].

Mixing surfactants with neutral polymers is limited in terms of specialized functional behaviors
that can be achieved by tuning of hydrophobicity. In contrast, due to the presence of charged groups,
polyelectrolytes provide stronger and more tunable interactions that can be leveraged to influence
properties of a given system. Surfactants have been used in combination with polyelectrolytes since the
1940s where the research specifically centered on the combination of surfactants with proteins [13,21].
Since advances in polymer chemistry allowed various synthetic polyelectrolytes to be prepared,
new combinations of these charged polymers and surfactants have been explored for their resultant
behavior. While polyelectrolyte and surfactant complexes (PESCs) exhibit various phenomena in
the bulk, at the air-water interface, and at solid interfaces, the unique behavior is driven primarily
by intermolecular interactions, both electrostatic and hydrophobic. These interactions can also be
exploited by varying the attributes of the polyelectrolytes such as charge density, molecular weight,
and functional groups to control properties when formulating with ionic surfactants.

The study of PESC behavior can be separated into four conceptual parts: (1) their binding
mechanisms (2) the structures that are formed (3) the phase behavior and (4) how these affect their
physical behavior in terms of rheology. This review will address and analyze bulk behavior of PESC
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systems through the understanding of their molecular interactions and how those impact the structure,
phase behavior and rheology (Figure 1). This fundamental behavior is critical for rational design of
PESC formulations for industrial applications and can open the space for design of new products with
advanced functionality.
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hydrocarbons, and the surrounding polar solvent, usually water. Water molecules are thought to 
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2. Intermolecular Interactions

The performance and behavior of surfactant-polyelectrolyte systems start with the underlying
intermolecular interactions. Two governing interaction types are hydrophobic, where molecules attract
due to low compatibility with water and electrostatic, where the two components attract (opposite
charge) or repel (like charge) due to the presence of charges. By choosing ionic surfactants and pairing
them with polyelectrolytes, formulations can make use of hydrophobic, electrostatic, or a combination
of both interactions.

The interactions of polymers and surfactants can be understood through their association
behavior. While this is typically understood through the critical micelle concentration (CMC) for
surfactants alone [1,4,6], adding a polymer or a polyelectrolyte introduces a critical aggregation
concentration (CAC), or the point where the polyelectrolyte associates with the surfactant to a
measurable degree [14,22]. At this point, aggregates of surfactant form that lead to micelle-like
structures decorated with the polymer chain. The CAC in polymer-surfactant solutions occurs at lower
surfactant concentrations than the CMC, which is the point where free surfactant molecules associate
with each other to form micelles. The presence of the polymer chains makes it more energetically
favorable for micelles to form [23] at low concentrations because the surfactant molecules associate
with the polymer chain until a structure is formed where the polymer wraps around the micelles [23,24].
At sufficiently high surfactant concentrations, when the chain becomes saturated, micelles form from
free surfactant in solution and this is the CMC [25–28]. The drivers behind these different transitions
are molecular interactions, specifically hydrophobic and electrostatic. Here, we review the interaction
types, factors that affect them and how they compete in driving PESC behavior.

2.1. Hydrophobic

Hydrophobic interactions are driven by the repulsion between a non-polar solute, such as
hydrocarbons, and the surrounding polar solvent, usually water. Water molecules are thought to
behave as a network of polar molecules in which the hydrogen bonding between molecules excludes
other solutes [29–31]. Consequently, hydrocarbons in particular have low solubility and prefer to
aggregate with non-polar molecules. These interactions are understood from the solubility of a
non-polar species in water or a water mixture [32]. The ratio of solubilities of a solute in two different
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solvents can be used to calculate the free energy difference of two solvents [33–35], which gives the
transfer free energy between two solvents, as seen in Equation (1):

− RTln
(

s1
s2

)
= ∆G∗1 −∆G∗2 (1)

where R is 8.314 J/(mol*K), T is temperature, s1 is the solubility of the solute in solvent 1, s2 is the
solubility of the solute in solvent 2, and ∆G1* − ∆G2* is the transfer free-energy difference between
two solvents. This transfer free energy between water (∆Gw*) and a reference solvent (∆Gr*) is defined
as the hydrophobicity (HY) (Equation (2)). The reference solvent is often ethanol but other solvents
such as dioxane are also used [30,35].

HY = ∆G∗w −∆G∗r (2)

Nozaki and Tanford in 1971 determined the values of the free energy of transfer of amino acids
with various side chains from an organic solvent (ethanol or dioxane) to water. From this they reasoned
that certain functional groups are more or less hydrophobic [35]. This thermodynamic treatment of
hydrophobicity can be used to calculate the hydrophobic molecular contributions of surfactant micelle
and polymer-surfactant aggregate formation from water [23,32].

The hydrophobicity of polyelectrolytes can be measured by determining the free energy of transfer
into a non-polar solvent or by their specific heat in various solvents [32,36,37]. Charged polyelectrolytes
are water soluble and stay in an extended chain conformation (rigid rod) in an aqueous or polar solvent
due to the favorable interactions between the charged monomers and water and repulsion between
neighboring charged monomers [36]. In an uncharged state, the polyelectrolytes collapse with the
degree of collapse depending on the hydrophobicity of the uncharged polymer backbone. In a good
or theta solvent, the polyelectrolyte will be in random coil conformation, which is less extended than
the polyelectrolyte. In a poor solvent, such as with a hydrophobic backbone in water, it will be in a
collapsed conformation (Figure 2). The thermodynamic change from extended to coil state is driven
significantly by hydrophobic interactions [32,36,37].
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The strengths of the hydrophobic interactions are sensitive to many material and solution
properties, and these can be used to design a system or as tuning parameters for stimuli-responsive
materials. It is outside the scope of this review to cover all factors affecting hydrophobic interaction
strength, but we will highlight three key parameters: temperature, co-solvents/co-solutes, and alkane
chain length.
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The strength of the hydrophobic interactions is temperature dependent, given that both enthalpic
and entropic contributions play a role at various temperature ranges [30,32,38,39]. An increase in
temperature decreases the adsorption of ionic surfactants to the oppositely charged polyelectrolytes or
colloids while increasing adsorption of non-ionic ones because hydrophobic interactions increase with
increasing temperature [3,40,41]. The decrease in hydration of hydrophilic groups that occurs as the
temperature increases favors micellization due to the disruption of the water structure and hydrogen
bonding at higher temperatures. At the same time, the micelles form through the hydrophobic moieties
of surfactants and polyelectrolytes [3,40,42]. This results in an initial CMC decrease with temperature
and a CMC increase with further increase in temperature [3,40]. The CAC of neutral polymer-surfactant
complexes decreases with increasing temperature [40,42] due to a decrease in hydrophilicity with
increased temperature, as demonstrated for polyethylene oxide (PEO) with the cationic surfactant
hexadecyltrimethylammonium chloride (HTAC). For highly-charged polyelectrolyte systems, there
is an influence of temperature, however the system is more strongly influenced by the electrostatic
interactions, which have only a minor temperature dependence [3,37,43–45].

Solvents other than water can also produce solvophobic effects that differ in strength from the
hydrophobicity. While the majority of PESC studies are conducted in aqueous solution, a few have
been done in organic solvents [22,39] or introduce additional organic co-solutes or co-solvents such
as alcohols or alkanes which can increase or decrease the driving force for complexation between
polyelectrolyte and surfactant. Conformation of the polymer and surfactant changes in a given solvent
depending on the solvophobicity, as was discussed previously (Figure 2) [22,32,37,39,46,47]. These
conformational changes lead to changes in the structure of the micelles formed [47–49], the number of
surfactant molecules in a micelle (mean aggregation number) [22,46,47,50], the viscosity [22,32,39,47],
and the phase behavior in terms of insoluble or soluble complexes [32,39,51]. Consequently, non-polar
solutes in a non-polar solvent are more molecularly and energetically compatible, similarly with polar
solutes in a polar solvent [47]. Therefore adding co-solutes or co-solvents can tune desired micelle,
phase and other properties.

