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Abstract: With the prestressed carbon fiber reinforced polymer (CFRP) strengthening technique
widely used in reinforced concrete (RC) structures, it is more and more important to study the
fatigue performance of RC structures. Since the fracture of a tensile steel bar at the main cracked
section is the leading reason for the failure of RC beams reinforced by prestressed CFRP, a fatigue
life prediction model of RC beams reinforced by prestressed CFRP was developed based on an
accumulative damage model. Moreover, gradual degradation of the performance of the concrete
was considered in the fatigue life prediction model. An experimental study was also conducted
to research the fatigue behavior of RC beams reinforced by prestressed or non-prestressed carbon
fiber laminate (CFL). During the tests, fatigue crack patterns were captured using a digital image
correlation (DIC) technique, and the fatigue lives of a total of 30 beams were recorded. The results
showed that the predicted main crack propagation curves and the fatigue lives were close to the
experimental data. This study also exhibited that the prestressed CFRP could reduce the stress of
main steel bars in RC beams and effectively improve the fatigue performance of the RC beams.

Keywords: fatigue life prediction; prestress; carbon fiber reinforced polymer (CFRP);
accumulative damage model

1. Introduction

Bonding carbon fiber reinforced polymer (CFRP) onto the surface of reinforced concrete (RC) is a
lightweight, efficient, and noncorrosive strengthening technique and has become prevalent in the past
two decades [1,2]. However, the disadvantage of the non-prestressed CFRP reinforcement technology
is that the reinforcement strength of CFRP is not fully utilized. To overcome this disadvantage,
an active reinforcing technique using prestressed CFRP to strengthen RC beams has been developed
by researchers.

Compared to the non-prestressed CFRP strengthening technique, the prestressed CFRP
strengthening technique has some advantages [3–5]: improving the stress distribution of concrete,
limiting the propagation of cracks, utilizing the high tensile strength of CFRP in a preferable way,
closing existed cracks, and increasing the fatigue lives of the strengthened structures.

Currently, with the development of prestressed CFRP reinforcement technology, more and more
researchers are paying attention to the fatigue performance of the RC beams strengthened with
prestressed CFRP. Some researchers [6,7] carried out experiments to study the behavior of RC beams
strengthened with prestressed CFRP under fatigue loads. EI-hacha [8] showed that the fatigue
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performance of the specimens could be greatly improved by prestressed CFRP plates and that the
anchoring methods also had an important influence. As discussed by Xie [9], the stresses of the steel
bars and the fatigue damage were further reduced and the fatigue lives of RC beams were increased
by prestressed CFRP. Huang [10] conducted the fatigue experiments on RC beams strengthened with
prestressed CFRP and observed that the main failure modes were fatigue fracture of the main steel bar
and debonding failure of the CFRP-concrete interface.

On the basis of experimental study, some researchers found that the stress amplitude of tensile
steel bars was the main factor affecting the fatigue lives of the beams and that prestressed CFRP could
reduce the stresses of the tensile steel bars and ultimately increase the fatigue lives of RC beams.
Huang et al. [11] proposed a semi-empirical formula for predicting the fatigue lives of RC beams
reinforced by prestressed CFRP under cyclic loading. According to the fatigue stress amplitude of the
main steel bars measured during tests, the fatigue lives were predicted by the formula. Fadi et al. [11]
developed a fatigue life prediction model that considered the effect of prestressed CFRP reinforcement
on the fatigue behavior. In the model, the compatibility equations of RC beams strengthened with
prestressed CFRP rest on an assumption of a linear relationship. Xie et al. [9] established a fatigue
accumulative damage model based on the degradation of flexural stiffness to predict the fatigue lives
of the strengthened beams. H. Huang [12] conducted fatigue experiments on RC beams strengthened
with prestressed CFRP. It was found that the fracture of the tensile steel bar at the main cracked
section was the main failure mode of prestressed CFRP-strengthened RC beams under fatigue loads.
Miner’s rule can be used to predict the fatigue lives of CFRP for strengthening RC beams until the
fracture failure of the tensile steel bar occurs. X. Guo [13] proposed a modified version of Paris’ law
for predicting fatigue life of RC beams strengthened with prestressed CFRP. In this model, J-integral
was calculated by using the finite element method. H. B. Park [14] carried out fatigue test of RC
beam strengthened with prestressed FRP tendon. From the test results, the steel and FRP strains
were described according to the accumulation of fatigue loading. Some researchers found the fatigue
behavior of composites follow the Weibull distribution. Moreover, a probabilistic model of fatigue
failure was provided [15]. Based on numerical calculations by an open source program—ProFatigue®,
Hanif [16] provided failure fatigue life assessment at various probabilities.

