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Abstract: The chain length distribution (CLD) of a reversible deactivation radical polymerization
at full conversion is shown to be a negative binomial distribution with parameters that are simple
functions of the number-average degree of polymerization and either the chain transfer constant (in
the case of polymerizations that incorporate a reversible chain transfer step) or the concentrations
of dormant polymer chains and deactivating agent and the rate constants of propagation and
deactivation (other types of RDRP). Expressions for the CLD at intermediate conversions are also
derived, and shown to be consistent with known expressions for the number-average degree of
polymerization and dispersity. It is further demonstrated that these CLDs are well-approximated
by negative binomial distributions with appropriate choice of parameters. The negative binomial
distribution is thus a useful model for CLDs of reversible deactivation radical polymerizations.
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1. Introduction

Reversible deactivation radical polymerization (RDRP) encompasses a range of polymerization
techniques developed over the last 25 years that permit the synthesis of well-defined, relatively
narrowly-dispersed polymers via a radical process. The fundamental feature of RDRP is that dormant
polymer chains are reversibly activated to form propagating radicals which can grow by adding one
or more monomer units before returning to the dormant state (Scheme 1) [1].

 

Polymers 2018, 10, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/polymers 

Article 

The Chain Length Distribution of an Ideal Reversible 
Deactivation Radical Polymerization 
Simon Harrisson 

Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Paul Sabatier, 118 route de 
Narbonne, 31062 Toulouse CEDEX 9, France; harrisson@chimie.ups-tlse.fr; Tel.: +33-5-6155-6968 

Received: 18 July 2018; Accepted: 4 August 2018; Published: 8 August 2018 

Abstract: The chain length distribution (CLD) of a reversible deactivation radical polymerization at 
full conversion is shown to be a negative binomial distribution with parameters that are simple 
functions of the number-average degree of polymerization and either the chain transfer constant (in 
the case of polymerizations that incorporate a reversible chain transfer step) or the concentrations 
of dormant polymer chains and deactivating agent and the rate constants of propagation and 
deactivation (other types of RDRP). Expressions for the CLD at intermediate conversions are also 
derived, and shown to be consistent with known expressions for the number-average degree of 
polymerization and dispersity. It is further demonstrated that these CLDs are well-approximated 
by negative binomial distributions with appropriate choice of parameters. The negative binomial 
distribution is thus a useful model for CLDs of reversible deactivation radical polymerizations. 

Keywords: polymer; reversible deactivation radical polymerization; chain length distribution; 
negative binomial distribution 

 

1. Introduction 

Reversible deactivation radical polymerization (RDRP) encompasses a range of polymerization 
techniques developed over the last 25 years that permit the synthesis of well-defined, relatively 
narrowly-dispersed polymers via a radical process. The fundamental feature of RDRP is that dormant 
polymer chains are reversibly activated to form propagating radicals which can grow by adding one 
or more monomer units before returning to the dormant state (Scheme 1) [1]. 

P S+PS

P O N O NP +

P MS+PS

P +

+ M

PBr + CuBr/L CuBr2/L

P PS+PS + P

P S
S

P +

Z

+ P P S
S

Z

reversible termination
(e.g. NMRP, ATRP)

reversible chain 
transfer (e.g. RAFT)

ka

kd

ka

kd

ktr

ktr

 
Scheme 1. General mechanism of the reversible deactivation step in reversible deactivation radical 
polymerization. 
Scheme 1. General mechanism of the reversible deactivation step in reversible deactivation
radical polymerization.
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RDRP techniques are widely used to generate highly functional materials with complex
architectures (e.g., block, star, comb, etc.). In particular, several recent studies have applied RDRP to
the preparation of highly complex structures containing large numbers of functional blocks [2–9].

The true precision of such complex structures is difficult to quantify. One approach is to assume
near-perfect control of the polymerization, with the independent addition of monomers to each
chain [10]. This is analogous to an anionic polymerization, and results in a Poisson distribution of
chain lengths, with dispersity, Ð, given by Equation (1) [11].

Ð = 1 + 1/DPn (1)

In reality, monomers do not add independently of one another, as multiple monomers may be
added during a single activation-deactivation cycle (with rate constant kp). Assumption of a Poisson
chain length distribution (CLD) will thus lead to an underestimation of the true degree of structural
variation. It would be useful to have a simple model that more accurately reflects the CLD of polymers
produced by RDRP techniques.

Early work on RDRP kinetics led to the derivation of a formula for the dispersity of polymers
produced by RDRP processes as a function of conversion, c (Equation (2)) [12–14].