Increasing the number of alkyl groups in an alkane chain in the surfactant tail increases the
hydrophobicity due to the low solubility of the non-polar alkyl group in the aqueous solution. The free
energy required to transfer alkanes into water increases with increasing number of methylene groups in
linear N-alkanes [30,31,33]. Because hydrophobicity increases with the number of alkanes, increasing
the chain length for surfactants complexed to a polyelectrolyte reduces the CMC and CAC, favorably
lowering the free energy of both transitions and leading to stronger interactions within micelles [22].

2.2. Electrostatic

Electrostatic interactions are described by Coulomb’s law (Equation (3)), which calculates the
magnitude of the force (F) created by the repulsion or attraction of two charged points (q1 and q2)
over the squared distance (r) between them. The Coulomb’s constant (Ke) accounts for the dielectric
permittivity of the medium [52], which, in the case of typical polyelectrolyte and surfactant systems,
is that of water [53].

F =
Keq1q2

r2 (3)

The local charge density and the local counterion concentration can be taken into account by the
Debye-Hückel model to calculate the Debye length (κ−1).

κ−1 =

√
εrε0kBT
2NAe2 I

(4)

where εr is the dielectric constant, ε0 is the permittivity of free space, kB is the Boltzmann constant, T
is the temperature, NA is Avagadro’s number, e is the elementary charge and I is the ionic strength
of the electrolyte solution. The Debye length is defined as the distance from a charge surrounded
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by other point charges that the interaction potential is screened. This is accepted for simple salts,
but for polyelectrolytes the model is limited because it treats the ions as a point charge, whereas
for polyelectrolytes the charges are distributed along a chain and thus are not point charges [53,54].
Charged functional groups are periodic along the backbone or on a pendant off of the main chain when
dissociated. Despite the imperfection of the model, the Debye length is commonly used in theoretical
treatments to model the interaction between charged chain segments [23,53]. The Bjerrum length (λB)
is also used to describe electrostatic interactions and is defined as the distance between two charges at
which the interaction strength is comparable in magnitude to the thermal energy, kBT. The expression
for λB is:

λB =
e2

4πε0εrkBT
(5)

This is commonly used to describe the strength of the electrostatic interaction in
polyelectrolytes [52,53,55].

Electrostatic interactions of polyelectrolytes are also highly sensitive to their oppositely charged
counterions, which can be free in solution or tightly associated to the chain (condensed), effectively
neutralizing those charges and decreasing the overall apparent polymer charge. Manning developed
a theory for counterion condensation using the Debye-Hückel approximation. Instead of treating
polyelectrolytes as point charges, the model represents the polyelectrolyte chain as an infinite line
charge with a given linear charge density, β:

β = zpe/b (6)

where zp is the valence of the charged groups on the polymer, e is the elementary charge and b is the
distance between charges on the polymer. It has been shown that the statistical mechanical phase
integral for such an infinite line charge diverges at high charge densities. This essentially means that
the system is unstable at linear charge densities greater than a critical value, β > βcrit.

Manning developed the model in terms of the charge parameter, ξ, for polyelectrolytes in solution.

ξ =
e2

εKTb
=

λB

b
(7)

For counterion i, the system is unstable for values of ξ ≥
∣∣zizp

∣∣−1
= ξcrit, or for monovalent

ions, ξ ≥ 1, where zi is the valence of the counterion. As the system is unstable for values of
ξ > ξcrit, counterions will “condense”, or associate closely to the polymer chain until ξ approaches
ξcrit (1 for systems of monovalent ions). Since ξ is a ratio of the Bjerrum length to the average charge
spacing, the critical charge spacing for a system with monovalent ions is equal to the Bjerrum length
and for multivalent counterions is equal to λB/zi. Since only a fraction of the counterions condense
onto the chain, the remainder are mobile [56]. The mean-field theory models discussed here are for
idealized systems of strong polyelectrolytes with point ions and they neglect more complex effects such
as specific ion interactions, dipole-dipole interactions, and counterion-induced correlations, which
often add attractive interactions to the system. However, they still provide valuable phenomenological
insights into polyelectrolyte behavior.

Manning focused on theoretical descriptions of polyelectrolytes with their counterions, but
the interaction of ionic surfactants with oppositely charged polyelectrolytes is a special type of
interaction with “counterions”, as the surfactant acts as a counterion, but each molecule is more
complex than a small, inorganic ion. Oppositely charged polyelectrolytes and surfactant head groups
will associate in solution. The association is thought to be driven primarily by the entropic gains
when multiple small counterions are released as the two larger molecules associate, although enthalpic
contributions are also present [57–59]. There is theoretical similarity to polyelectrolyte complex
coacervate formation [41,48,53,60–64], but in practical applications of polyelectrolyte-surfactant
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complexes, the hydrophobic interactions also play a large role and the balance of the two interaction
types is of great importance.

The most important factors that affect electrostatic behavior are ionic strength [8,53], pH [65–67],
and counterion valency [8,53,68,69]. Because polyelectrolytes have charged moieties along the length of
the polymer chain, the electrostatic interaction is significant when they are fully charged, [26,27,70,71]
and the effects from electrostatic interactions compete with the hydrophobic effects in driving
morphology and phase behavior [47,72–74]. Due to the dependence of behavior on easy-to-adjust
parameters, such as ionic strength and pH, PESCs are attractive as stimuli-responsive materials.

The solution ionic strength strongly influences the behavior of PESCs, as the salt background
can reduce the strength of electrostatic interactions. Increasing the concentration of salt weakens the
coulombic potential energy between ions [52]. At low salt concentrations, the strong electrostatic
interactions drive significant attraction between a charged surfactant head group and an oppositely
charged polyelectrolyte chain. However, at high salt concentrations, ionic surfactants have weaker
interactions with the polyelectrolytes and behave more like neutral polymers in solution [8,71,75,76].
Therefore, both the CAC and CMC occur at higher surfactant/polyelectrolyte concentrations at high
ionic strengths [45,77,78].

Electrostatic interactions between charged surfactants and polyelectrolytes can be manipulated
by the pH when the polyelectrolyte and/or surfactant are weak acids or weak bases. If the pH is not
sufficiently acidic or basic, which depends on the functional group, the dissociation of the charge
may be reduced or eliminated, resulting in a polymer that is essentially neutral and eliminating
electrostatic interactions. This has been seen for weak polyelectrolytes including poly(methacrylic acid)
(PMA) [22,37,79], polyacrylic acid (PAA) [22,32,37,80], poly(4-vinylpyridine N-oxide) (PVPNO) [65,66],
and a maleic acid-co-polymer [37,76].

When there are sufficient surfactant molecules to have a stoichiometric match with the charges
on the polyelectrolyte chain, the associated complex is essentially neutral and will phase-separate
out of water due to low solubility in water [9,14,58]. In 1977, Goddard et al. studied the association
of the anionic surfactant sodium dodecyl sulfate (SDS) and a cationic derivative of hydroxyethyl
cellulose [13,14,70]. Through these initial studies, it was observed that the maximum precipitation
between polyelectrolytes and surfactants occurs at the charge neutralization point, which occurs after
the CAC.

Increasing the charge density, or how many charged monomer units are on a polyelectrolyte,
will increase the strength of the electrostatic interactions because the Coulomb’s interaction is
proportional to the number of charges. The larger the charge density, the larger the contribution
of the electrostatic effects in the system, leading to surfactant and polyelectrolyte association at lower
surfactant concentrations, shifting the CAC lower [9,58,70,81]. Similarly, increasing the number of
charged groups on the surfactant, for example through use of Gemini surfactants, which have two
charged heads and two alkyl tails, decreases both the CMC and CAC by several orders of magnitude
beyond typical values for surfactants and polymer combinations [14,82–84].