Although some aspects of the fatigue performance of prestressed CFRP for strengthening RC
beams have been explored in previous models, the gradual degradation of the performance of the
concrete has not been considered. Holmen’s experimental results [17] indicated that the compressive
stress-strain relationship of concrete changes continuously, owing to the internal fatigue damage
accumulation in the concrete. The time-dependent constitutive relationship of concrete has an impact
on stresses in tensile steel bars. The fatigue behavior of RC beams can be accurately described by
considering the degradation of the performance of concrete in the stress-strain relationship.

In view of the above considerations, the emphases of this paper are to establish a fatigue life
prediction model based on the accumulative damage to tensile steel bars and to consider gradual
degradation of the performance of concrete. To verify the model, the fatigue lives of a total of 30 RC
beams strengthened with CFRP which underwent different levels of prestressing (0%, 10%, 15%,
and 22%) were compared with theoretical values. The theoretical crack evolutions for 13 specimens in
different cycles were also compared with testing results. The difference between the models with and
without consideration of the gradual degradation of the performance of the concrete was analyzed.

2. Fatigue Life Prediction Method

As widely observed from the fatigue tests on RC beams strengthened without prestressed CFRP
in earlier times, the fracture of tensile steel bars at the main cracked section is the controlling failure
mode [18]. Heffernan and Erki [19] found that CFRP shared part of the stress with the main steel bars
in RC beams and improved the fatigue performance of beams. This behavior has also been found in RC
beams strengthened with prestressed CFRP [20]. Therefore, the fatigue lives of RC beams reinforced
with prestressed CFRP or without prestressed CFRP can be obtained by the fatigue lives of the tensile
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steel bars. In the cracked section, a new method to analyze the fatigue lives of RC beams strengthened
with prestressed CFRP was proposed based on Miner’s rule [21]; a fatigue life prediction method for
non-prestressed CFRP-reinforced beams has been previously developed. In addition, the gradual
degradation of the performance of the concrete was considered in the fatigue life prediction.

2.1. Fatigue Damage of Tensile Steel Bars

Miner’s rule has always been used to calculate the accumulated fatigue damage of the tensile
steel bars:

D = ∑
ni
Ni

, (1)

where, D is the accumulation of fatigue damage (D ≤ 1); ni is the cycle number for the specified stress
amplitude σsi of the tensile steel bars; and Ni is the final cycle number to failure for the stress amplitude
σsi of the tensile steel bars.

Many fatigue life models describing the fatigue behavior of the steel bars have been published.
Wang [22] described these equations and compared them with experimental results from the literature.
He found that the existing models did not agree well with the experimental data over the whole
course of fatigue, and he conducted a regression analysis based on the scarcity of published data
on the fatigue lives of RC beams. Considering the models constructed by Oudah [23], Diab [24],
and Moss [25], three regions were combined to describe the S-N relationship of the steel bars.
The proposed relationship can be given by the following equation:

Ssi =


797.9− 94.31 log Ni for 1 < Ni ≤ 104

458.8− 9.566 log Ni for104 < Ni ≤ 105

1208− 159.4 log Ni for105 < Ni ≤ 106

601.3− 58.45 log Ni for106 < Ni ≤ 107

, (2)

where Ni is the cycle number to fatigue failure and Ssi is the applied stress range in MPa.
Equation (2) can also be expressed as follows:

log Ni =


8.460− 0.011Ssi for420.5 < Ssi ≤ 787.7
47.96− 0.105Ssi for411.0 < Ssi ≤ 420.5
7.578− 0.006Ssi for251.6 < Ssi ≤ 411.0
10.29− 0.017Ssi for192.2 < Ssi ≤ 251.6

, (3)

For the fatigue failure mode of the steel bars, the fatigue lives of RC beams strengthened with
prestressed CFRP or without prestressed CFRP can be predicted from accumulative damage until the
tensile steel bar fractures (D = 1).

