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Abstract: In this study, analysis of sensing signal profiles was conducted focusing on
the close relationship between electrical conductivity and signal intensity in surface treated
poly(dimethylsiloxane)/carbon nanotube (PDMS/CNT) composite patches for the purpose of their
practical application as flexible chemical sensors. The flexible PDMS/CNT composite patches were
prepared from a PDMS/CNT mixture with a two-roll apparatus. It was found that the PDMS/CNT
pads showed a high electrical conductivity (10−1 S/m) even at low CNT loading (0.6 wt %) and a
contact angle range of 105–118◦. The surface of the obtained PDMS/CNT composite patches was
treated using a simple bio-conjugation method to incorporate beta-cyclodextrin (beta-CD) molecules
onto the surface as a sensing medium, in order to detect a model compound (Methyl Paraben, MePRB).
FT-IR spectra indicated that beta-cyclodextrin molecules were effectively introduced on the surface of
the PDMS/CNT patches. It was shown that the sensor signal intensity was substantially dependent
on the base current value, which increased with increasing CNT loading. Accordingly, the base
current value was intimately associated with the electrical conductivity of the composite patches.
On the other hand, the increase in current over the base current (∆I/I0) obtained after the addition of
the model compound was inversely proportional to the CNT content. In this way, analysis on the
sensing signal profiles of the flexible chemical sensor system was conducted to determine a process
window. This study is a very useful springboard for future research activities, as more profound
studies are necessary to fully understand sensing signal profiles.

Keywords: poly(dimethylsiloxane)/carbon nanotube; cyclodextrin; flexible sensor; electrical
conductivity

1. Introduction

The need for ultrasensitive and flexible chemical sensors has been increasing in recent times, as it
is becoming important to detect ultrasmall amounts of toxic gases/chemicals, hazardous materials,
pathogens, and microorganisms for human safety [1–5]. To this end, it is critical to obtain electrically
conductive and flexible substrates, because the use of electrical signals is considered as one of the
most efficient signal transduction mechanisms in sensing and flexible substrates can be applied onto
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irregular surfaces such as textiles and skins [6,7]. Therefore, a substantial effort has been devoted to
the production of flexible and electrically conductive substrates.

Among those various appealing candidates—such as metal thin film, graphene,
conductive coating, polymer composite—poly(dimethylsiloxane)/carbon nanotube (PDMS/CNT)
composite materials are very popular, because PDMS and CNT have reliable physical and chemical
properties such as flexibility and electrical conductivity, respectively. Consequently, numerous research
activities regarding sensors using the combination of PDMS and CNT have been extensively
reported [8,9]. Most of the demonstrated sensor systems are mechanical sensors, which can monitor
the changes in mechanical properties such as strain or pressure [10–22]. However, introduction of
the PDMS/CNT composites for ultrasensitive chemical sensors is still challenging, because the
responses of the PDMS/CNT composites to stimuli are not adequately rapid and selective.
To overcome the obstacle, several strategies have been tried, for instance, modification of composite
microstructures, surface engineering, enhancement in signal transduction, and optimization of sensor
geometry [3,17,19].

As an example of developing flexible chemical sensors using PDMS/CNT composites, in the
previous study, the sensing of a toxic chemical based on a surface engineered PDMS/CNT composite
patch was systematically investigated. When beta-CD molecules (beta-CD) were introduced as
sensing media onto the surface of the flexible PDMS/CNT composite patch, sensitive and selective
identification of a model toxic chemical (methyl paraben, MePRB) was achieved [3]. The model
chemical was selected as one of the most popular preservatives for cosmetics and personal
hygiene products.

Even if sufficient experimental data was provided in the previous report, a detailed study
and discussion on the sensing signal profiles of the chemical sensor system using the flexible
PDMS/CNT composite patch was lacking. Therefore, in this article, a correlation between the electrical
conductivities of the PDMS/CNT composite patches depending on CNT loading and electrical signals
obtained after addition of analyte solutions was monitored. In addition, a process window for efficient
production of the flexible chemical sensor was systematically determined. While the characterization
and analysis methods are straightforward, this study is a sound experimental demonstration of the
fundamental aspects of a flexible chemical sensor using an electrically conductive substrate, which may
be useful for future applications.