Ð = 1 + 1/DPn +

(
2− c

c

)(
kp[PS]
kd[S∗]

)
(2)

In Equation (2), [S*] is the concentration of deactivating agent (assumed to be constant with rate
constant of deactivation kd). This could represent nitroxide radicals in nitroxide-mediated radical
polymerization (NMRP, S* represented as S. in Scheme 1) [15], copper(II) species in atom transfer radical
polymerization (ATRP, S* represented as MS in Scheme 1) [16], or reversible addition-fragmentation
chain transfer agents (RAFT agents) in RAFT polymerization (in this case S* and PS are identical) [17].

In many forms of RDRP, the deactivating agent is derived from the dormant polymer (e.g., an
alkyl halide in ATRP or alkoxyamine in NMRP), designated as PS in Equation (2) and Scheme 1. In
reversible chain transfer polymerizations such as RAFT polymerization, the deactivating agent and
the dormant polymer are identical. If the ratio of [S*] to [PS] is assumed to be constant (equal to 1 for
reversible chain transfer polymerizations), an apparent chain transfer constant, CS, can be defined
(Equation (3)).

CS =
kd[S∗]
kp[PS]

(3)

Substitution into Equation (2) gives Equation (4) [12,13].

Ð = 1 + 1/DPn +

(
2− c

c

)
·1/CS (4)

This simple formula has been extended by Zhu et al. to account for side reactions such as
irreversible termination, which cause broadening of the CLD as the reaction proceeds to high
conversion [18].

While numerous expressions exist for the dispersity under more or less realistic assumptions,
there are relatively few examples of expressions for the entire CLD [19]. Gold proposed a modified
Poisson distribution which takes into account unequal initiation and propagation rates, but assumes the
independent addition of monomers [20]. Muller et al. proposed an expression for the CLD of an RDRP
process with slow equilibration between active and dormant species, but assumed a constant monomer
concentration [21]. Tobita [22,23] has derived an expression for the CLD of an RDRP continuous stirred
tank reactor (constant monomer concentration) process as a hypergeometric function combining the
Poisson and geometric (most probable) distributions. Finally, Konkolewicz et al. have developed a
recursive equation for the CLD of a batch RDRP by convoluting Poisson and geometric distributions
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while taking into account the changing monomer concentration in the batch process [24–26]. The
resulting CLD is given by Equation (5) [24].

Pr(DP = k) =
∞

∑
j=0

µ
j
decape−µdecap

j!
Pr(DP = k|N = j ) (5)

In Equation (5), µdecap is the mean number of activation cycles that the chains have undergone,
while Pr(DP = k|N = j) represents the probability that a chain that has been activated j times has a
degree of polymerization of k. This probability is given by the recursive formula of Equation (6).

Pr(DP = k|N = j ) =
m
∑

i=0
Pr(DP = k− i|N = j− 1 ) [M]0

CS[S∗ ]

(
1− 1

CS

)j−1

Pr(DP = k|N = 0 ) =

{
1, k = 0
0, k > 0

(6)

In this article, a similar approach to that of Tobita and Konkolewicz et al. is used to show that the
CLD of a polymer produced by an ideal RDRP batch process at full conversion is given by the negative
binomial distribution with parameters CS and DPn/(DPn + CS) (Equation (7)).

Pr(DP = k) =
Γ(k + CS)

k!Γ(CS)

(
CS

DPn + CS

)CS
(

DPn

DPn + CS

)k
(7)

The distribution at intermediate conversions is also derived, as well as parameters for a negative
binomial distribution that closely approximates the true distribution. First derived in 1714 [27],
the negative binomial distribution is one of the fundamental distributions of statistics, and is frequently
used to model discrete data whose variance is greater than their mean [28]. The considerable body of
statistical literature on this distribution could thus be applied to the study of polymer CLDs.

2. Materials and Methods

All simulations were carried out using Excel 2013 software on a desktop computer. The code used
to generate simulated distributions of 10,000 chains is given in the Supporting Information.

3. Results

We define an ideal RDRP as one in which all rate constants are independent of chain length and
conversion, and no termination or other side reactions take place.

The rate of propagation is given by Equation (8).

Rp = −d[M]

dt
= kp[M][P∗] (8)

In this equation, [M] represents the monomer concentration, and [P*], the concentration of active
chains (assumed to be constant).

In terms of conversion, c:

Rp = [M]0
dc
dt

= kp[M]0(1− c)[P∗] (9)

c = 1− e−kp[P∗ ]t (10)

Chain deactivation occurs at a constant rate, Rd, given by Equation (11).