2.2. Elastic Modulus Degradation of Concrete

As the number of loading cycles increases, the stress amplitude of the tensile steel bar changes
because of the degradation of the concrete performance and the propagation of the cracks.

In the fatigue testing, steel bars in the RC beams strengthened with CFRP maintained a linear
elastic state before yielding. At the same time, because CFRP has excellent fatigue resistance,
it maintained a linear elastic state over its whole fatigue life. Due to the stress range of tensile
steel bars being the main factor affecting the fatigue lives of the beams, this study places an emphasis
on changes in the stress range of the tensile steel bars caused by elastic modulus degradation of
the concrete.
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With repeated fatigue loading, the elastic modulus of concrete changes due to accumulative
damages [26]. EI-Tawil [27] proposed a formula for the effective elastic modulus of concrete after
ni—many loading cycles as follows:

Eci =

(
1− 0.33

ni
Nci

)
Ec, (4)

where Eci is the effective elastic modulus of concrete at the ith cycle and Ec is the initial elastic modulus
of concrete. Nci is the number of loading cycles to failure for concrete, which can be calculated using
the following equation [28]:

Sci = 0.9885− 0.0618lgNci, (5)

where, Sci is maximum stress level at ith cycle and Sci = σci/fc, where σci and fc are maximum
compressive stress and uniaxial compressive strength of concrete, respectively.

2.3. Time-Dependent Constitutive Relationships of the Tensile Steel Bar

In this study, the following constitutive model of the tensile steel bars was applied [29].
Under monotonic loading, the yield, hardening and softening phenomena of the steel bars can be
accurately described as follows:

σsi=


Esεsi εsi < εy

fy εy < εsi < k1εy

k3 fy +
Es(1−k3)

εy(k2k1)
2 (εsi − k2εy)

2 εsi > k1εy

, (6)

where Es and fy represent the elastic modulus and yield strength of the tensile steel bar, respectively;
εsi is the longitudinal strains of the tensile steel bar at the ith cycle; and εy is the strain value
corresponding to the yield strength of the tensile steel bar. As shown in Figure 1, the values of
k1, k2, k3, and k4 are chosen according to the type of tensile steel bar.
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Figure 1. Stress-strain relationship for tensile steel bars.

2.4. Equilibrium and Compatibility Equations

For RC beams strengthened with prestressed CFRP or without prestressed CFRP, the stress
amplitude of the tensile steel bars would change with increasing number of loading cycles according
to the degradation of the concrete performance and the generation and propagation of cracks. With the
sectional analysis method, the crack height ai and the location hci of the neutral axis at the ith cycle
could be determined with the assumption of a linear strain distribution, as shown in Figure 2.
The compressive stress distribution of concrete is parabolic stress block [30]. The crack height ai
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and the location hci of the neutral axis would change with the effective elastic modulus Eci of the
concrete at the ith cycle. Based on the sectional equilibria of forces and moments, the following
equations can be formed:

{ 1
2 bhci ft + σsi As + E f A f (ε f i + εpe) = E′s A′sε′s +

∫ yci
0 Eciεcibdy

M = 1
2 bhci ft· 23 hci + σsi As(ai − c + hci) + E f A f (ε f i + εpe)(ai + hci) + E′s A′sε′s(h− ai − hci − c′) +

