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Abstract: Preparation of organic–inorganic hybrids with conventional conjugated polymers such as
polyfluorene (PF) and poly(3-hexylthiophene) (P3HT) were demonstrated via the facile blending
in solution by employing polyhedral oligomeric silsesquioxane (POSS) having heterogeneous alkyl
substituents. From the optical measurements, it was shown that the modified POSS derivatives
played a critical role in facilitating amorphous state of polymer matrices. Interestingly, although
inter-strand interaction decreased after POSS addition in the hybrid films, thermal stability can
be enhanced in the presence of the modified POSS with long alkyl chains. Furthermore, it was
demonstrated that carrier mobilities through the hybrid film was minimally reduced by POSS. These
results suggest that POSS should be a versatile building block to form hybrid with various types of
polymers for enhancing durability without loss of electronic properties of organic components.
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1. Introduction

By mixing organic molecules and inorganics at the nano level, robust materials, called
organic–inorganic hybrids, are created, which have multiple functions originating from both
components [1]. Because of their high durability, hybrids are regarded as a platform for realizing
advanced optoelectronic materials containing conjugated molecules and polymers. For example,
electric-conductive hybrids are obtained by introducing conductive organic crystals into a polymer
hybrid matrix based on silica [2]. In particular, the resulting hybrids show a waterproof character and
higher heat resistance than that of the pristine organic crystal [2]. By loading a series of conjugated
molecules onto hybrid matrices, multiple optical properties are readily expressed. Intense white-light
luminescence is observed from dye-loaded robust hybrids [3]. Thus, hybrid formation is currently
recognized as a valid strategy for enhancing durability of organic products including conjugated
polymers. However, hybrid formation is usually performed via the sol-gel reaction in polar solvents
with acid or base catalysts [4–6]. Thereby, aggregation followed by generation of inhomogeneity
and degradation of conjugated polymers is often induced during the sol–gel reactions. Furthermore,
carrier-transport ability could decrease after hybrid formation compared to that of the pristine organic
material due to intrinsic high electric resistance of silicate. Thus, our next challenge is not only
to establish the facile manner for hybrid formation without critical losses of electric properties
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of conjugated polymers but also to systematically study the electric properties of the polymers
inside hybrids.

Polyhedral oligomeric silsesquioxane (POSS) has attracted attention for preparing functional
hybrids [7–10] and thermal stability of conjugated molecules that are conventionally used as a key
components in modern organic electric devices can be improved simply by chemically connecting
to POSS [11–16]. Recently, POSS is also regarded as a platform for designing molecular fillers that
add desired functions in polymers [17–21]. By modulating the organic substituents at the vertices of
the cage, compatibility with various media can be adjusted [22–28]. Indeed, introduction of POSS
derivatives into conventional polymers is shown to significantly improve the thermal stability and
mechanical properties, with or without covalent bonds [29–33]. Moreover, POSS has extremely-high
compatibility with conjugated polymers [34]. Homogeneous films with higher concentrations of POSS
(>40 wt %) can be prepared via simple mixing in solution. Although most POSS containing rigid or
short R groups crucially decrease thermal degradation temperatures by 100 ◦C due to suppression of
inter-strand stacking by the cage, we found that longer alkyl-modified POSS were able to reinforce
thermal stability of the matrices [34]. From these observations, we propose that, if POSS derivatives
are homogeneously dispersed in the matrix, it can be said that a similar situation to the typical hybrids
should be created. In other words, we suggest that POSS can be a versatile “element-block” [35,36],
which is the minimum functional unit composed of heteroatoms for preparing “designable hybrids”
without sol–gel methods. Previously, optical and thermal properties were investigated, however
electrical properties were not examined. To practically use POSS-based hybrids as an optoelectronic
materials, influence of the POSS addition on electrical properties of conjugated polymers is essential.

Herein, we report the influence on electronic properties and enhanced thermal stability of hybrids
composed of conjugated polymers by loading POSS derivatives having dual types of alkyl substituents.
Three types of heterogeneous POSS derivatives with two kinds of alkyl substituents were synthesized,
and. from the solution method, polymer hybrids with conventional conjugated polymers such as
polyfluorene (PF) and poly(3-hexylthiophene) (P3HT) were prepared by loading octa-substituted
alkyl POSS. The series of measurements for optical and thermal properties and carrier-transport
ability revealed that the heterogeneous POSS derivatives can improve thermal stability without critical
losses of other properties. This is the first example, to the best of our knowledge, demonstrating the
applicability of POSS “element-block” for fabricating hybrids with conjugated materials without losses
of optoelectronic properties of conjugated polymers.

2. Results and Discussion

The chemical structures of the materials used in this study are shown in Scheme 1. It was shown
from the study with octa-substituted POSS and conjugated polymers that the iso-butyl (iC4) and
cyclopentyl (CP) groups on POSS have relatively lower affinity toward conjugated polymers and
induced loss of thermal stability, while the octadecyl (C18) group can enhance thermal stability of
the matrices [34]. It was assumed that entanglement with polymer chains could disturb molecular
motions followed by thermal degradation. From these three alkyl groups, two substituents were
introduced into POSS. The synthesis of a series of heterogeneous POSS derivatives was performed
with the previously established protocol [25]. It was known that the products used in further analyses
included cage mixtures, which are structural isomers and comprise molecular-weight distributions
originating from variation of the molar ratios of the two alkyl silane starting materials.