2.3. Balance of Electrostatic and Hydrophobic Interactions

Both electrostatic and hydrophobic interactions contribute to polyelectrolyte and surfactant
associations. Depending on the system, the hydrophobic or the electrostatic interactions can play a
larger role. Together both effects depend on the temperature, pH, salt concentration, hydrocarbon
moieties within the main chain of the polyelectrolyte or in the pendant, as well as solvent or
co-solute [11,39,53,59].

As discussed previously, with oppositely charged polyelectrolyte and surfactant combinations
high concentrations of salt decrease the electrostatic interactions, which leads to interesting phase
behavior. With no added salt, the entropy increase from the release of counterions into the bulk
after complexation leads to electrostatically-driven associative phase separation of the surfactant
head and polyelectrolyte (Figure 3A) [47,59,63,85]. As the salt concentration is increased and charge
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screening is present, the electrostatic interactions weaken, and at high concentrations of salt, the
polyelectrolyte and surfactant are effectively neutral and their association is more sensitive to
hydrophobic interactions of the surfactant tail and polyelectrolyte backbone (Figure 3B) [59]. In a case
where the polyelectrolyte is more polar and hydrophilic, hydrophobic-driven phase separation occurs
only at high salt concentration, while more nonpolar polyelectrolytes may show phase separation
driven by hydrophobic interactions at a wider range of salt concentrations [9,46,47].
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Polyelectrolytes can be modified or prepared with alkyl chain blocks to add hydrophobic moieties
to their structure and utilize both electrostatic and hydrophobic contributions for binding, structure,
and phase behavior of PESCs. Delisavva, et al. demonstrated that when a block co-polymer with a
cationic block and a neutral block, poly(2-vinylpyridine)-block-poly(ethylene oxide) (P(2-VP)-PEO) is
combined with a Gemini surfactant, the hydrophobic nature of the double surfactant tail plays the
more dominant role in the formation of the surfactant bilayer because of the large hydrophobic regions
and increased flexibility of both the surfactant and polyelectrolyte structures [82]. Bai et al. studied
the interactions between a newly-synthesized hydrophobically modified dextran polyelectrolyte,
D40OCT30, and found a decrease in total interaction enthalpy and strong association with surfactants
with increasing D40OCT30 concentration. The total interaction enthalpy has contributions from the
hydrophobic interactions between alkyl side chains and surfactant tails, as well as some electrostatic
interactions from the head group and polyelectrolyte. The increase of the enthalpy, then, implies
that both electrostatic and hydrophobic interactions of the polyelectrolyte with SDS contribute to
the formation of complexes, although the two effects cannot be separated in this type of study [59].
Furthermore, Liu et al. found through simulations that not only do the resulting shape and size of
PESC aggregates change, but a larger number of surfactants adsorb to a block polyelectrolyte when
alkyl chain blocks are added to the copolymer [72].

The aggregation number of polyelectrolyte-surfactant aggregates has also been found to depend
on the polyelectrolyte charge. For a copolymer with one methyl, the CAC was reduced at high degrees
of dissociation (high polyelectrolyte charge) for the copolymer. This is because the polyelectrolyte
binds to the surfactant through electrostatic interactions between the charged surfactant head and the
highly charged polyelectrolyte copolymer, even when there are fewer charged groups and a larger
spacing between them. The decrease in the CAC was even stronger for a copolymer with four methyls,
as it displayed both hydrophobic and electrostatic contributions to association [86].

In polyelectrolyte and charged surfactant systems, both electrostatic and hydrophobic interactions
contribute to the binding, structure, and phase behavior of PESC systems. The electrostatic
contributions can be readily manipulated by the addition of salt or changes in pH and can force
the polyelectrolyte and surfactant to behave more like a neutral polymer, where hydrophobic forces
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come more into play. In this case, the binding is between the surfactant tail and polyelectrolyte [65].
For charged systems, electrostatic interactions are responsible for the initial binding and adsorption of
charged surfactants to polyelectrolytes because these are strong long range interactions. Hydrophobic
interactions then help the aggregation and formation of micelle-like structures though the interactions
between nearby surfactant tails. Additionally, hydrophobic interactions often improve aggregation
and complexation when polyelectrolytes are modified to include hydrophobic moieties because the
surfactant tails can then adsorb and aggregate along the chain at these hydrophobic portions, as well
as initially electrostatically at their heads [59,72].

3. Interactions of Polyelectrolytes and Surfactants in the Bulk Solution

Polyelectrolyte and surfactant complexes are known to exist and interact concurrently in bulk
solution and at the interface between air and solution (air-water interface) given the amphiphilic nature
of surfactants. This section focuses on the complexes that form in the bulk solution, first discussing the
formation of complexes given the binding mechanisms between polyelectrolyte chains and individual
surfactants, then the structures and aggregates that are formed. We also discuss the experimental
factors that affect complexation.

3.1. Formation of Complexes

3.1.1. Binding Mechanisms—Cooperative, and Non-Cooperative

Binding of polyelectrolytes and surfactants is the first stage in forming complexes and phase
separated structures in solution and can occur through two main mechanisms. These mechanisms are
cooperative and non-cooperative binding. Non-cooperative binding of a surfactant to a polyelectrolyte
occurs first and is where the adjacent binding sites are not already filled by surfactant molecules.
Cooperative binding occurs after the adjacent sites are already filled (Figure 4A) [63,87].

Binding isotherms depict the degree of binding (β), which is the ratio of the concentration of bound
surfactant to the concentration of polyion charges. Therefore as β approaches 1, the polyelectrolyte
is fully saturated with surfactant [23,87–89]. Non-cooperative binding occurs at very low amounts
of surfactant added to the polyelectrolyte (dilute), before cooperative binding and can be difficult to
resolve experimentally [87,90]. Cooperative binding is identified by a sigmoidal curve and begins in the
early stages of binding, where the system is still in the dilute regime, but the surfactant concentration
is higher than for non-cooperative binding. The binding amount in this regime increases linearly with
increasing concentration of surfactant and the binding constant (Ku) in this regime can be derived
from the slope of this linear portion (Figure 4B) [76,91]. The binding constants give an indication of the
strength of the interactions between molecules [22,78]. When the system reaches the CAC or CMC,
plateaus or inflections are seen in the binding isotherm [22,58,71,76,92].
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From binding isotherms, thermodynamic values of the free energy, entropy, and enthalpy are
derived for binding behavior, aggregation, and overall complexation [13,23]. By varying the type of
polyelectrolyte or surfactant, the hydrophobic moieties [59], or the surfactant tail length [84,92,93],
the thermodynamic values can be compared to assess which systems have the most favorable free
energy and whether the complexation is entropically or enthalpically favored.

Important insights into the binding mechanism of polyelectrolytes with surfactants have been
made through studies of neutral polymers with surfactants. In an early study, Nagarajan developed
equations to describe the thermodynamics of micellization of anionic SDS or neutral Triton X with the
neutral polymer PEO, and the dependence of the micellization process on surfactant concentration for
non-ionic polymers. The free energies of micellization were determined for the surfactant alone, the
surfactant and polymer, and the polymer with two competing surfactants. This treatment took into
account the hydrophobicity of the surfactant tail and the electrostatic contribution for the anionic head
of SDS [34]. By comparing the theoretical thermodynamics and experimental data for binding of PEO
to SDS versus Triton X (a non-ionic surfactant), it was shown that the binding of SDS to PEO is more
favorable. For Triton X, which has a neutral bulky head, free micelles are formed instead of complexing
with the PEO [23]. This study agrees with other studies that show that neutral surfactants form
only weak associations with neutral polymers compared to charged surfactants [14,25,94] and that
weak interactions of polymers with cationic surfactants increases the hydrophobicity of the surfactant
tail [95].

Barbosa et al. examined the binding isotherms of PEO and SDS in the presence of ionic salts.
Increasing the surfactant concentration decreased the observed enthalpy of binding, but increasing the
salt concentration did not have a significant effect on the binding or the thermodynamics of the system
except with the complex ionic salt Na2[Fe(CN)5NO]. Enthalpic titration curves were similar for various
PEO-SDS simple salt systems, indicating that for this non-ionic polymer, the interaction behavior is
primarily due to hydrophobic interactions between the surfactant tail and PEO, which is to be expected
since the polymer is not charged and thus cannot interact through electrostatic interactions [96].