∫ yci
0 Eciεcibydy,

(7)

where M is the bending moment at the main cracked section; b and h are the width and height of the
RC beam; yci and hci are the heights of the compression and tension zones, respectively, for the concrete
at the ith cycle at the main cracked section; ai is the height of main crack at the ith cycle; c′ and c are the
depths of the concrete cover; Ef and E′s are the elasticity moduli of the CFRP and compressive steel
bar, respectively; Eci is the effective elastic modulus of the concrete at the ith cycle; ε′si and ε f i are the
longitudinal strains of the compressive steel bar and CFRP at the ith cycle; εci is the maximum strain of
the compressive concrete at the ith cycle; εpe is the initial strain of the prestressed CFRP; Af, A′s, and As

are the cross-sectional areas of the CFRP, compressive steel bar, and tensile steel bar, respectively; ft is
the uniaxial tensile strength of the concrete; and εt is the uniaxial tensile strain of the concrete.Polymers 2019, 11, x FOR PEER REVIEW 5 of 17 
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The relationship between the strains of CFRP and concrete is very important in the above sectional
analysis method. However, it is very difficult to calculate precisely the strain of CFRP because of
the properties of the bonding interface between the concrete and CFRP. To simplify the analysis,
Hui-Huang [12] introduced two extreme CFRP-concrete interfacial states: the fully bonded state and
the fully debonded state. In this paper, the fully bonded state was considered because the prestressed
CFRP and RC beam were wrapped and bonded together by CFRP strips on the two ends of the
prestressed CFRP, which can avoid the debonding failure. For the fully bonded state, the strains along
the depth of the strengthened beam are completely compatible, and the plane section assumption can
be used. The compatibility equations at a balanced section required that:
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ε f i =
hci + ai

hci
εt, (8)

εsi =
hci + ai − c

hci
εt, (9)

εci =
h− ai − hci

hci
εt, (10)

ε′si =
h− ai − hci − c′

hci
εt, (11)

and yci = h− ai − hci. (12)

By substituting Equations (8)–(12) into Equation (7), all the unknowns at the ith cycle can
be calculated.

2.5. Procedure to Predict the Fatigue Life

The developed fatigue life prediction method was used to predict the fatigue lives of RC beams
strengthened with non-prestressed and prestressed CFRP. The step-by-step procedure to implement
the model is included in Figure 3. The detailed procedure is as follows:

• In the procedure, ni was defined as a unit of circulation and set to 10 cycles in the initial stage.
In the steady stage, after 1000 cycles, ni was set to 1000 cycles. Starting the preliminary cycle,
the initial elastic modulus of concrete was Ec and the constitutive relation of the first preliminary
cyclic reinforcement was assumed to be linearly elastic.

• Substituting the geometric dimension, material properties of the specimens, and prestressing level
of CFRP into the equilibrium equations (7)–(12), the crack height ai, the location of the neutral axis
hci, the strain εsi of the tensile steel bar, and the compressive strain εci at the top of the concrete at
the ith cycle under the minimum and maximum loads were calculated.

• Substituting the value of the stress range Ssi applied at the tensile steel bar into Equation (3),
the fatigue life and accumulated fatigue damage D of the specimen under the action of each cycle
were obtained.

• If the accumulated fatigue damage D was less than 1, then the effective elastic modulus of concrete
Eci after degradation could be obtained using Equation (4) and (5).

• According to the strain amplitude of the tensile steel bar in the previous step, the corresponding
constitutive model in Equation (6) was selected to calculate the tensile stress σsi of the steel bar.
Then, σsi and Eci were substituted into Equations (7)–(12) for the next cycle.

• When the accumulation of fatigue damage D = 1, the program was ended, and the fatigue life of
the specimen was calculated as ∑ i× ni.
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3. Fatigue Experiments under Cyclic Loading