Polymers 2019, 11, 44 3 of 8
Polymers 2018, 10, x FOR PEER REVIEW  3 of 8 

 

 
Scheme 1. Chemical structures of the modified POSS and conjugated polymers used in this study. 
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reactions [25,34]. Further experiments were performed with the samples containing 40 wt % POSS. 

Initially, light-absorption properties were investigated with the hybrid films (Table 1 and 
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Scheme 1. Chemical structures of the modified POSS and conjugated polymers used in this study.

PF and P3HT are conventionally used as a carrier-transport layer in organic light-emitting devices
and as a traditional donor–acceptor bulk-heterojunction active layer in polymer photovoltaic cells,
respectively. Therefore, enhancement of thermal stability is of great importance for extending device
lifetimes. PF and P3HT were prepared via the Yamamoto and oxidation coupling reaction according to
the previous methods, respectively (Table S1) [37–39].

The polymer films containing POSS derivatives were prepared using solution blending of each
POSS and polymer after drying on the quartz substrate. For evaluating carrier migration ability, the
films were prepared on the ITO electrode via the spin-coating.

In Figure S1, the appearances of the hybrid films are presented. Accordingly, at loading levels
of up to 40 wt % POSS, significant turbidity and phase separation were not observed in the films.
The transparency resulted from compatibility that eliminated heterogeneous POSS crystallization.
Heterogeneity and loss of transparency was observed in control samples containing two types of
octa-substituted POSS. Additionally, phase separation and inhomogeneity were hardly detected in
nano level in the scanning electron microscopic (SEM) observations (Figure S2). These data represent
that POSS fillers can be dispersed in conjugated polymer films with high homogeneity. Thus, it
can be said that hybrid materials were obtained with the POSS “element-blocks” without sol–gel
reactions [25,34]. Further experiments were performed with the samples containing 40 wt % POSS.

Initially, light-absorption properties were investigated with the hybrid films (Table 1 and Figures
S3–S6). In the PF film, it was known that aggregation at partial polymer chains induces red-shift
of the absorption band [34]. In the previous report, it was demonstrated that POSS derivatives
were able to facilitate formation of amorphous state followed by blue-shifted absorption band [34].
The steric structure of the silica cube could play a critical role in minimizing the crystallization of
polymer chains. The spectra indicate that such an effect was realized. By loading POSS into the PF
matrices, the absorption bands around 400 nm were sharpened and the apparent absorption maxima
were shifted to shorter wavelength region. These data support that POSS derivatives induced an
amorphous state within the PF matrices. In contrast, larger degrees of peak shifts were observed from
heterogeneous POSS than those from the mixtures with two types of octa-substituted POSS. Because
of larger miscibility of heterogeneous POSS than octa-substituted POSS, amorphous state could be
effectively created by heterogeneous POSS.
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Table 1. Optical property changes by hybrid formation with POSS a.

POSS filler
PF P3HT

∆λabs (nm) b ∆λem (nm) c ΦPL (%) d,e ∆λabs (nm) f ∆λem (nm) g ΦPL (%) e,h

(iC4 + CP) −16 +3 +3 +22 +20 +1.1
(iC4 + C18) −21 +3 +6 +26 +30 +1.5
(CP + C18) −15 +3 +6 +27 +24 +1.4

iC4&CP −16 +4 +6 +24 +27 +1.3
iC4&C18 −11 +2 +6 +24 +27 +1.5
CP&C18 −8 +1 +6 +24 +25 +1.7

a 40 wt % heterogeneous POSS and mixture with 20 wt % each POSS. b Determined with the peak at 407 nm.
c Determined with the peak at 509 nm (λex = 407 nm). d Compared with 41% from the pristine polymer. e Determined
as an absolute value with the integration sphere method. f Determined with the peak at 484 nm. g Determined with
the peak at 639 nm (λex = 484 nm). h Determined with 0.7% from the pristine polymer.

It was observed in the previous report that red-shift of the absorption bands were induced
by adding POSS to the P3HT film (Figures S3–S6) [34]. It was proposed that polymer chains can
form favorable conformation for extending conjugation lengths through the polymer main-chains
by releasing structural restrictions caused by inter-chain interaction. In this study, same tendencies
were observed. By adding POSS, peak shifts to longer wavelength region were observed, indicating
that POSS molecules also enhanced homogeneity in the P3HT film. In the P3HT hybrid, undesired
elevation of background and peak broadening were hardly induced by POSS. These data support that
homogeneous state can be obtained by POSS.