For PESCs, binding between charged polyelectrolytes and surfactants occurs at very low surfactant
concentrations and is primarily electrostatic. In a salt-free system, the binding can be slightly
exothermic and it becomes more endothermic with increasing salt concentrations [77]. The binding
of a charged polyelectrolyte to a charged surfactant has been found to be entropically-driven [72,77],
as is also the case between oppositely charged polyelectrolytes [41]. The overall change in enthalpy
for the process is generally endothermic and also gives insight to how individual factors contribute
to the overall thermodynamics of binding. The binding isotherms are polyelectrolyte and surfactant
dependent, where more hydrophobic charged surfactants will have larger cooperative binding
parameters with more hydrophobic polyelectrolytes [92,97]. However, they will also have larger
cooperative binding parameters when the polyelectrolyte has a higher charge density [98] or at higher
salt concentrations [77,78,92,97].

In the case where the polyelectrolyte is fully charged and no salt is present, the polyelectrolyte is
in a rigid extended state. The electrostatic binding of the surfactant decreases the number of charged
groups on the polyelectrolyte, which causes the polyelectrolyte to transition from a rigid rod to
a coil before aggregation and micelle-like formation occurs, typically resulting in a string-of-pearl
configuration for the PESC, as will be discussed further in Section 3.1.3 [72,99,100].

3.1.2. Formation of Micelle-Like Structures

Beyond the binding of the polyelectrolytes to surfactants, it is also important to understand
the progression from solution to aggregates to micelles as the concentration of the surfactant is
increased. As illustrated in Figure 5, initially, in a salt free system and at low surfactant concentrations,
the oppositely charged surfactant head electrostatically attracts to a charged monomer unit on the
polyelectrolyte. With increasing surfactant concentration, the system reaches the CAC and the
polyelectrolyte forms a micelle-like aggregate with the surfactant tails forming a hydrophobic core
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and the charged surfactant heads interfacing with the polyelectrolyte [23,39]. A single polyelectrolyte
can interface with many micelles or micelle aggregates or a single micelle can interact with multiple
chains [59,79]. When enough surfactant is present to reach the charge-neutralization point (at or
near a 1:1 molar charge ratio), all the free charges on the polyelectrolyte are neutralized by the
charged surfactant heads and this is the charge neutralization concentration (CNC) [77]. This leads
to the formation of precipitates, ordered structures, and gels that phase separate [9,39,59,101–103].
Increasing the surfactant concentration further allows the hydrophobic surfactant tails to interface
with the now neutral precipitate and the charged heads to interact with water. This eventually
leads to re-solubilization of the complex and the formation of micelles outside of the complex
(CMC) [26,59,63,68,70]. Therefore, the concentration of the surfactant will dictate the phase behavior
after the charge-match point.
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The thermodynamics of the progression of complexation and micelle formation in
polyelectrolyte-surfactant systems have also been examined in detail. The overall observed enthalpy
change with the addition of surfactant to the polyelectrolyte is seen to be positive and endothermic,
further confirming that binding and aggregation of surfactant with polyelectrolyte is entropically
driven from the release of counterions [58,59,63,65,77,96,98]. As illustrated in Figure 6, at low
concentrations of added surfactant there is an initial plateau indicating the non-cooperative binding
that occurs first in PESC formation, followed by an inflection point where cooperative binding begins,
indicating that the CAC has been reached before a cooperativity peak where favorable hydrophobic
interactions between adjacent surfactant tails start to form micelle-like structures [63]. Finally, a drop in
enthalpy occurs after the cooperative peak, where electrostatic interactions are leading to neutralization.
Then the enthalpy plateaus until it reaches the charge neutralization (CNC), after which another
inflection point is seen. The enthalpy then increases until a saturation point is reached (CS) where the
polyelectrolyte chains are fully saturated by surfactant in micelle-like aggregates [58,85] and finally free
micelle formation (CMC) occurs. The saturation point can be mistaken as the CMC and is sometimes
difficult to identify [58]. The CS point occurs after the charges on the polyelectrolyte chain have been
neutralized, but the PESCs continue to grow due to hydrophobic interactions between the surfactant
tails with increasing concentration [58,85]. Near this point, the charge (positive or negative) of the
complex changes to that of the surfactant [85].
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Nizri et al. studied the mechanism of polyelectrolyte and surfactant binding and formation of
complex aggregates and nanoparticles. They saw that for an SDS- cationic polydiallyldimethylammonium
chloride (PDADMAC) system, the electrostatic contributions were not alone in driving the formation of
nanoparticles. With increasing salt concentration (more charge screening), the cooperative attachment
of a surfactant to a polyelectrolyte site increased, as was seen from increased observed cooperative
binding parameters and an increase in observed enthalpy from isothermal calorimetry (ITC) data.
These results indicated that the formation of SDS-PDADMAC aggregates was driven by a combination
of electrostatic and hydrophobic interactions [77]. The influence and importance of hydrophobic
interactions on binding and aggregation between surfactant and polyelectrolyte has been proven to
be present even as electrostatic interactions and hydrophobic interactions for various systems are
altered by changing temperature [45], pH [58], increasing of alkyl chain length [92] or the addition
of salt [65,83]. Increasing hydrophobicity tends to increase binding and aggregation behavior in
polyelectrolyte systems in regimes where electrostatic interactions are not very large [104].

The individual transitions, such as CAC, CNC, CS, CMC are influenced by changes in electrostatic
or hydrophobic interactions (additional salt, pH, temperature, added hydrophobic regions). CAC
in particular shifts to lower values for more favorable interactions with increasing electrostatic and
hydrophobic contributions. This is seen in examples with PDADMAC-SDS [77], (PVPNO)-SDS, [65],
PAA-C14TAB [80], and polyethyleneimines (PEI)-SDS [58], to mention a few.

3.1.3. Types of Structures Formed and PE-Micelle Interactions

Surfactants in solution form various micellar structures including spherical, cylindrical, and
bilayer, as seen in Figure 7 [3,6]. The forms are largely a result of the size and shape of the surfactant
and the length of the alkyl tail [6,105]. Surfactants form micelles in solution and can go through a
sphere-to-rod transition with the addition of salt, which screens the charged headgroups, reducing
the resulting curvature of the micelles and allowing growth in one direction through hydrophobic
interactions between the tails, leading to a more rod-like shape [106]. The presence of oppositely
charged polyelectrolytes in solution with surfactant molecules assists in the formation of various
micellar and micelle-polyelectrolyte structures in both a liquid and solid phase. The overall shape
and curvature that the surfactant micelles take on, along with the association to polyelectrolytes gives
rise to structures that include string-of-pearls and wormlike micelles with polyelectrolytes wrapped
around micelles [100,107,108].

The type of structure that forms in the bulk depends on the electrostatic contributions from
the charged species, the pH, the hydrophobicity of the surfactant tail and polymer chains [100],
the molecular geometry between the surfactant micelle and polyelectrolyte [85,100,105], the charge
density [109] and the solvent [39,100]. In addition to the surfactant micelle shape, the structure is further
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complicated by the polyelectrolyte conformation, or whether it is in a rigid rod or coil configuration
at the solution conditions. The rigid-rod to coil transitions of the charged polyelectrolytes can occur
as the charges are neutralized by the opposite charge on the surfactant [109], or at a pH where the
polyelectrolyte is minimally charged, changing the final shape of the aggregate [100,106].