3.1. Specimens and Materials

The typical size and reinforcements (steel bars) of the specimens are shown in Figure 4. The length
of all RC beams was 1850 mm, and all had the same cross-sectional dimensions (100 mm width and
200 mm height). The concrete was mixed with cement, water, sand, and gravel in the proportion
1.0:0.5:2.06:3.66. The modulus of elasticity and compressive strength of the concrete were 35.2 GPa
and 53.3 MPa, respectively, which were measured using national standard tests (GBJ107-87 and GB/T
50081-2002). The grade HRB 400 steel bars possess an elastic modulus of 206 GPa and a yield strength of
400 MPa. Parameters k1, k2, k3, and k4 in Figure 1 were chosen as 8.63, 70.5, 1.425, and 72.1, respectively.
In this study, the RC beams were strengthened with carbon fiber laminate (CFL) [31] composed of
unidirectional carbon fiber silk and epoxide resin for the specimens. Therefore, CFL has the advantages
of both carbon fiber plates and sheets. To reduce the influence of multilayer bonding, the size and
thickness of the CFL should be designed and knitted according to the project requirements. All CFL
used in the test was produced by Toray Advanced Materials Korea Inc., and had a width of 100 mm and
normal thickness of 0.23 mm. The elastic modulus and the ultimate tensile strength of the CFL were
230 GPa and 4750 MPa, respectively. A physical diagram of the CFL is shown in Figure 5. The adhesive
used between the CFL and concrete was A+B epoxy adhesive, and most of the adhesive penetrated
into the concrete. The total thickness of the A+B adhesive layer (with a shear strength of 14 MPa) layer
was approximately 0.2 mm.
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3.2. Prestressing System

In this study, CFL was applied directly via a pretensioned method by jacking up an external
reaction frame. The prestressed CFL was pasted onto an RC beam with A+B epoxy resin in this
method. When the A+B epoxy resin was completely cured, the prestressing system was released.
Extra anchorage needed to be provided if the prestressing level was high. The advantage of
the pretensioned method was that the RC beam could be kept intact, rather than drilling holes
in the specimen. The CFL was stretched by the pretensioned method described above, and the
CFL was wrapped at both ends of the beam to avoid peeling failure. The tensile prestress and
bonding procedures of the CFL can be subdivided into four processes: tensioning, bonding, curing,
and releasing. We developed the prestressing system for stretching CFL and reinforcing RC beams,
the details and processes of which are shown in Figure 6 and are specifically described in the
reference [31].
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3.3. Experimental Method

A total of 14 specimens were produced in this study. Prestressing levels of 0% and 10% of were
applied to the CFL strengthening the RC beams in the experimental study. A level of 0% indicats no
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prestressing. The RC beams strengthened with a 10% prestress level (475 MPa) were wrapped with
CFL on both ends. Table 1 shows all details of the specimens.

Table 1. Experimental conditions and testing results.

Specimen
No.

Prestressing
Levels

Peak
Loads,

Pmax (kN)

Minimum
Loads,

Pmin (kN)

Initial
Crack

Height
(mm)

Final
Crack

Height
(mm)

Initia
Steel

Strain (µ)

Fatigue
Lives, Nf
(Cycles)

P0-25-1

0%

25.0 5.0 139.9 148.6 1140.8 1750067

P0-27.5-1
27.5 5.5

142.9 154.7 1467.6 507341
P0-27.5-2 141.1 150.9 1468.4 686534
P0-27.5-3 141.2 149.7 1466.2 521580

P0-30-1 30.0 6.0 144.0 159.9 1642.2 335327

P10-30-1

10%

30.0 6.0
138.5 160.8 1128.6 >2000000

P10-30-2 136.6 161.0 1128.0 2296825

P10-32.5-1 32.5 6.5 139.9 158.2 1249.0 684595

P10-35-1
35.0 7.0

140.3 161.0 1368.7 494496
P10-35-2 137.4 154.2 1368.1 197776
P10-35-3 137.6 161.7 1369.4 620020

P10-40-1
40.0 8.0

136.1 161.5 1609.2 203074
P10-40-2 141.8 164.6 1607.6 317900
P10-40-3 141.1 165.0 1609.9 169990

3.3.1. Testing Procedure

We employed a loading method of three-point bending. The experiments were carried on Material
Testing System (MTS) with a total capacity of 100 kN in the forced mode. Static testing was carried out
before the fatigue experiment, and the ultimate loads of specimens strengthened with non-prestressed
and 10% prestressed CFL were 51.5 kN and 62.5 kN, respectively. The stress ratio R was 0.2, and the
frequency of constant amplitude load was 10 Hz. The experimental conditions are summarized in
Table 1.