2. Experimental

2.1. Materials

Poly(dimethylsiloxane) (PDMS, Sylgard 184 silicone elastomer base) was purchased from
Dow-Corning (Midland, MI, USA), and the multiwalled carbon nanotubes (MWCNTs) with
outer diameters of 10–20 nanometer and lengths of 100–200 µm were purchased from Hanwha
Nanotech, Inc. (Seoul, Korea). A silane coupling agent, (3-aminopropyl)triethoxysilane (APTS),
ethyl(dimethylaminopropyl) carbodiimide (EDC), N-hydroxysuccinimide (NHS), and 4-chlorobutyric
acid were purchased from Aldrich (Milwaukee, WI, USA), and used as received. A host molecule,
beta-cyclodextrin (beta-CD), and a target molecule, methylparaben (MePRB), were also purchased
from Aldrich and used without further purification.

2.2. Fabrication of PDMS/CNT Composite Patches

The process of the producing of the PDMS/CNT composite patches is summarized in Figure 1.
The PDMS precursor and curing agent were mixed at a weight ratio of 10:1, and then CNTs
(0.6–6.0 wt %) were added to the mixture. The high viscosity PDMS/CNT paste was obtained by using
a three-roll mill apparatus [23]. A double-roll machine was employed to produce the composite patches
on a polymeric (polyimide, PI) substrate. When the viscous paste was placed in the nip between the
rolls, all the material was transferred onto the roll with the substrate [24].
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2.3. Surface Treatment of PDMS/CNT Composite Patches

The composite patch was treated with aqueous APTS solution (1 mM) overnight to provide
surface compatibility. After complete drying, the composite patch was immersed in a chlorobutyric
acid solution (CA, 30 mM) for 2 h. Subsequently, the solution containing the composite patch was
mixed with N-hydroxysuccinimide (NHS, 0.1 M) and ethyl(dimethylaminopropyl) carbodiimide
(EDC, 0.4 M) for bioconjugation. Finally, a mixture of beta-CD and an aqueous KOH solution
(4 M, 20 mL) was introduced on top of the patch at 60–70 ◦C for 24 h, for the introduction of beta-CD
onto the patch surface [25,26].

2.4. Instrumentation

Scanning electron microscopy (SEM) images were obtained on a Quanta 650 FEG (ThermoFisher
Scientific, Hillsboro, OR, USA) to examine the morphology of the patches, depending on the CNT
content. To observe the CNT dispersion condition in the PDMS matrix, the composite patches
were quenched and broken in liquid nitrogen. The water contact angle (WCA) was acquired using
a KRUSS drop shape analyzer (KRÜSS, Hamburg, Germany). FT-IR spectra were collected on a
Perkin Elmer Spectrum One spectrometer (Perkin Elmer, Shelton, CT, USA). The four-wire resistance
method was employed to measure the electrical conductivity of the composite patches using a
Keithley 2400 Sourcemeter (Tektronix, Beaverton, OR, USA) and Keithley 487 picoammeter (Tektronix,
Beaverton, OR, USA). All the electrical measurements were performed using a Keithley 2612B
Sourcemeter (Tektronix, Beaverton, OR, USA) and a probe station MS TECH Model 4000 (MS Tech,
Seoul, Korea) under ambient conditions.

3. Results and Discussion

3.1. Characterization and Surface Treatment of PDMS/CNT Composite Patch

The first important step of this study was the preparation of flexible PDMS/CNT composite
patches (Figure S1). A range of CNT weight fraction was determined, as most physical and chemical
properties of composite patches are strongly dependent on the CNT content. Taking into consideration
the homogeneous dispersion of CNT into the PDMS matrix, the electrical conductivity, and the surface
hydrophobicity of the patches, a CNT composition range of 0.6–6.0 wt % was selected. Below 0.6 wt %,
it was impossible to achieve an appropriate and stable electrical conductivity due to the occurrence
of a percolation threshold under 0.5 wt %. On the other hand, complete and uniform dispersion of
CNT into the PDMS matrix became difficult above 6.0 wt % [27]. It was also feasible to produce flat
and flexible PDMS/CNT composite patches within the CNT loading range by the process shown in
Figure 1. In a previous article, where surface patterned PDMS/CNT patches were employed for a
chemical sensor platform, 3–5 wt % of CNT was introduced for production of the patches [23].

Figure 2 presents the electrical conductivities and FT-IR spectra of the PDMS/CNT composite
patches as a function of CNT composition. It is obvious that the electrical conductivity increased
almost proportionally to the CNT weight fraction between 10−1 to 50 S/m (Figure 2a). This was
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because a percolation threshold phenomenon in the electrical conductivity occurred below 0.5 wt %
for this composite system, as mentioned above [3]. This data supported that the CNT loading of
0.6–6.0 wt % was acceptable in this study. Figure 2b shows the FT-IR spectra of the PDMS/CNT
composite patches. The characteristic peaks associated with the PDMS are apparent for all the spectra,
which indicates that the surfaces of the composite patches were predominantly covered with the PDMS
material. For example, the peaks for symmetric and asymmetric Si–O–Si stretching were observed
at 800 and 1200 wavenumber, respectively. It was noteworthy that the baselines of the FT-IR spectra
became more slanted as the CNT composition increased. This trend was associated with the plasma
reflection, which is often observed in electrical conducting materials [2].
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function of the CNT composition.