At low polyelectrolyte charge, the system will be dominated by hydrophobic interactions and
behave the same as a neutral polymer mixed with a surfactant. At low concentrations for neutral
polymers such as PEO, the hydrophobic tail associates along the polymer (Figure 7) [13,96,106,110].
The resulting micelle-like aggregates that form are charged due to the ionic surfactant head since the
tail associates with the polymer [23,39,58,59]. The result is typically a string-of-pearls or necklace
structure at moderate surfactant concentrations and hydrophobic interactions [23,96,100]. This is
commonly observed with charged surfactants and neutral polymers, as well as polyelectrolytes with
low charge densities [23,106,109]. The hydrophilicity and hydrophobicity of the polymer backbone
often dictates the resulting structure as well. For more hydrophilic polyelectrolytes, the complex
moves from a bottle-brush to string-of-pearls/necklace to wormlike micelle with increased surfactant
concentration (Figure 7). For more hydrophobic polyelectrolytes, a spherical micelle is formed at high
surfactant concentrations with the polyelectrolyte chain able to penetrate into the core [106,108].

As the polyelectrolyte charge increases, the binding behavior is dictated largely by the electrostatic
interactions between the charged head and the polyelectrolytes (Figure 7). The string-of-pearls/necklace,
which in this case is formed by the polyelectrolyte chain attracting to the outside of the micelles, rather
than the core, is favored for extended chains of charged polyelectrolytes, and the degree to which
the string-of-pearls stretches out depends on the flexibility of the polyelectrolyte [100]. In the case of
highly stiff polyelectrolytes and block copolymers, a layered lamellar-like structure can form [72,111].
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PESCs also form solid precipitates in solution, which have structures of varying
morphologies [105,105,112,113]. Numerous studies discuss the structure and formation of well-ordered
precipitates or colloidal nanoparticles that form from PESCs [39,105,107,112–114]. Antionetti et al.
examined PAA and poly(styrene sulfonate) (PSS) with alkyltrimethylammonium surfactants of varying
lengths at a 1:1 stoichiometric ratio. When the alkyl chain length of the surfactant was increased by
only a few carbons, the resulting mesophase structure changed from disordered to ordered lamellar
structures with alternating ionic and hydrophobic surfactant tail lamellar layers. Further increasing
the alkyl chain length drove a transition from a lamellar layer, to a “mattress” structure in which
undulating divets formed in the layers due to the physical packing differences between the ionic
phase and alkyl hydrophobic phase. A further increase in alkyl chain length led to perforations in the
lamellar layers [105,112,113]. This is thought to be because surfactants with longer chains show more
ordered packing [39,105] and geometric restrictions of the surfactant [105].
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Deviating from stoichiometric charge match, the resulting precipitates can take the form of bulk
aggregates or stabilized particles, depending on whether one component is present in sufficient excess.
The structures can re-solubilize with increasing surfactant concentration, which leads to dilution
from thread-like or lace-like structures to liquid crystalline aggregates to spheroidal micelles [107].
The primary factors differentiating between the different precipitate structures in all these studies are
the properties of a given polyelectrolyte (charge density, hydrophobicity, tacticity), the stoichiometry
between the polyelectrolyte and surfactant charged groups, and the length of the surfactant tail or
hydrophobic blocks in a block co-polyelectrolyte [105].

Of industrial importance in these systems is how to maintain single phase behavior (prevent
precipitation) in ways other than increasing the concentration beyond 1:1 stoichiometry. Adding
non-polar hydrophobic co-solutes and a higher concentration of salt [46,47,96] has been shown to
maintain one phase where behavior is associative. MacKnight et al. also noted that solid polypeptide
precipitates can be solubilized in organic solvents of low polarity, such as with high concentrations
of trifluoroacetic acid (TFA), even when the ions in the polymers are not dissociated [39]. However
Nilsson et al. noted that the addition of octane to oppositely charged polyelectrolyte and surfactant
systems had a negligible effect on the phase behavior of PAA and C14TAB because the combination of
oppositely charged polyelectrolytes and surfactants resulted in associative phase separation where the
hydrophobic interactions present between neutral complexes are sufficiently significant to stabilize
this phase, whereas further addition of a hydrophobic co-solute is negligible [47].

A coacervate forms when liquid-liquid phase separation occurs due to the association
of a polyelectrolyte and an oppositely charged micelle or polymer-micelle aggregate near
charge-neutrality [59,85]. These can occur at medium concentrations of surfactant for some
systems beyond the CNC, can be induced by dilution of precipitates with water at a constant
salt concentration [9,48,57,115], or can be formed by addition of high concentrations of salt and
surfactant [57].

3.2. Experimental Factors Affecting Complexation

In the previous section, the intermolecular interactions were introduced and the structures that
form in the bulk were discussed. Here the specific experimental factors that can be controlled to utilize
those interactions to alter binding, structures and phase will be discussed. Electrostatic interactions are
influenced by pH, charge density, and salt concentration. Hydrophobic interactions are influenced
by chain length, molecular weight or structure of the polyelectrolyte chains or surfactant tails. Other
experimental parameters, such as surfactant concentration, stoichiometry, and mixing procedure also
impact the formation and properties of the PESCs. In altering these parameters, changes in outputs of
the resulting nanoparticles and phases such as surface charge, turbidity, and particle size are seen.

3.2.1. Concentration and Stoichiometry

The concentrations of the surfactant and polyelectrolyte, as well as the stoichiometry between
the two are easy experimental parameters to adjust to promote formation of desired PESC structures.
These experimental parameters affect the progression of the complex from solution to aggregates
to micelles. The PESC transitions from non-cooperative to cooperative binding (C < CAC) to initial
formation of micelle-like aggregates (CAC) to charge neutralization and saturation (CNC and CS) and
to free-micelle formation (CMC) as the surfactant concentration is increased (Figure 6). At even higher
surfactant concentration, beyond saturation, resolubilization occurs [58].

In addition to the progression of complex types, the particle size and charge of PESC
nanoaggregates are also dependent on the stoichiometry and which component is in excess [77,107].
At low surfactant to polyelectrolyte ratios, the particles are the same charge as the polyelectrolyte.
As illustrated in Figure 8A, as the molar ratio approaches a stoichiometric match, the complex
approaches the charge of the surfactant and becomes neutrally charged near the CNC, and as the
molar ratio is further increased to be majority surfactant, the charge continues to increase or decrease
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to the charge of the surfactant head [77,107,115]. At the same time, the hydrodynamic radius of
the complex changes with surfactant concentration, as illustrated in Figure 8B. At low surfactant
concentration, the particles are stabilized by the polyelectrolyte charges, but as the concentration
of surfactant increases, the repulsion of the charged micelle-like particles decreases, removing the
barrier to aggregation, and the measured size of the particles increases due to increasing aggregation.
Near a stoichiometric match point, precipitates are formed and the hydrodynamic radius cannot
be appropriately measured. However, at higher surfactant concentrations, at a stoichiometric ratio
greater than 1, there is an increase of charged surfactant molecules in the complex, and the particles
become more charged and de-aggregate, producing smaller measured particles [107,108]. For very
high surfactant to polyelectrolyte concentration ratios, the bulk solution is a single stable associative
phase including both polyelectrolyte, salt, and surfactant in which re-dissolution of the separated
phase occurs and free micelles form in solution [68,85,115].
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When the concentration of polyelectrolyte is increased, the number of charged groups available
for electrostatic interaction increases and higher concentrations of surfactant are needed to reach
the CNC [85]. The concentration range of surfactant where precipitation occurs is also broader for
higher polyelectrolyte concentrations and results in larger diameters of the charged particles past
the stoichiometric match [57,115]. The hydrodynamic radius is also larger at larger polyelectrolyte
to surfactant concentration ratios [85], likely due to repulsion between excess polyelectrolyte chains
bound in the complex. In terms of binding, ITC measurements have shown that increasing the
polyelectrolyte concentration in the dilute regime results in only a minor binding strength decrease
in terms of cooperative binding values and molar enthalpy of cooperative binding with increasing
polyelectrolyte concentration. The binding interactions scale with the total number of charged sites
available, but the binding per site is independent of polyelectrolyte concentration [85].