Luminescent properties were also examined with the hybrid films (Table 1 and Figures S7–S10).
In the PF matrices, significant effects were slightly observed in the spectra and emission efficiencies
by adding POSS. In contrast, large degrees of red-shift were detected in the emission spectra of the
P3HT hybrids. Similar to electronic structures in the ground state, main-chain conjugation should
be elongated by POSS. In summary, the influence of the heterogeneous POSS addition on optical
properties was largely similar to those of octa-substituted POSS. It was shown that POSS derivatives
played a role in improving homogeneity of the polymer matrices.

Next, thermal stability of the hybrid films was evaluated with thermogravimetric analysis (TGA,
Figures 1 and 2). Degradation temperatures are listed in Table 2. According to the previous report on
the PF and P3HT hybrids with octa-substituted POSS, critical decreases in degradation temperatures
were caused by adding most of octa-substituted POSS [34]. It is likely that thermal motions were
induced due to disruption of inter-chain interactions by the rigid POSS cages. In this study, the
thermal stabilities of the hybrids with both polymers were maintained even up to 40 wt % loadings
of the heterogeneous POSS. The (iC4 + CP)POSS was the lone exception to this trend as it induced a
significant reduction of thermal stability. It is suggested that entanglement with the dodecyl group and
polymer side chains contributed to suppressing molecular motions of polymer chains. Consequently,
critical loss of thermal stability could be avoided.
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Figure 1. TGA profiles of the PF hybrids in the absence and presence of: (a) 40 wt % (iC4 + CP)POSS
and the mixture with 20 wt % iC4-POSS and 20 wt % CP-POSS; (b) 40 wt % (iC4 + C18)POSS and the
mixture with 20 wt % iC4-POSS and 20 wt % C18-POSS; and (c) 40 wt % (CP + C18)POSS and the
mixture with 20 wt % CP-POSS and 20 wt % C18-POSS.
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Figure 2. TGA profiles of the P3HT hybrids in the absence and presence of: (a) 40 wt % (iC4 + CP)POSS
and the mixture with 20 wt % iC4-POSS and 20 wt % CP-POSS; (b) 40 wt % (iC4 + C18)POSS and the
mixture with 20 wt % iC4-POSS and 20 wt % C18-POSS; and (c) 40 wt % (CP + C18)POSS and the
mixture with 20 wt % CP-POSS and 20 wt % C18-POSS.

Table 2. Thermal property changes by hybrid formation with POSSa.

POSS filler
PF a P3HT b POSS

∆Td5 (◦C) b ∆Td20 (◦C) c ∆Td5 (◦C) d ∆Td20 (◦C) e Td5 (◦C) d Td20 (◦C) e

(iC4 + CP) −38 −15 −91 −102 272 310
(iC4 + C18) −7 +3 −18 +3 415 469
(CP + C18) −3 +3 +18 +6 438 476

iC4&CP −54 −22 −117 −110
iC4&C18 −76 −8 −151 −99
CP&C18 −14 −2 −42 −19

a 40 wt % heterogeneous POSS and mixture with 20 wt % each POSS. b Compared with 406 ◦C. c Compared with
429 ◦C. d Compared with 388 ◦C. e Compared with 466 ◦C.

Finally, the electric properties of hybrid materials were examined. The carrier mobilities of the
hybrid films were evaluated by the time-of-flying (TOF) experiment in which the transient photocurrent
generated with a laser pulse was monitored by an oscilloscope (Table S4) [40–42]. Figure S11 shows
the representative device appearances for TOF measurements with PF and P3HT hybrids. The carrier
mobilities in the hybrid films were measured to be in the order of 10−3 cm2 V−1 s−1. Compared to
each pristine polymer, significant changes in the mobility were not observed. Furthermore, the carrier
mobilities decreased with an increasing external electrical field with similar extents (Figures S12 and
S13). Typically, additives in polymer matrices create carrier traps, followed by critical decreases in
carrier mobilities; however, it was revealed that POSS had minimal influence on carrier transport
processes through both polymer matrices. According to the previous reports on the conductive
composites containing mixed-valence tetrathiafulvalene nanowires, conductivity can be maintained in
the bulk materials by gathering nanowires at the surface even in the insulating matrices [43–46]. In this
study, although POSS could hardly work as a carrier transporter, charges could smoothly pass through
homogeneous polymer matrices. This finding and our data demonstrate that hybrid formation can
be accomplished without changes in electric properties of conjugated polymers by employing POSS
“element-blocks”.

3. Conclusions

It was demonstrated that POSS “element-blocks” enable transformation of conjugated polymers
into thermally-stable hybrid materials without critical losses of optical and electronic properties
provided by the organic components. This was accomplished by POSS cages controlling the solid-state
packing within the hybrid composition. Moreover, by selecting the type of substituents as the longer
alkyl chain on POSS, miscibility was enhanced, indicating that hybrid formation based on POSS
“element-blocks” possess a wide applicability to various polymer matrices. This information on
property–structure relationships would be helpful for designing further effective fillers for modulating
optoelectronic functions as well as thermal properties of conjugated polymers. In the development of



Polymers 2019, 11, 44 6 of 8

organic opto-electronic devices, reinforcement of durability is still one of big issues to be overcome.
Our concept and materials could be valid to satisfy these demands.
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