
polymers

Article

Influence of the Cross-Link Density on the Rate of
Crystallization of Poly(ε-Caprolactone)

Igor Sedov 1,* ID , Timur Magsumov 1, Albert Abdullin 1, Egor Yarko 1, Timur Mukhametzyanov 1,
Alexander Klimovitsky 1 and Christoph Schick 1,2,*

1 Chemical Institute, Kremlevskaya 18, Kazan Federal University, 420008 Kazan, Russia;
timomax@mail.ru (T.Ma.); alb3978@yandex.ru (A.A.); yarkoeg@gmail.com (E.Y.);
timmie.m@gmail.com (T.Mu.); aklimovi@mail.ru (A.K.)

2 Institute of Physics and Competence Centre CALOR, University of Rostock, Albert-Einstein-Str. 23-24,
18051 Rostock, Germany

* Correspondence: igor_sedov@inbox.ru (I.S.); christoph.schick@uni-rostock.de (C.S.);
Tel.: +7-960-050-3916 (I.S.); +49-381-498-6880 (C.S.)

Received: 23 July 2018; Accepted: 8 August 2018; Published: 11 August 2018
����������
�������

Abstract: Cross-linked poly(ε-caprolactone) (PCL) is a smart biocompatible polymer exhibiting
two-way shape memory effect. PCL samples with different cross-link density were synthesized
by heating the polymer with various amounts of radical initiator benzoyl peroxide (BPO).
Non-isothermal crystallization kinetics was characterized by means of conventional differential
scanning calorimetry (DSC) and fast scanning calorimetry (FSC). The latter technique was used to
obtain the dependence of the degree of crystallinity on the preceding cooling rate by following the
enthalpies of melting for each sample. It is shown that the cooling rate required to keep the cooled
sample amorphous decreases with increasing cross-link density, i.e., crystallization process slows
down monotonically. Covalent bonds between polymer chains impede the crystallization process.
Consequently, FSC can be used as a rather quick and low sample consuming method to estimate the
degree of cross-linking of PCL samples.

Keywords: poly(ε-caprolactone); cross-linking; crystallization kinetics; fast scanning calorimetry;
differential scanning calorimetry

1. Introduction

Poly(ε-caprolactone) (PCL) is a biocompatible and biodegradable polymer with good mechanical
properties. It is produced by the polymerization of ε-caprolactone with an annual global production
of tens of thousands of tons [1]. The low melting point (around 60 ◦C) of PCL makes it a convenient
material for 3D printing and rapid prototyping. Prospective biomedical applications of PCL include
the manufacturing of implants, especially scaffolds for tissue, bone, and cartilage engineering,
surgical sutures, and other medical devices [2]. It is also possible to use PCL for the encapsulation
of pharmaceuticals in micro- and nanospheres, which can be administered through ingestion or
injection [3,4]. The rate of biodegradation of PCL in the human organism is lower than that of
some other biocompatible polyesters, such as polylactic and polyglycolic acids [2,5], making it more
applicable for long-term drug delivery systems.

The properties of PCL can be tailored by fabrication of PCL-based blends and composites, either by
copolymerization of caprolactone, with different amounts of polyhydric alcohols or hydroxy acids.
In addition, PCL is capable of cross-linking when treated with radical initiators. Cross-linked PCL
has a greater mechanical strength, does not flow, even at temperatures above its melting point,
and has a slower biodegradation rate [6], which may be useful to reduce the rate of drug release from
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encapsulated forms. A very interesting property of cross-linked PCL is its two-way shape memory
effect [7]. The polymer can remember one shape at a low temperature and another shape at a high
temperature and recover them after deformation for both heating and cooling, which is considered a
step towards the development of programmable matter.

PCL has a low glass transition temperature (around −60 ◦C) and stays in a semi-crystalline rubbery
state at room temperature. The degree of crystallinity of the polymer also affects its mechanical and
other physical properties, as well as the rate of biodegradation [8,9]. In order to control crystallinity,
an understanding of crystallization kinetics is important. The kinetics of crystallization of PCL and
some of its blends [10–13] have been studied previously using differential scanning calorimetry
(DSC), employing samples with masses of a few milligrams. However, during the processing
of polymers, they are cooled at high rates and their crystallization occurs at a high supercooling.
Conventional DSC is limited to hundreds K·min−1 cooling rates, which makes it impossible to study
fast crystallization processes at low temperatures. In the last decades, fast scanning calorimetry (FSC)
using chip sensors was developed, allowing heating and cooling of the polymer samples with rates up
to millions K·min−1 [14–20]. Such controlled high cooling rates became available due to a dramatic
reduction of the calorimeter and the sample size. Chip sensors use free standing silicon nitride
membranes with addenda heat capacities down to 100 pJ·K−1 at room temperature and comparable
small sample heat capacities [14,18,21]. FSC is able to determine the rate of crystallization, as well as
nucleation process, over a broad temperature range even for rapidly crystallizing polymers [22–25].
It was previously applied to study crystallization of pure PCL with various molecular masses [26,27]
and some of its composites [28]. However, no FSC data on crystallization kinetics of cross-linked PCL
have been reported up to now. Moreover, applications of FSC to study cross-linked polymers have yet
to be done.