The concentration of the polyelectrolyte and surfactant and the stoichiometric ratio between the
two are some of the most common parameters used to control the formation of PESC particles in the
bulk, leading to transitions from soluble complexes to aggregated precipitates to nanoparticles. They
also influence the resulting particle size and charge, which are critical to understand and control when
preparing an industrial formulation that relies on PESCs.

3.2.2. Surfactant Tail Length and Polyelectrolyte Molecular Weight

The tail length of the surfactant affects the binding interactions, the structure, and the phase
behavior of a PESC, given the strong influence of chain length on hydrophobicity. The additional alkyls
increase the propensity of hydrophobic interactions between polyelectrolyte and surfactant. These
interactions become especially significant in the cooperative binding region [13,72,78,97]. In addition
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to increasing binding strength in the cooperative binding region, increasing the chain length of the
surfactant lowers the CAC [84,91]. Wallin and Linse used Monte Carlo thermodynamic simulations in
conjunction with experimental data to show that the increase in surfactant tail length of CTAB from an
8 to 16 carbon tail led to a decrease in the CAC/CMC ratio [84]. Numerous additional studies have
been in agreement in terms of the reduction of CAC and CMC with increasing tail length, including
for both cationic and anionic surfactants. This is because the binding and the complexation process is
favorable in terms of free energy and cooperative binding [22,78,87,92].

One measure of the chain length influence on PESC formation is the concentration of surfactant
required to maintain a precipitated complex with a polyelectrolyte. Goddard et al. examined cationic
hydroxyethyl cellulose and various sodium alkyl sulfates with increasing chain lengths and showed
that, as the surfactant chain length is increased, the concentration needed to maintain an insoluble
complex linearly decreases on a logarithmic scale, highlighting the hydrophobic dependency of the
phase behavior of the PESC (Figure 9). Additionally, phase separation is more pronounced for larger
surfactant alkyl chain lengths and higher molecular weights [9,13,22]. Furthermore, in studying
cationic polymers in combination with a number of anionic surfactants, it was determined that the
complex can be re-solubilized at high surfactant concentrations more readily with longer surfactant
hydrocarbon chains, more linear chains, and when the ionic head group is at the end of the chain [13,68].
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Increasing the molecular weight of a polyelectrolyte has a similar impact on PESC formation as
increasing the polyelectrolyte concentration: more surfactant is needed to see transitions at a given
concentration [115]. Pojjaźk et al. saw that the precipitation region near stoichiometric match is
also broader for low molecular weight samples. Additionally a larger polyelectrolyte to surfactant
ratio leads to a smaller hydrodynamic radius for lower molecular weight polyelectrolytes [115], likely
because for the same concentration of surfactant, the lower molecular weight polyelectrolyte-surfactant
complex is limited in the size that the overall particle can achieve. This is similar to results seen
previously by Wang et al. [118]. The hydrodynamic radius is highest near the charge match ratio
and where the zeta-potential is close to neutral [115,118,119]. Tseng et al. recently showed that, for
PAA and C14TAB, no precipitation occurs when the PAA molecular weight is less than 5000 g/mol.
At 25,000 g/mol, however, stable particles form, and at 130,000 g/mol and above the particles aggregate
and precipitate [80]. The non-cooperative and cooperative binding became more exothermic with
increasing molecular weight up to 25,000 g/mol. This is likely due to increasing the number of
monomers available for electrostatic and hydrophobic interactions given the same concentration of
surfactant. At molecular weights of about 130,000 g/mol and above, the thermodynamic behavior
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was almost identical for all samples, indicating that the thermodynamics of complexation became
independent of the polyelectrolyte molecular weight [80] and the behavior and transitions are driven
by the surfactant concentration at high polyelectrolyte molecular weights.

For a PDADMAC and mixed surfactant system (Triton X-100 and SDS), Wang et al. found that the
volume fraction of the coacervate was seen to increase with increasing polymer molecular weight [118].
In general, the tendency of a system to phase separate increases with molecular weight [9,46,47,118].

For PESCs formed using block co-polyelectrolytes, changing the molecular weight of the neutral or
charged blocks impacts the aggregates formed because it changes the segments available to participate
in electrostatic interactions, as well as the segments available to participate in cooperative binding
with the surfactant tails. PESCs made from N-isopropylacrylamide (PA-co-NIPAM (18:82)), which have
a large hydrophobic portion, can associate cooperatively with oppositely charged surfactant ions and
form soluble complexes beyond the stoichiometric charge match point [68]. This has been seen for a
number of systems [18,51,68,82,86,112,120,121] and through simulations [72]. Overall, the presence
of blocks results in various PESC structures depending on the hydrophilicity or hydrophobicity of
the block. Hydrophilic di-blocks with polyelectrolytes were shown through molecular dynamics
simulations to have minimal effect on the final structure of the complex [72,122,123]. However,
the inclusion of a hydrophobic block led to the formation of tri-layer core-shell structures. Whereas
with tri-block copolymers, the inclusion of hydrophilic blocks led to a “basket structure”, hydrophobic
blocks led to a tri-layer core-shell structure, and a hydrophilic and hydrophobic block led to a
tadpole-like structure. The presence of hydrophilic and hydrophobic blocks alters the adsorption of
surfactant to the polymer chain [72]. It also changes their ability to incorporate hydrophobic co-solutes
or be dissolved in solvents [51,121].

3.2.3. Linear Charge Density and Chain Flexibility

Polyelectrolyte charge density determines the number of monomeric units available for
electrostatic interaction when the polyelectrolyte is fully charged. The charge density does play a role in
the cooperative binding of polyelectrolyte and surfactant systems [78,124,125], but cooperative binding
is affected largely by hydrophobic interactions between adjacent surfactant molecules. Therefore,
different polyelectrolyte functionalities have larger effects on the CAC and the type of binding than
the linear charge density alone [78,91,97].

Li and Wagner evaluated the role of charge density and chain hydrophobicity in salt free systems.
They derived a rescaled cooperative binding strength (Ku) from the Satake-Yang binding model,
which describes the non-cooperative and cooperative binding of surfactant to polyelectrolyte [87],
and scaled it by the surfactant micellar free energy to fit experimental data from over 10 different
studies. They found that this rescaled binding strength has a squared-power dependence on linear
charge density (Figure 10), which means that there is a correlation between increased charge density
and cooperative binding strength for many different polyelectrolyte and surfactant systems. This is
complementary to Wallin and Linse’s prediction that surfactant binding to a polyelectrolyte chain with
higher charge density is more favorable [81]. The Li and Wagner study also noted that the cooperative
binding is proportional to polyelectrolyte hydrophobicity, which was not accounted for by Wallin and
Linse, as their model (discussed in Section 3.2.2) specifically studied the effect of charge density on
polyelectrolyte surfactant systems [24].

The charge density directly affects the chain flexibility, with polyelectrolytes with a high charge
density typically displaying low flexibility due to the repulsion between charged sites. Increasing the
linear charge density or decreasing the flexibility of polyelectrolytes are ways to promote the formation
of non-spherical structures of micelles in the presence of polyelectrolytes without salt [50,77]. Goswami
et al. used molecular dynamic simulations to study the effect of different PE backbone charge densities
on PESC structure and relaxation dynamics. This showed that string-of-pearls/necklace PESCs formed
with lower charge density polyelectrolytes and agglomerated core-shell double spherical structures
formed when the polyelectrolyte with higher charge density decorated the micelles [109].
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It can be difficult experimentally to deconvolute the effects of charge density and inherent
flexibility of the polyelectrolyte chain, but simulations can be used to independently change one
these parameters while maintaining the other. Monte Carlo simulation studies by Wallin and Linse
found that the electrostatic interactions were reduced if the persistence length was high enough
compared to the circumference of the surfactant micelle that the chain stiffness reduced how it
wrapped around the micelle. If the persistence length of the chain was half of the circumference of the
surfactant micelle or greater, then the electrostatic contributions decreased. Therefore the more rigid
polyelectrolyte resulted in a higher CAC as compared to a flexible one due to reduced electrostatic
interactions [24]. In a follow-up study, while maintaining the flexibility of the polyelectrolyte and
varying the spacing between charged moieties, Wallin and Linse found that a flexible polyelectrolyte
chain with higher linear charge density allowed the largest decrease of CAC and CMC as compared to
a more rigid polyelectrolyte with a lower linear charge density [81]. This is because a higher linear
charge density increases the charge of the forming micelle surface, providing more interaction sites
and the higher chain flexibility provides more freedom in the conformations that the polymer can
adopt to allow complexation with more of those sites. Because this theoretical treatment does not
account for hydrophobic interactions, the reduction of CAC in these studies is from electrostatic or
rigidity effects alone [24,81].