Figure 3 presents the water contact angles of the PDMS/CNT composite patches measured on
the surfaces. It was clear that the contact angle slightly increased from 102◦ to 119◦ with increasing
CNT composition. This is attributed to the fact that the PDMS components were prevalent on the
surfaces of the patches regardless of the CNT weight fraction. The addition of more CNT elevated the
hydrophobicity of the patch surfaces.
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Figure 3. Contact angle measured on the surfaces of the PDMS/CNT composite patches as a function
of CNT content.

In addition, it was also useful to examine the fractured surfaces of the PDMS/CNT composite
patches in order to observe the CNT dispersion into the PDMS matrix. As this aspect was critical
to finely control the electrical conductivity of the patches, SEM images of the fractured surfaces are
displayed in Figure 4. The top-view image is presented in the supporting information (Figure S1).
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The overall features of the fractured surfaces seem equivalent, that is, CNT fillers are embedded in the
polymer matrix. The population of CNT moieties increased with increasing CNT loading, therefore,
more electrical paths were created inside the structure. From these observations, it is inferred that the
PDMS/CNT composite patches can play the role as a robust and flexible platform for high performance
chemical sensors. The mechanical property and stretchability/flexibility of the composite patch was
demonstrated [3].
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Figure 4. SEM images taken at the fractured surfaces of the PDMS/CNT composite patches.

The produced composite patch as a flexible sensor platform was further modified at the surface to
incorporate sensing media (beta-CD). Figure 5 shows a schematized process for this surface treatment.
The electrodes were introduced by a simple lithographic technique and thermal deposition of Au
metal. The PDMS/CNT patch was immersed in a silane coupling agent solution to provide functional
groups on the surface for a successive bioconjugation step. In this experiment, a well-established
bio-conjugation method—the EDC/NHS coupling reaction—was employed using chlorobutyric acid
as an intermediate. Subsequently, the beta-CD molecules were attached to the patch surface via
strong covalent bonding. The feasibility of this process was demonstrated in a previous article [3,25].
The successful introduction of the beta-CD molecules was confirmed by FT-IR spectroscopy (Figure S2).
For this study, it was also important to introduce an equal amount of the sensing media, beta-CD
molecules onto the patch surfaces. This was achieved by controlling the concentrations of the chemicals
that were used, as the surface properties of the patches were found to be almost identical to those
examined previously [26].
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Figure 5. A schematic illustration of the surface treatment procedure to introduce beta-CD molecules
as sensing media on the PDMS/CNT composite patches and sensor geometry, in order to measure
sensing signals.

Sensor signals were obtained using a glass tube containing analyte solution. That is, the signal
was recorded in the presence of the solvent. This geometry was more reliable, because signal noise
could be minimized and the solvent in the glass tube could act as a buffer solution.

3.2. Sensing Signal Profile in Flexible Chemical Sensor

In this study, acquisition of a discernible sensing signal was a critical step to secure sensing
performance. This was possible because the composite patch showed a sufficiently high electrical
conductivity even at a low CNT loading. Sometimes, high conductivity led to an increase in noise level,
therefore, compromise between conductivity and signal fidelity was substantially important.

To this end, securing ohmic contact in the PDMS/CNT composite patches was indispensable.
Figure 6 shows the I–V curves of the surface modified PDMS/CNT composite patches as a function of
CNT loading.
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Figure 6. I–V curves of the surface modified PDMS/CNT composite patches as a function of CNT
loading, showing the ohmic relation.

For all cases, linear profiles were observed in the voltage range. As the weight fraction of CNT
increased, the current also increased linearly. The current level was meaningful, because it determined
the base current level during electrical sensing measurement.

Subsequently, sensor tests were performed. The first step was to monitor solvent effect on
the sensor signal. This aspect was examined in detail in our previous articles [3]. Particularly,
the sensor signal was found to be significantly dependent on the polarity of solvents. The signal
variation increased slightly with increasing polarity of the solvent. In this work, a common
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solvent—ethanol—with a medium polarity was employed. As all the measurements were conducted
under ethanol atmosphere, the effect of the solvent on sensor signal was identical for all PDMS/CNT
composite patches (Figure S3).

