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1 Simulation Method

We motivate our over-damped Langevin equation by sketching how we arrive at the formula given in the main text,
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The first term is the drag force introduced by the background flow field, v (z), without any disturbances. The
velocity of the flow field is assumed to depend linearly on z as we want to describe a linear shear flow in = direction
in vicinity of a no-slip boundary. The shear tensor is given as
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The mobility tensor depending on the situation is either given by the Rotne-Prager-Yamakawa tensor (non-grafted)
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or by the Rotne-Prager-Blake tensor (grafted, no-slip at z = 0)
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where 7; = (z;,y;, — ) is the mirror image position and the Rotne-Prager tensor used in this definition is given
as
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The modification term arises from the Stokes and source doublets and has the following specific entries, as derived
by von Hansen, et al. [1],
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where R = 7; — ;. For the limit of 7; going to r;, the Rotne-Prager-Blake tensor reduces to the self-mobility which
is different for the directions parallel to the no-slip boundary and the perpendicular direction:
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where the parallel self-mobility is given by
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and the perpendicular self-mobility by

This symmetry-breaking leads to a correction term vorreetion that is given by [1]
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So consequently, the drag force defining the first term (drag term), depending on the situation, is given as
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The second term of Eq. (1) is the velocity of bead ¢ due to the forces exerted by all other beads j. The last term of
Eq. (1) follows from the fluctuation-dissipation theorem

(&i(t) ® &;(t)) = 2kpTp;0(t —t). (16)

To create random velocities that satisfy the correlation given by Eq. (16), we use the Cholesky decomposition of a
matrix that is given as
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which returns a lower triangular matrix, L, that satisfies the relation L L' = . If we now define a normal random
vector x that satisfies the conditions of gaussian white noise, meaning (xxT) = 1, then one can write

(1) = (Lx) (Lx)T) = (Lx x"L") = L(x x")L". (18)
So consequently, we used the following method to calculate the random velocities for each step:
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2 Simulation Parameters

In Tab. 1, we present explicit simulation parameters. For explanation, At is the chosen time step of a simulation,
ng is the total number of steps of a simulation and n,, is the number of steps that determines the period we use to
write out positions of all beads.

At/ e N At/ e N
N N
10 0.0005 4000000000 100 10 0.0005 4000000000 10000
20 0.0005 4000000000 1000 30 0.0005 2000000000 10000
30 0.0005 1000000000 10000 50 0.0005 1000000000 10000
75 0.0005 500000000 100 75 0.0005 500000000 10000
100  0.0005 500000000 10000 100  0.0005 200000000 100000

(a) (b)

Table 1: Explicit simulation parameters for (a) the grafted and (b) the non-grafted scenario used in this study.



3 Estimate Statistical Error of the Mean

Time dependent quantities such as the squared radius of gyration and the end to end distance in pull direction are
analysed using the gromacs tool gmx analyze [2]. The error estimate of the time averaged quantity is calculated
using the block average method according to the definition by Berk Hess [3],
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where o is the standard deviation of the sample and T' = n; At is the total time of the simulation run. The quantities
71, T2 and « are estimates for the short correlation time, the long correlation time and a weighting factor which are
fitted using the auto correlation function of the observable in question. Note that we define the auto correlation
function such that it decays to 0, meaning we actually look at the mean fluctuations of the observable minus its
mean value over the sample,
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A full derivation of the error estimate given in Eq. (20) can be found in the appendix of the 2002 article by Berk
Hess [3].

4 Determining Critical Shear Rate

Determining the critical shear rate, 7*, is possible by evaluating any related statistical quantity that is affected by the
change in shear rate and that becomes maximal or minimal at the point of transition between a collapsed to a non-
collapsed state. Previous publications used the normalized fluctuations of the mean-square elongation R% of the chain
in direction of the shear flow to pinpoint the transition [4, 5]. In the present study, we additionally investigate the
mean-square radius of gyration R%. We define the normalized standard deviation o, = /(22(t)) — (z(t))2/(x(t))?,
where z is either R% or RZ. Fig. 1 and Fig. 2, we present results for the normalized standard deviation and three
additional quantities of both R and RZ for the grafted and non-grafted scenario. The additional quantities are
the error estimate of the mean determined as described in section 3, the numerical derivatives with respect to the
shear rate which we refer to as A(R%)/A(%) and A(RZ)/A(5) and the numerical derivative of the logarithmic values
Alog(R%)/Alog(%) and Alog(RZ)/Alog(¥). The results for the critical shear rate for each quantity is presented
in Tab. 2 for the grafted and in Tab. 3 for the non-grafted scenario. Judging from a comparison of individual plots
in Fig. 1 and Fig. 2, we conclude that for our simulations the numerical derivatives A(R%)/A(%) and A(RZ)/A(Y)
are the most consistent quantities to give the same critical shear rate value regardless whether we analyse the
mean-squared radius of gyration or the mean-squared elongation in flow direction.

from from from from from from from from
Orz/  err.est.pa / Alog(R%)/ A(RZ)/ Opz/ err. est.pz/ Alog(R2%)/ A(RZ)/
N R, R, Alog(¥) A() R§  R§ Alog(7) A(Y)
10 0.25 0.29 0.32 0.32 0.21 0.25 0.29 0.32
20 0.24 0.22 0.26 0.26 0.22 0.24 0.26 0.26
30 0.2 0.2 0.22 0.24 0.19 0.2 0.2 0.24
40  0.175 0.175 0.19 0.195 0.077 0.175 0.19 0.195
50  0.1575 0.06 0.1675 0.1675 0.06  0.1575 0.1675 0.1675
75 0.077  0.06 0.115 0.125 0.046 0.06 0.115 0.125
100 0.085 0.046 0.1 0.115 0.028 0.046 0.1 0.115

Table 2: Grafted scenario: Comparison of the critical shear rate estimates in units of 7=, determined as depicted
in Fig. 1 as the maximum value of the specific shear-rate dependent quantity, for different monomer numbers.
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Figure 1: Grafted scenario: Comparison of different quantities which maximal value determines an estimate for the
critical shear rate 4*, indicated by vertical dashed lines. Blue indicates that the quantity uses Ré, red uses R%.
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Figure 2: Non-grafted scenario: Comparison of different quantities which maximal value determines an estimate for
the critical shear rate 4*, indicated by vertical dashed lines. Blue indicates that the quantity uses Ré, red uses R%.
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from from from from from from from from

opz,/ err. est.pe/ Alog(R%)/ A(RE)/ opz/ err. est.pz/ Alog(RZ%)/ A(RZ)/

Ry R Alog(¥) A(Y)  RE RS Alog(y)  A(Y)

N

10 49 4 4.9 2.6 26 2.1 2.6 2.6
20 67 6 9.2 9.2 5 4 6 9.2
30 10 10 10 17 78 7.8 7.8 13
40 13 112 9.7 20 11.2 103 9.7 11.2
50 16 17 13 24 135 135 13 13
7521 195 19 22 21 18 22 22
100 215 155 18 28 215 155 20 28

Table 3: Non-grafted scenario: Comparison of the critical shear rate estimates in units of 77!, determined as depicted
in Fig. 2 as the maximum value of the specific shear-rate dependent quantity, for different monomer numbers.
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