3.2.4. Effect of pH

The pH of the aqueous system can have a strong effect on the electrostatic interactions of weak
polyelectrolytes and charged surfactants, as it dictates whether they behave more neutral or charged.
When a weak polyelectrolyte is near its pKa, only half of its monomers are charged and can participate
in electrostatic interactions. Depending on the polyelectrolyte and solution conditions, it can be highly
charged, behave like a neutral polymer, or somewhere in between [53,71,100]. When a polyelectrolyte
is highly charged at a given pH and the pH is changed to a point where the polyelectrolyte becomes
neutral, the chain transitions from an extended to a coiled state [8,22,37,53]. At pH values where
polyelectrolytes are highly charged, non-cooperative and cooperative binding occur at lower surfactant
concentrations than when a polyelectrolyte is less charged. This is similar to the effect of decreasing
the linear charge density by adding uncharged monomers. As the pH is changed to a point where the
polyelectrolyte is highly charged, the CAC also decreases, and the number of aggregates in the PESCs
increases [86].
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The particle size of solid complexes can also vary with pH. Adjusting the pH to one where the
charges on the polyelectrolyte are neutral allows for increased aggregation between particles because
charges do not repel each other and the chain is in a more coiled state. The change in pH also causes a
shift in structure from a string-of-pearls/necklace conformation to a cylindrical micelle, which also
changes the size of the PESC particles, as hydrophobic interactions dominate. This was seen in the case
of C16TAB and poly 4-vinyl benzoate system (pVB) [100]. Lam et al. found that at a neutral pH (highly
charged), the polyelectrolyte-surfactant micelle of (pVB) and C16TAB goes from a cylindrical structure
to a string-of-pearls structure at low pH where it is near the pKa. The hydrodynamic radius also
increases with pH, which is expected for cylinder-to-sphere transitions. The transition from cylindrical
to spherical was found to be reversible with pH, which highlights the electrostatic contribution to the
system after binding and aggregation has already occurred [100].

Wang et al. studied the thermodynamic association behavior of SDS with PVPNO at various pH
values and ionic strengths. PVPNO acts as a polycation at acidic pH and is fully dissociated at a pH of
1.5, but at basic pH of 6 and 8, it is only partially dissociated. At a low pH, electrostatic interactions
between SDS and PVPNO are possible, but at high pH the driving force for association is primarily
hydrophobic. The effect of charge screening is larger at low pH values when the polyelectrolyte is
fully charged [65]. From ITC data, the observed enthalpies of formation at the CAC point of the
surfactant with the PVPNO were more exothermic with the change in pH to the highly charged regime
for the polyelectrolyte, suggesting that the interaction is in part enthalpically driven and was the
most exothermic at a pH where the system is fully charged even without the presence of added salt.
The CAC was also the lowest at this pH [65].

Pairing the thermodynamic and turbidity results, Wang et al. present the model shown in
Figure 11. Model A depicts the system at a pH where the polyelectrolyte is fully charged and the SDS
has a strong impetus to bind through electrostatic interactions with the polyelectrolyte chain. Model B
depicts the system at a neutral pH where the polyelectrolyte behaves instead like a neutral polymer
and the binding is driven by hydrophobic interactions between the surfactant tail and neutralized
polyelectrolyte monomers, leading to formation of a proposed string-of-pearls/necklace structure
at higher SDS concentrations where the charged micelles repel one another [65]. These results are
similar to work on PEI and SDS at various pH values, where at a low pH PEI is deprotonated and SDS
can associate strongly with a combination of electrostatic and hydrophobic interactions, whereas at a
neutral pH, hydrophobic interactions dominate [58].
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Figure 11. Two proposed mechanisms of the binding interaction between PVPNO and SDS at low
(Model A) and high (Model B) pH values. Reprinted with permission from Wang, H.; Fan, Y.; Wang, Y.
Thermodynamic association behaviors of sodium dodecyl sulfate (SDS) with poly(4-vinylpyridine
N-oxide) (PVPNO) at different pH values and ionic strengths. J. Surfactants Deterg. 2017, 20, 647–657,
doi:10.1007/s11743-017-1939-7. Copyright 2017, John Wiley and Sons [65].

3.2.5. Ionic Strength

The binding isotherms for the amount of free surfactant needed to complex a polyelectrolyte shift
to the right (higher surfactant concentration) with increasing salt concentration. This is because the
higher the salt concentration, the greater the electrostatic charge screening and the more surfactant
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is needed for complexation [69,77,78,125]. In one case, the addition of NaBr reduced the interaction
between sodium carboxymethylcellulose (NaCMC) and mixed Gemini surfactant and neutral TX100
micelles. The polarity in the complexes was shown to decrease in the presence of 0.10 M NaBr. In this
case, the salt screened the charges between the polyelectrolyte and surfactants, changing the polarity
and allowing for the dominance of hydrophobic interactions [83].

Mixtures of a cationic surfactant with an anionic polyelectrolyte (PSS and C16TAB) and an
anionic surfactant with a cationic polyelectrolyte (PEI and SDS) were studied with different salt
concentrations. They showed interesting particle aggregation behavior when a high concentration
of salt was introduced, as depicted in Figure 12. At low and medium concentrations, salt aids in the
aggregation of kinetically trapped colloids, as charges on the surface are neutralized and hydrophobic
interactions lead to agglomeration. With a further increase in salt concentration, re-dissolution occurs,
as charges are largely screened and aggregates no longer maintain their structure [115]. This is
consistent with the Naderi et al. findings, where the turbidity decreased with high salt concentration
owning to the re-dissolution of aggregates over time [116].
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Figure 12. Schematic of effect of salt increase on polyelectrolyte and surfactant association in excess
surfactant regime where colloid is charge-stabilized. The blue represents hydrophobic cores. Reprinted
with permission from Pojjaźk, K.; Bertalanits, E.; Meźszaźros, R. Effect of salt on the equilibrium
and nonequilibrium features of polyelectrolyte/surfactant association. Langmuir 2011, 27, 9139–9147,
doi:10.1021/la2021353. Copyright 2011, American Chemical Society [115].

In some systems of polyelectrolytes with oppositely charged surfactants, the addition of salt leads
to the formation of a coacervate phase and the width of the coacervate region in terms of surfactant
to polyelectrolyte ratio increases with increasing salt content. A very high ionic strength can further
disrupt the coacervate and lead to a re-dissolved single phase, as was described above for precipitated
systems [57,119].