Studies of the influence of the degree of cross-linking on the parameters of polymer phase
transitions can be useful for technological purposes as well as for the development of theoretical
descriptions of phase transitions. There is also an interest in quick, robust, and low sample consuming
methods to determine the cross-link density of polymer samples [29]. Thus, any physical property
of the polymer that shows a dependence on its cross-link density is of potential use. In the present
work, we study the crystallization behavior of PCL samples cross-linked using different amounts of
benzoyl peroxide (BPO) by means of both conventional DSC and FSC. Our goal was to analyze the
influence of the spatial density of cross-links between linear PCL chains on the characteristic features
of the crystallization process.

2. Materials and Methods

2.1. Synthesis of Cross-Linked PCL

In order to prepare the samples of cross-linked PCL, commercial PCL (Aldrich, St. Louis, MO, USA,
average Mn = 45,000 g·mol−1, density ρp = 1.142 g·cm−3) and benzoyl peroxide (BPO, Aldrich, 75%,
remainder is water as a stabilizer) were taken in different proportions and dissolved in dichloromethane
(Komponent-Reaktiv, Moscow, Russia, 99.85%). The solvent was evaporated, and the mixture was
heated up to 150 ◦C and kept for 60 min at this temperature to cross-link the sample.

2.2. Equilibrium Swelling Experiments

The degree of cross-linking of the obtained samples was measured using an equilibrium swelling
method. About 0.2 g of each sample were first swollen in boiling toluene (Komponent-Reaktiv, 99.85%)
using a Soxhlet extractor (Medsteklo, Klin, Russia) for 8 h and then left to equilibrate with toluene at
25 ◦C for 48 h. The mass m of the swollen PCL was determined, then the specimen was dried in vacuum
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and weighed again to record the mass of the dry polymer mp. For each BPO:PCL ratio, the experiment
was repeated four times with new cross-linked samples averaging the volume swelling ratio:

Q =
mp/ρp +

(
m − mp

)
/ρs

mp/ρp
, (1)

where ρs = 0.862 g·cm−3 and ρp = 1.142 g·cm−3 are the densities of toluene and the polymer, respectively.
Repetitive swelling experiments with the same sample do not significantly change the values of Q.
The spatial density of cross-links was calculated according to the Flory-Rehner equation [30]:

N =
−(ln(1 − vp) + vp + χv2

p)

Vs(v1/3
p − vp

2 )
, (2)

where vp = 1/Q is the volume fraction of PCL in swollen state, Vs = 1.06 × 10–4 m3·mol−1 is the molar
volume of the solvent (toluene), and χ is the Flory-Huggins interaction parameter. The value of χ can
be estimated according to the equation:

χ =
(δs − δp)

2Vs

RT
. (3)

Using the literature values of Hildebrand solubility parameters for PCL at 25 ◦C δp =
19.7 MPa1/2 [31] and toluene δs = 18.2 MPa1/2 [32] yields χ = 0.10.

2.3. Conventional DSC Experiments

The DSC curves of PCL and the cross-linked samples were recorded with a Mettler Toledo DSC823
(Mettler Toledo, Greifensee, Switzerland) and a Perkin Elmer Pyris 1 DSC instruments (PerkinElmer,
Waltham, MA, USA) at 5–200 K·min−1 scanning rates. Using these curves, the temperatures and
enthalpies of phase transitions were determined, and the kinetics of the non-isothermal crystallization
process were characterized.

2.4. FSC Experiments

Fast scanning calorimetry experiments were performed using a Mettler Toledo Flash DSC
1 instrument (Mettler Toledo, Greifensee, Switzerland) with the UFS1 sensor allowing up to
300,000 K·min−1 (5000 K·s−1) heating and cooling rates. In a typical experiment, 10–50 ng of the
specimen was put onto the chip sensor as shown in Figure 1, heated up to 150 ◦C and cooled down to
−80 ◦C several times in order to erase the thermal memory and achieve better thermal contact with the
chip sensor. After that, the specimen was repeatedly heated with the same fixed rate 300,000 K·min−1

and cooled with successively increasing rate from 30 to 300,000 K·min−1 (0.5 to 5000 K·s−1, see Figure 2
for a schematic representation of the thermal program).
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Figure 2. Schematic representation of the thermal program for the crystallization study of
cross-linked PCL.