3.3.2. Measurements

During the tests, a dynamic strain indicator was used to measure the strains, and the data
acquisition frequency was set to 100 Hz. The evolution of the crack shape was surveyed by employing a
3-dimensional digital image correlation (DIC) method [31], which is an optical measurement technique
with does not need surface contact to monitor the cracks. In the test settings, the side surface of the
specimen was monitored using the DIC system (Figure 7). Marking a pattern of black spots on a
white background (Figure 8), the displacements and strain figures surrounding the main crack were
measured at succedent loading steps. Moreover, some crack characteristics such as the crack height,
width and spacing were monitored.

3.4. Experimental Results

Table 1 shows the fatigue lives of all specimens. Because the CFRP wrapped around the ends
of the RC beam can avoid debonding failure, so the failure mode of all the specimens was tensile
steel bar fracture, as shown in Figure 9. The tensile steel bar fractured at the main cracked section
after substantial fatigue damage accumulation. Then, the tensile force carried by the steel bar was
transferred to the CFL, which resulted in the fracture of the CFL.
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Figure 9. Fatigue failure mode (main steel bar fracture) of the strengthened beam (unit: mm).

During the fatigue tests, the crack shape evolution was surveyed by the DIC system. Figure 10
shows the crack propagation under different loading cycles. Figure 10 also shows the relationships
between the numbers of loading cycles and the main crack heights of specimens of different prestressing
levels. The observed crack growth on the specimen can be divided into three stages, namely, fast,
stable, and unstable propagation stages. During the first stage, cracks occurred, and one of them
developed rapidly into the main crack. After the first stage, the observed changes in fatigue damage
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had become extremely small over a long period of time. In the stable propagation stage, approximately
95% of the total fatigue life of the specimen was the period of main crack propagation life. Therefore,
in engineering practice, the full fatigue lives of the RC beams could be approximately predicted by the
fatigue lives of the main crack propagation stage. The tensile steel bars would fracture at the main
crack section after a large amount of fatigue damage accumulation. The final stage lasted a relatively
short time.
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3.5. Strain Response

P0-30-1, P10-30-1, and P10-35-1 were CFL-strengthened specimens with different prestressing
levels and were subjected to different peak loads. Figure 11 shows the strains of the tensile steel
bars with respect to the loading cycles at the peak loads. As shown in Figure 12, the strains in the
main steel bars of each specimen experienced a significant increase and then increased more slowly
during the remaining load cycles. Compared with RC beams strengthened with non-prestressed CFL,
prestressed CFL could reduce the strains of main steel bars in an obvious way. From the beginning to
the final fracture, the stress increments in the main steel bars were basically the same.
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4. Model Verification

4.1. Crack Propagation

In this paper, the experimental results (a-N curves) mentioned in the Section 3.4 were used
for verification of the model. All the geometric dimensions, material properties of specimens,
and prestressing levels of the CFL mentioned in the Section 3.4 were substituted into fatigue prediction
model to obtain the main crack height, a, after each cycle until the cumulative damage reached D = 1.
The theoretical values of crack height were then compared with the experimental data, as shown in
Figure 12.

From the comparison results, we can see that the theoretical values were in good agreement with
the experimental data, with an average error of 1.3%. As shown in Figure 13, prestressing could greatly
improve the resistance to fracture. The theoretical model also described a high expansion rate of the
main crack in the first several loading cycles, and the crack height then increased only slightly over
most of the fatigue process.

4.2. Fatigue Life Prediction

To further verify the fatigue life prediction model proposed in this study, more test results were
needed. Fortunately, we has previously carried out fatigue tests on CFL-reinforced RC beams with
various prestressing levels (15% and 22%) [14]. The geometric dimensions and material properties of
the specimens were the same as in this study.