3.2.6. Mixing Procedure

The formation of nanoparticles and micelle-like aggregates from PESCs are believed to be
kinetically-trapped and not at equilibrium when first made [115,116,126,127], therefore the mixing
procedure, adding surfactant to the polyelectrolyte or adding polyelectrolyte to the surfactant,
changes the aggregation and colloid size of the resulting complexes. Naderi, et al. showed that
when holding the polyelectrolyte poly[2-(propionyloxy) ethyl]trimethylammoniumchloride (PCMA)
concentration constant, but varying the SDS surfactant concentration up to the CMC, at low and high
surfactant concentrations, the amount of nanoparticles and micelle-like aggregates formed depended
on the mixing order [116]. The case where the surfactant was added to the polyelectrolyte had
a higher turbidity at low concentrations, while the polyelectrolyte added to the surfactant had a
significantly higher turbidity at high concentrations. The behavior is attributed to the initial excess
local concentration of either component. Surfactants added to polyelectrolytes can form large charged
aggregates early on, whereas the addition of polyelectrolyte to surfactants can form a large network of
aggregates. The presence of salt broadens the turbidity peaks for each method due to the screening
effect. These effects last beyond 1000 h in extended time studies. This suggests that the choice of
procedure traps the formation in a non-equilibrium state [116].
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The influence of two main mixing methods on the formation of C12TAB and PSS complexes were
studied: slow mixing, where drop by drop surfactant volumes were slowly added to polyelectrolytes,
or stop-flow mixing, where equal volumes of surfactant and polyelectrolyte were added in a stop-flow
apparatus which mixed samples within 10 milliseconds. At low surfactant-to-polyelectrolyte ratios,
both protocols gave the same results in terms of hydrodynamic radius, except at a small range near
charge neutralization where the precipitation occurs at a slightly lower surfactant concentration for
the slow-mixing method. At higher surfactant concentrations, the differences are significant, where
the stop-flow mixing method resulted in aggregates that were much smaller in size and stable enough
to be measure, but macroscale precipitation occurred for the slow-mixing procedure (Figure 13) [115].
They postulate that in the excess surfactant region, for rapid mixing, the aggregation or precipitation
of the small PESC nanoparticles formed is hindered by excess surfactant, which results in a sufficient
positive surface charge to allow for suspension and prevent macroscopic phase separation. Whereas
with the slow-mixing procedure, the particles formed are sufficiently large, that the excess surfactant
may not charge the surface enough to prevent sedimentation or precipitation relative to their size. They
found that, with the addition of salt, even in the slow-mixing procedure the precipitates were dissolved
and the system was transparent throughout the entire surfactant concentration range tested [115].
Mezei et al. found similar results in comparing stop-flow mixing and a slower gentle mixing procedure
in terms of colloidal stability at high surfactant concentrations [127].
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Figure 13. Effect of the applied mixing protocol on the apparent mean hydrodynamic diameter
versus surfactant concentration curves, Stop-flow-mixing (green); slow-mixing (red). Reprinted with
permission from Pojjaźk, K.; Bertalanits, E.; Meźszaźros, R. Effect of salt on the equilibrium and
nonequilibrium features of polyelectrolyte/surfactant association. Langmuir 2011, 27, 9139–9147,
doi:10.1021/la2021353. Copyright 2011, American Chemical Society [115].

4. Outcomes of Complexation-Rheology

Polyelectrolytes are frequently used as viscosity modifiers. When fully charged, they adopt a
rigid rod conformation and when the charges are neutralized with the addition of oppositely charged
surfactants, a random coil structure is formed (Figure 2) [8,53]. These changes in conformation result
in changes in viscosity, to the degree that even small additions of surfactant result in large increases
in the viscosity [128]. In an early study, Fuoss and Strauss studied the effect of added salt on the
electrostatic interactions of the polyelectrolytes and the resulting intrinsic viscosity curves. They saw
that increasing concentrations of salt drastically decreased the viscosity of poly-4-vinylpyridine (P4VP).
With high enough salt, the behavior plateaus and reflects that of a neutral polymer. They interpreted
this as a reduction of electrostatic repulsion with salt screening leading to polyelectrolyte collapse [129],
which has been seen in other charged systems [130].

For PESCs, increasing the salt concentration allows for increased surfactant aggregation number
and higher viscosity and increases the bridging between micelles, in contrast to the effect of salt
concentration for pure polyelectrolyte solutions [7,131]. At a high enough concentration of salt,
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re-dissolution of the PESC complex occurs and the viscosity decreases again [132,133]. With increasing
shear rate, polyelectrolyte-micelle solutions behave as Newtonian, shear thickening, and then shear
thinning fluids, showing that these solutions are complex fluids and their viscoelastic behavior is shear
dependent [132].

The formation of mixed rod-like polyelectrolyte-surfactant aggregates increases the viscosity for
the cationically modified hydroxyethyl cellulose polyelectrolyte JR 400/surfactant system according
to Hoffmann et al. [128,133,134]. The viscosity is polyelectrolyte concentration dependent. At high
polyelectrolyte concentrations, the viscosity is high due to the interconnectivity between chains from
physical crosslinks between PESC aggregates (Figure 14) [128,132,134,135]. The solutions go from a
viscoelastic fluid to more elastic as the phase becomes more gel-like [132,135].
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Figure 14. Depiction of Polyelectrolyte-Micelle Structures at low (0.3 wt%) and high (1 wt%)
polyelectrolyte concentration showing that cross-links can be achieved at higher concentrations
and ultimately higher viscosity. Reprinted from Hoffmann, I.; Farago, B.; Schweins, R.; Falus, P.;
Sharp, M.; Prévost, S.; Gradzielski, M. On the mesoscopic origins of high viscosities in some
polyelectrolyte-surfactant mixtures. J. Chem. Phys. 2015, 143, doi:10.1063/1.4928583, with the
permission of AIP Publishing [134].

At a polyelectrolyte concentration where viscosity is sufficiently enhanced, the viscosity of the
solution changes with the stoichiometry between surfactant and polyelectrolyte as shown in Figure 15.
As the charge match is approached, the viscosity significantly increases until the two-phase region
where precipitates form and come out of solution. After this region, the viscosity drops drastically and
increases again slowly, but remains below the viscosity of the polymer alone [133,136].Polymers 2019, 11, x FOR PEER REVIEW 22 of 29 
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Figure 15. Viscosity of 1 wt% JR 400 polyelectrolyte with increasing concentration of SDS. Z represents
the charge ratio between cation and anion. The dashed line is the viscosity of the polyelectrolyte
solution alone. Reprinted from Hoffmann, I.; Simon, M.; Farago, B.; Schweins, R.; Falus, P.; Holderer, O.;
Gradzielski, M. Structure and dynamics of polyelectrolyte surfactant mixtures under conditions
of surfactant excess. J. Chem. Phys. 2016, 145, doi:10.1063/1.4962581, with the permission of AIP
Publishing [133].
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The hydrophobic interactions between micelles and a neutralized chain lead to a viscosity
enhancement that goes along with phase separation [13] and has a larger role on the rheological
behavior than the electrostatic contribution [137]. As seen in Figure 16, a 4,12-ionene and 6,12-ionene
showed the highest increase in viscosity at a SDS to polyelectrolyte ratio at charge neutral. However
the ratio shifts to the right with the increase in number of carbons in the hydrophobic block for the
6,12-ionene [137]. Wang et al. showed that increasing the alkyl chain groups from 8 to 12 carbon for a
Gemini surfactant significantly increased the viscosity, with a significant jump between the CAC and
CMC, where the shorter alkyl chain Gemini surfactant steadily increased in viscosity with surfactant
concentration during the entire regime [138].
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5. Conclusions

The binding between polyelectrolytes and surfactants and the structures that form in solution are
driven by molecular interactions, particularly the electrostatic and hydrophobic interactions. When the
polyelectrolyte is highly charged, the electrostatics typically dominate and the surfactant head attracts
to the opposite charges on the polymer. When the polymer is neutral or the conditions are such that the
polyelectrolyte has a low charge, the hydrophobic interactions dominate and the surfactant tail attracts
to the polymer backbone. The regime of polyelectrolyte charge can be controlled through the molecule
design, the pH, and the ionic strength, and these are some of the most powerful parameters to tune to
obtain desired structures in the bulk. The concentrations of the polyelectrolyte and surfactant, as well
as the ratio between the two, are also critical parameters, both in determining at what concentration
the complexes form and in establishing whether they are soluble complexes, small nanoparticles or
micelle-like structures, or large precipitates. By modifying the interaction type and strength, as well
as the concentrations of the materials, the solution behavior can be controlled and used to adjust
the viscosity of mixtures containing PESCs. This approach is highly valuable for a wide variety of
industrial formulations, including cosmetics, oil recovery, perfumes and biofuel extraction.
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