The sensing signal of flexible chemical sensors based on a surface treated PDMS/CNT composite
patch was measured by changing the concentration of the model compound, MePRB from 10 to
100 nmol as shown in Figure 7. When the model compound MePRB was added to the sensor
system, there were four types of interactions, which could contribute to the occurrence of signal peaks.
These included patch-solvent, patch-model compound MePRB, CD-solvent, and CD-model compound
MePRB. Supplementary experiment results showed that the patch-solvent and the CD-solvent
interaction were negligible in terms of signal intensity (Figure S3). The patch-model compound MePRB
interaction must be insignificant because a small amount of the model compound (10–100 nmol)
was introduced to the sensor system during measurement. Therefore, the remarkable sensor signals
in Figure 7 were strongly associated with the CD-model compound MePRB interaction. This was
spontaneous and thermodynamically favorable because a host–guest complex could be generated
between CD and MePRB, where the MePRB molecules could reside in the intrinsic pores of the CD
molecules [28]. In this way, charge transport between CD and the model compound MePRB could be
facilitated. This caused an increase in current values, leading to an uprise of signal peaks.
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Figure 7. Sensor signal profiles of composite patches as a function of the CNT fraction, measured after
the addition of varying amount of the target compound MePRB.

It was shown that the base currents increased gradually and continuously for all the experiments.
There are two types of sensors, which are based on the change in conductance and resistance,
respectively. The sensor system used in this study is based on the change in conductance, which
is the ability for electric charge to flow in a certain path. The incorporation of external molecules
such as solvent could induce regional movements of the CNT bundles. This might induce an effect
of increasing the electrical paths inside PDMS/CNT composite patches. In addition, the charge
transport through CNT network could be facilitated owing to the introduction of the analyte molecules,
in this case, by formation of the host–guest complexes. These two factors might contribute to increase
of the conductance of the PDMS/CNT composite patches.
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In general, the signal peak intensity seemed to be proportional to the analyte concentration
even if selectivity was also important. However, it was irrelevant to this study as only one
target compound MePRB was incorporated. As the CNT content increased, the frequency of noise
evolution decreased. Because electrical conductivity increased with an increasing CNT weight fraction,
signal transduction was promoted due to increased conducting pathways in the composite patch.
Therefore, more stable profiles could be recorded. In addition, the shape of the sensor signals became
less sharp. This phenomenon was associated with the contribution of the charge transport from the
CD-target compound MePRB interaction becoming less significant at high CNT loading, where the
base current value was relatively high. Therefore, an antagonistic relationship between the base current
and signal peak intensity was exhibited, as in Figure 8. For this layout, the base current was determined
by the slope of ohmic plots in Figure 6. As the base current is not an absolute value, the current in
Figure 7b seemed a bit higher than that in Figure 7c. Even if the values in blue curve were obtained
from the measurements with 100 nmol solutions, the shape of the curve was independent of the
concentration. For 1 nmol, the sensor signal was indistinctive (Figure S4).
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Figure 8. Variation of the base current and intensity of the sensor signal as a function of CNT loading.

Considering the data, it was possible to select a process window by optimizing dominant
parameters such as electrical conductivity associated with the CNT content, base current, peak intensity
(I/I0), and noise level for the performance improvement and effective use of flexible chemical sensors.
Complementary experiments to demonstrate the sensing capability under bending and repetitive
measurements is actively underway as a detailed study.

4. Conclusions

In this work, a close examination of sensing signal profiles of flexible chemical sensors, based
on a surface engineered PDMS/CNT composite patch was performed using electrical measurements.
The sharpness of the signal peaks was remarkable at low CNT loading, while the stability of the sensor
signals improved with high CNT content. It was therefore feasible to select an optimized process
window for flexible chemical sensors showing ultrahigh performance. This study is an exemplary
demonstration for the improvement of sensor performances under several contradictory parameters.
This article provides essential information for future research activities on ultrasensitive flexible
chemical sensors based on PDMS/CNT composites.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/9/951/s1,
Figure S1: A photograph and a top-view SEM image of the PDMS/CNT composite patch containing 3 wt % CNT,
Figure S2: FT-IR spectra of PDMS/CNT composite patched as a function of CNT weight fraction obtained after
each surface modification steps, Figure S3: Sensor signals obtained with PDMS/CNT composite patches after

http://www.mdpi.com/2073-4360/10/9/951/s1
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introduction of pure solvent to the sensor system, Figure S4: Sensor signals obtained with PDMS/CNT composite
patches after introduction of 1 nmol solution to the sensor system.
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