Supplementary Information

Sponge-like Water de-/ad-sorption versus Solid-state Structural Transformation and Colour-Changing behavior of An Entangled 3D Composite Supramolecuar Architecture, [Ni4(dpe)4(btc)2(Hbtc)(H2O)9]·3H2O

Chih-Chieh Wang ^{1,*}, Szu-Yu Ke ¹, Kuan-Ting Chen ¹, Ning-Kuei Sun ¹, Wei-Fung Liu ¹, Mei-Lin Ho ^{1,*}, Bing-Jyun Lu ¹, Yi-Ting Hsieh ¹, Yu-Chun Chuang ², Gene-Hsiang Lee ³, Shi-Yi Huang ⁴, and En-Che Yang ^{4,*}

- ¹ Department of Chemistry, Soochow University, Taipei 11102, Taiwan;
- ² National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan;
- ³ Instrumentation Center, National Taiwan University, Taipei 10617
- ⁴ Department of Chemistry, Fu Jen Catholic University, Taiwan.

Supporting Information

Table S1. Bond lengths (Å) around Ni(II) ions in 1.

Table S2. The related parameters of O–H…O hydrogen bonds for 1^a

Table S3. π - π interactions (face-to-face) in $\mathbf{1}^a$

Figure S1 The coordination environments of the Ni(II) ions in (a) [Ni(dpe)(Hbtc)(H₂O)], A;

(b) $[Ni(dpe)(btc)(H_2O)]^-$, **B**; (c) $[Ni(dpe)(btc)(H_2O)_3]^-$, **C**; (d) $[Ni(dpe)(H_2O)_4]^{2+}$, **D**.

ORTEP drawing with 30 % thermal ellipsoids. The solvated water molecules and H

atoms are omitted for clarity.

CP A			
Ni(1)–O(1)	2.028(4)	Ni(1)-O(7)	2.055(4)
Ni(1)-O(3) _i	2.124(4)	$Ni(1)-O(4)_i$	2.124(4)
Ni(1)–N(1)	2.139(5)	Ni(1)–N(2)	2.091(5)
CP B			
Ni(3)–O(15)	2.026(4)	Ni(3)–O(21)	2.068(3)
Ni(3)–O(23)	2.086(4)	Ni(3)–O(22)	2.087(4)
Ni(3)–N(5)	2.120(5)	Ni(3)–N(6)	2.140(5)
CP C			
Ni(2)–O(8)	2.031(4)	Ni(2)–O(14)	2.055(4)
Ni(2)–O(10) _{ii}	2.108(4)	Ni(2)–O(11) _{ii}	2.110(4)
Ni(2)-N(4)	2.123(5)	Ni(2)–N(3)	2.143(4)
CP D			
Ni(4)-O(24)	2.035(4)	Ni(4)-O(26)	2.053(4)
Ni(4)-O(25)	2.079(4)	Ni(4)-O(27)	2.083(4)
NI'(A) NI(O)			

Table S1. Bond Lengths (Å) around Ni(II) ions in 1^a

^{*a*} Symmetry transformations used to generate equivalent atoms : i = x-1/2, -y+1/2, z; ii = x-1/2, -y+3/2, z.