3. Results

3.1. Equilibrium Swelling Experiments

Results of the swelling experiments for cross-linked PCL obtained from the mixtures with different
percentage of BPO are given in Table 1. As expected, the cross-link density increases with increasing
fraction of the radical initiator. The sample with 1% BPO has broken into small pieces during swelling,
and accurate weighing necessary to determine N became impossible. However, these pieces could not
be completely dissolved in toluene, which means that the sample is also cross-linked.

Table 1. Swelling ratios, cross-link densities, and enthalpies of fusion and crystallization at 10 K·min−1

cooling rate for the samples of PCL and cross-linked PCL obtained using various amounts of BPO.

Weight % of BPO Q N/mol·m−3 ∆fusH/J·g−1 ∆crystH/J·g−1

0 0 0 73.5 ± 2.1 −67.6 ± 1.9
1 72.9 ± 2.6 −64.3 ± 2.4
3 14.9 ± 0.5 48.4 ± 4 71.7 ± 1.8 −65.2 ± 2.1
5 8.2 ± 0.1 143.3 ± 4 68.7 ± 2.4 −65.2 ± 1.0
7 7.4 ± 0.2 177.6 ± 9 67.5 ± 2.0 −60.6 ± 1.7

10 6.7 ± 0.04 209.2 ± 3 57.3 ± 1.2 −49.2 ± 1.8

3.2. Conventional DSC Experiments

DSC curves recorded at 10 K·min−1 heating rate after cooling at 10 K·min−1 are shown in Figure 3.
The enthalpies of fusion and crystallization of the studied samples determined from these curves are
also given in Table 1. They show little dependence on the cross-link density. The difference between
the enthalpies of fusion and crystallization is caused by the difference in melting and crystallization
temperatures and in the heat capacities of crystalline and molten states, which are about 25 K and
0.22 J·g−1·K−1 [33] for pure PCL, respectively. With these values Kirchhoff’s law provides a correction
term of about 5.5 J g−1, explaining the value differences in Table 1. The values of the enthalpies of
fusion were used to calculate the masses of the samples in FSC experiments, which cannot be done by
direct weighing. According to different literature sources, 100% crystalline PCL has a melting enthalpy
from 135.4 to 156.8 J g−1 [34], which corresponds to 47%–54% crystallinity of the unmodified PCL
used for cross-linking. With increasing cross-linking density crystallinity decreases to 37%–42% for
N = 209 mol·m−3. All the studied samples undergo a glass transition in the temperature range −65 to
−60 ◦C.
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Kinetics of crystallization was studied by conventional DSC experiments. Non-isothermal
crystallization at constant cooling rate can be described by a modification of the Avrami model
made by Jeziorny [35]. The Avrami equation

ln(1 − Xc) = −Zttn (4)

or its linearized form
ln(− ln(1 − Xc)) = ln Zt + n ln t (5)

are commonly used for quantitative description of isothermal crystallization kinetics. Here Xc is
the degree of crystallinity changing in time during the crystallization process, n is the Avrami
exponent dependent on the mechanism of nucleation, and Zt is the crystallization rate constant.
For non-isothermal crystallization, the quantity

ln Zc = ln Zt/v (6)

where v is the scanning rate, is supposed to be constant for fast crystallizing polymers at least at
moderate scanning rates (5–20 K·min−1) typical for conventional DSC experiments. Zc is considered to
be a measure of the crystallization rate of a polymer. Another quantity that allows rapid estimation of
crystallization rate is crystallization half-time t1/2. It is the interval of time in which the sample cools
from crystallization onset temperature to the temperature at which half of the possible crystallinity is
achieved. Crystallization t1/2 decreases with increasing scanning rate. Thus, it should be compared
at the same cooling rate for different polymers. In Table 2, a comparison of the values of n and Zc

obtained from Avrami plots (see supplementary material for the plots), and t1/2 at 10 and 20 K·min−1

cooling rates is given. In all cases, the values of n equal 2 or slightly above. Zc has similar values for
both cooling rates for pure PCL and two samples with the lowest cross-link densities. At 10 K·min−1,
Zc decreases and t1/2 increases with increasing cross-link density N for all the samples except one
with the largest N. At 20 K·min−1, two samples with the largest cross-link density obtained using
7% and 10% BPO crystallize faster than the one obtained using 5% BPO. Such behavior means that
the crystallization process slows down with increasing cross-link density if we consider it at the
same temperature. However, the drop in crystallization temperature for 7% and 10% BPO sample
at 20 K·min−1 cooling rate is so large (possibly because of a different nucleation mechanism) that
non-isothermal crystallization takes place at much lower temperature and is likely to proceed faster
due to this reason.
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Table 2. Crystallization onset temperatures, half-times, and kinetic parameters of non-isothermal
crystallization determined using the modified Avrami method.