If the gradual degradation of the performance of the concrete was not considered, the fatigue
lives of the specimens could be predicted using Equation (3). The stress ranges of the tensile steel bars
in Equation (3) were calculated using the static Equations (7)–(12) directly. To compare the two models,
one considering the degradation of concrete and the other not, four different prestressing levels (0%,
10%, 15%, and 22%) of CFL-reinforced RC beams (summing to 30 specimens) were involved.
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Figure 14a shows the comparison of prediction lives calculated by the accumulative damage
model without considering the degradation of concrete performance against the experimental data.
The predicted lives calculated by the accumulative damage model considering the degradation of
concrete performance were compared with the experimental data, as shown in Figure 14b. It was found
that the fatigue lives calculated without considering the degradation of concrete performance were
larger than those in the experimental data, and the average relative error was 33%; However, the fatigue
lives calculated with the degradation of concrete performance were closer to the experimental data,
the average relative error was 10%. This shows that taking into account the gradual degradation of the
concrete performance, which more truly describes the influence of the stress increase of the main steel
bar on the fatigue life of the strengthened concrete, could reduce the prediction error effectively.
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5. Conclusions

Considering the gradual degradation of concrete performance, a fatigue life prediction model
for RC beams strengthened with prestressed or non-prestressed CFRP was proposed. Moreover,
an experimental study was also carried out to probe into the fatigue behavior of non-prestressed
and prestressed CFL-reinforced RC beams. During the test, the fatigue crack patterns were captured
using a 3D-DIC system, and the fatigue lives of a total of 30 strengthened beams were obtained. By a
comparison between the predicted lives and experimental data, the effectiveness of the proposed
model was verified. The following conclusions could be drawn from the experimental and theoretical
analysis results presented in this paper:

• The proposed accumulative damage model can well describe the crack height and stress range of
tensile steel bars at different loading cycles. The fatigue lives of non-prestressed and prestressed
CFRP-reinforced RC beams can also be predicted by the proposed model.
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• The predicted results indicated that the predicted fatigue lives considering the gradual
degradation of the concrete performance were close to the experimental data with an average
relative error of 10%. However, the average relative error of predicted fatigue lives without
considering the gradual degradation of concrete performance was 33%. The proposed model
could accurately and reliably predict the flexural fatigue life of non-prestressed and prestressed
CFRP-reinforced RC beams.

• The analysis results indicated that prestressed CFRP could decrease the stress of main steel bars
in RC beams and improved the fatigue performance of the beams effectively. Compared with
non-prestressed CFL-reinforced RC beams, the fatigue lives of prestressed CFL-reinforced RC
beams (to a 10% prestressing level) were greatly increased.

This research provided a theoretical model to describe fatigue behavior of reinforced concrete
structure. The availability and applicability of this model should be further verified in similar reinforce
concrete structure.
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Abbreviations

ai the height of main crack at the ith cycle
As cross-sectional area of tensile steel bar
A′s cross-sectional area of compressive steel bar
Af cross-sectional area of CFRP
b the width of the RC beam
c the depth of the concrete cover(measured from bottom surface of section)
c′ the depth of the concrete cover(measured from top surface of section)
D accumulation of fatigue damage
Eci effective elastic modulus of concrete at the ith cycle
Ec initial elastic modulus of concrete
Es elastic modulus of the tensile steel bar
E′s elastic modulus of the compressive steel bar
Ef elastic modulus of the CFRP
fc uniaxial compressive strength of concrete
fy yield strength of the tensile steel bar
ft uniaxial tensile strength of the concrete
h the height of the RC beam
hci the height of the tension zone for the concrete at the ith cycle at the main cracked section
k1, k2, k3, k4 parameters determined by the tensile steel bar
M bending moment at the main cracked section
ni the cycle number for the specified stress amplitude of tensile steel bars
N cycle number to fatigue failure
Nf fatigue lives
Ni the final cycle number to failure for the specified stress amplitude of tensile steel bars
Nci the number of loading cycles to failure for concrete
Pmax peak load
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Pmin minimum load
R the stress ratio
Ssi stress range applied at steel
Sci maximum stress level at the ith cycle for concrete
yci height of the compression zone for the concrete at the ith cycle at the main cracked section
σsi maximum tensile stress of steel
σci maximum compressive stress of concrete
εci maximum strain of the compressive concrete at the ith cycle
εt uniaxial tensile strain of the concrete
εsi longitudinal strain of the tensile steel bar at the ith cycle
ε′si longitudinal strain of the compressive steel bar at the ith cycle
εpe initial strain of prestressed CFRP
εsi longitudinal strain of CFL at the ith cycle
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