D–H ···A	D-H (Å)	$H \cdots A (Å)$	$D \cdots A (Å)$	\angle D–H ···A (°)
O(7)–H(7A)····O(20)	0.85	1.955	2.786	165.7
O(7)-H(7B)····O(2)	0.85	1.891	2.664	151.0
$O(14)-H(14A)\cdots O(20)_i$	0.83	1.959	2.708	150.0
O(14)-H(14B)····O(9)	0.85	1.765	2.609	169.3
O(21)-H(21A)···O(17) _{ii}	0.82	1.929	2.747	171.9
O(22)-H(22A)···O(16)	0.86	1.666	2.518	172.1
O(22)-H(22B)····O(18) _{ii}	0.86	1.738	2.591	170.2
O(23)-H(23B)····O(9) _{iii}	0.85	1.996	2.773	151.6
O(24)-H(24A)···O(12)	0.87	1.836	2.660	156.9
O(25)-H(25A)···O(19)	0.87	1.861	2.682	157.3
O(25)-H(25B)···O(26)	0.84	2.249	2.861	129.7
O(26)-H(26A)···O(18)	0.84	2.074	2.830	149.2
O(26)-H(26B)···O(13)	0.85	1.744	2.581	166.5
O(27)-H(27B)····O(3)	0.87	1.886	2.753	173.4
O(21)-H(21B)····O(29)	0.83	2.063	2.813	149.7
O(23)-H(23A)····O(29)	0.84	1.826	2.643	163.7
$O(24)-H(24B)\cdots O(28)_{iv}$	0.87	1.925	2.723	152.2
O(27)–H(27A)····O(30)	0.86	2.005	2.783	150.3
O(28)-H(28A)····O(30) _{ii}	0.85	1.963	2.796	166.7
O(28)–H(28B)…O(17)	0.85	1.896	2.736	169.0
O(29)-H(29A)···O(10) _{iii}	0.85	2.373	2.750	107.4
O(29)-H(29B)····O(19) _v	0.86	2.230	2.777	121.4
O(30)-H(30B)····O(20) _v	0.89	2.197	2.941	141.0
O(5)-H(5)-O(22) _{vi}	0.84	1.742	2.580	175.6

Table S2. The related parameters of $O-H\cdots O$ hydrogen bonds for 1^a

^a Symmetry code : $i = \frac{1}{2}-x$, $\frac{1}{2}+y$, $-\frac{1}{2}+z$; $ii = -\frac{1}{2}+x$, $\frac{1}{2}-y$, z ; $iii = \frac{1}{2}-x$, $-\frac{1}{2}+y$, $\frac{1}{2}+z$; $iv = \frac{1}{2}+x$, $\frac{3}{2}-y$, z ; $v = -\frac{1}{2}+x$, $\frac{1}{2}-y$, z ; $vi = \frac{1}{2}-x$, $-\frac{1}{2}+y$, $-\frac{1}{2}+z$.

$\begin{array}{c} \operatorname{Ring}(i) \rightarrow \\ \operatorname{Ring}(j) \end{array}$	Slip angle ^b (i,j)/°	Interplanar (i,j) distance ^c /Å	Horizontal shift between the (i,j) ring centroids ^d /Å	Distance between the (i,j) ring centroids/Å		
$R(1) \rightarrow R(2)$	16.3(4)	3.358(7)	0.979(7)	3.498(7)		
$R(2) \rightarrow R(3)$	34.4(4)	3.295(7)	2.259(7)	3.995(7)		
$R(3) \rightarrow R(4)_i$	22.0(4)	3.324(7)	1.340(7)	3.584(7)		
$R(5) \rightarrow R(6)_i$	22.5(4)	3.441(7)	1.424(7)	3.724(7)		
^{<i>a</i>} Symmetry code: $i = \frac{1}{2}-x$, $\frac{1}{2}+y$, $-\frac{1}{2}+z$; $R(1) = C(1)-C(2)-C(3)-C(4)-C(5)-C(6)$; $R(2) = C(1)-C(3)-C(4)-C(5)-C(6)$; $R(2) = C(1)-C(3)-C(4)-C(5)-C(6)$; $R(2) = C(1)-C(3)-C(4)-C(5)-C(6)$; $R(3) = C(1)-C(3)-C(3)-C(4)-C(5)-C(6)$; $R(3) = C(1)-C(3)-C(3)-C(4)-C(5)-C(6)$; $R(3) = C(3)-C(3)-C(3)-C(4)-C(5)-C(6)$; $R(3) = C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)$						
N(7)-C(64)-C(65)-C(66)-C(67)-C(68); R(3) = C(22)-C(23)-C(24)-C(25)-C(26)-C(27);						
R(4) = N(6)-C(59)-C(60)-C(61)-C(62)-C(63); R(5) = N(3)-C(31)-C(32)-C(33)-C(34)-C(3						
C(35); R(6) = C(43) - C(44) - C(45) - C(46) - C(47) - C(48).						

Table S3. $\pi - \pi$ interactions (face-to-face) in $\mathbf{1}^a$

^b Slip angle: the angle formed between the ring-centroid vector (CC) and the ring normal to one of the benzene or pyridine planes.

^{*c*} Interplanar distance: the perpendicular distance between two parallel rings.

^d Horizontal shift between the ring centroids: a shift from the face-to-face alignment.

Figure 1