Weight % of BPO Cooling Rate/K·min−1 Tonset/K t1/2/s n Zc/min−n·K−1

0 10 307.2 27 2.05 1.13
0 20 303.6 13 1.96 1.14
1 10 306.1 33 2.04 1.09
1 20 302.3 22 1.96 1.08
3 10 304.9 33 2.01 1.09
3 20 301.3 22 1.96 1.08
5 10 303.6 45 2.12 1.02
5 20 299.9 29 2.01 1.06
7 10 302.5 50 2.39 1.01
7 20 298.6 29 2.33 1.07

10 10 293.0 37 2.24 1.07
10 20 289.2 23 2.21 1.09

3.3. FSC Experiments

DSC curves show that the process of crystallization of samples with higher density of cross-links
starts at lower temperature (see Table 2). With increasing cooling rate, the crystallization peak
position moves to lower temperatures and at some point its area starts to decrease due to incomplete
crystallization during rapid cooling. The temperature corresponding to the crystallization onset
changes almost linearly with the logarithm of the cooling rate (Figure 4) until it reaches certain value
when the sample has not enough time to crystallize and the peak disappears. This critical cooling rate,
vc, is another characteristic of crystallization kinetics. It is about 18,000 K·min−1 (300 K·s−1) [26] for
unmodified PCL, which is higher than the maximum possible rate for conventional DSC instruments.
FSC experiments allow to reach this and even higher cooling rates. However, it is difficult to determine
the critical rate precisely from the FSC cooling curves because the crystallization peak is very small
and the signal is noisy.
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Figure 4. Crystallization onset temperature Tonset against the logarithm of the cooling rate for PCL and
cross-linked PCL

Therefore we made a number of scans with different cooling rates ranging from 30 to
300,000 K·min−1 immediately followed by reheating scans with a constant scanning rate of
300,000 K·min−1. Heating with this rate results in curves without the peak of cold crystallization. Thus,
the melting enthalpy characterizes the total amount of crystalline phase in the polymer after cooling.
The values of the melting enthalpies decrease with increasing preceding cooling rate and approach
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zero when the crystallization peak disappears in the cooling curves (Figure 5). Nevertheless, it is more
precise and convenient to determine the cooling rate v1/2 at which the melting enthalpy reaches half of
its maximum value measured at the slowest preceding cooling rate.
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Figure 5. Dependence of the normalized enthalpy of melting at 300,000 K·min−1 (5000 K·s−1) heating
rate on the previous cooling rate for PCL with different cross-link densities. Solid and dashed lines
show the way to determine v1/2.

The values of v1/2 are found to decrease monotonically with increasing cross-link density
(Figure 6). The results were reproduced with several samples for each cross-link density.
Covalent bonds between PCL chains seem to impede the crystallization process. This is similar to a
conclusion made for some other cross-linked polymers from theoretical [36] and experimental [37–39]
considerations. Such monotonic dependence makes measuring v1/2 by FSC a prospective
way to characterize the degree of cross-linking of PCL with minimum sample consumption.
Crystallization onset temperatures from conventional DSC requiring somewhat larger amounts of
sample may also be suitable for this purpose.
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4. Conclusions

Crystallization of cross-linked PCL was studied by means of conventional and fast scanning
calorimetry. FSC clearly shows that crystallization rate decreases with increasing spatial density
of cross-links. This result is in general agreement with the analysis of conventional DSC curves.
However, at high crystallization temperatures the difference in crystallization rates of the samples of
PCL with different cross-link densities is small, while FSC method shows quite a large change in the
rates of crystallization with varying cross-link density at high supercooling. In the further studies,
this difference can be a subject of more detailed analysis in isothermal crystallization experiments
using FSC.

The magnitude of the cross-link density is difficult to obtain experimentally. Equilibrium swelling
remains the most common method to determine it, despite its results depending on the value of the
Flory parameter, which is unavailable for many polymer–solvent systems, and the Flory-Huggins
theory of polymer solutions being quite a rough approximation itself. Furthermore, swelling studies
require precise determination of the mass or volume of the swollen sample, which can be very imprecise
and require large polymer samples. Thus, the search for alternative methods to estimate the cross-link
densities remains an actual problem. A few methods based on the mechanical properties of the
polymer, Raman, and NMR spectroscopy were previously suggested [29,40–42]. Our study shows that
it is possible to use FSC for this purpose by determining the cooling rate at which half of the possible
crystallinity is achieved. FSC requires a very small amount of sample that can be cut even from the
final product.

Supplementary Materials: The supplementary material containing the Avrami model plots is available online at
http://www.mdpi.com/2073-4360/10/8/902/s1.
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