Rd = kd[S
∗][P∗] (11)
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The probability, p, that an active chain will propagate is given by

p =
Rp

Rp + Rd
=

kp[M]

kp[M] + kd[S∗]
=

[M]/[PS]
[M]/[PS] + kd[S∗]/kp[PS]

(12)

Defining T as the target degree of polymerization at full conversion, equal to [M]0/[PS], we have

p =
T(1− c)

T(1− c) + CS
(13)

In a single activation-deactivation cycle, an active chain will add n monomers, where n is a
geometrically distributed random variable [22–26]. The probability that k monomers are added in a
single activation/deactivation cycle at time t is given by

Pr(n = k)t = pk(1− p) (14)

As the concentration of monomer changes during the polymerization, the instantaneous
distribution of n also varies. The total distribution of n, representing all activation/deactivation
cycles from the beginning of the polymerization (t = 0) to a time t corresponding to conversion c, is
obtained by integrating with respect to time:

Pr(n = k) =

∫ t
0

(
T(1−c)

T(1−c)+CS

)k( CS
T(1−c)+CS

)
dt∫ t

0 dt
(15)

In terms of conversion, this is

Pr(n = k) =

∫ c
0

(
T(1−c)

T(1−c)+CS

)k( CS
T(1−c)+CS

)
dc

1−c

− ln (1− c)
(16)

Evaluation of the integral gives

Pr(n = k) =

 1 +
ln
(

1−pf
1−p0

)
ln (1−c) , k = 0

(p0)
k−(pf)

k

−k ln (1−c) , k ≥ 1
(17)

where

p0 =
T

T + CS
, pf =

T(1− c)
T(1− c) + CS

This distribution has a probability generating function [29], Gn(z), given by Equation (18):

Gn(z) =
∞

∑
k=0

zkPr(n = k) = 1 +
ln
[
(1−p0z)(1−pf)
(1−p0)(1−pfz)

]
ln (1− c)

(18)

Throughout the polymerization, activation/deactivation cycles occur at a constant rate. The
number, N, of activation/deactivation cycles experienced by each chain is Poisson distributed, with an
expected number of cycles per chain equal to the total number of cycles divided by the total number of
chains [22–26].

E(N) =
kd[S∗][P∗]t

[PS]
= −CS ln (1− c) (19)

The corresponding probability generating function GN(z) is given by Equation (20):

GN(z) = e−CS ln (1−c)(z−1) (20)
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Each chain consists of N segments of length n1, n2, . . . , nN, where ni are independent, identically
distributed random variables with probability generating function Gn(z) and N is Poisson-distributed
with expected value of −CSln(1 − c).

The distribution of total chain lengths, Y = n1 + n2 + . . . + nN, is thus a compound Poisson
distribution with probability generating function GY(z) given by Equation (21):

GY(z) = GN(Gn(z)) =
[
(1− p0)(1− pfz)
(1− p0z)(1− pf)

]CS

(21)

The probability mass function of the CLD can be obtained from the derivatives of GY(z) evaluated
at z = 0, leading to the recursive formula of Equation (22):

Pr(Y = k) =
G(k)

Y (0)
k!

=


(

1−p0
1−pf

)CS
=
[

T(1−c)+CS
T+CS

]CS
, k = 0

CS
k

k
∑

i=1
((p0)

i − (pf)
i) Pr(Y = k− i), k ≥ 1

(22)

Figure 1 shows the comparison of calculated CLDs obtained from Equation (22) and simulated
CLDs for CS of 0.5 and 5 and conversions of 25–100%. Additional comparisons of calculated and
simulated CLDs for a wider range of chain transfer constants may be found in the Supporting
Information (Figures S1–S4).

The expected value and dispersity of the CLD can also be obtained from GY(z), and give

DPn = lim
z→1−

G′Y(z) = cT (23)

Ð = lim
z→1−

(
G′′Y(z) + G′Y(z)

[G′Y(z)]
2

)
= 1 +

1
DPn

+

(
2− c

c

)
·1/CS (24)

Equation (24) is identical to the expression derived by Müller et al. [13] (Equation (4)) using the
method of moments [30].
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Figure 1. Comparison of calculated CLDs (solid lines) with simulated distributions (open circles, 10,000
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The above expressions include chains of length 0, which would not normally be included in the
determination of molecular weight. Corrected values for DPn and Ð can be obtained by excluding
chains of zero length [13] to give:

DPk 6=0
n =

cT(
1−

[
T(1−c)+CS

T+CS

]CS
) (25)
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Ðk 6=0 =

(
1 +

1
cT

+
2− c
c.CS

)(
1−

[
T(1− c) + CS

T + CS

]CS
)

(26)

As the conversion approaches 1, pf approaches 0, and GY(z) approaches:

lim
X→1

GY(z) =
[
(1− p0)

(1− p0z)

]CS

(27)

This is the probability generating function of a negative binomial distribution with parameters CS

and p0. Thus, the CLD of a polymer prepared under ideal RDRP batch conditions at full conversion
is a negative binomial distribution, with probability mass function given by Equation (7), number
average chain length equal to T, and dispersity given by Equation (28).

Ð = 1 + 1/DPn + 1/CS (28)

4. Discussion

While the negative binomial distribution strictly describes the CLD only at full conversion, it
also provides a good approximation to CLDs at intermediate conversions. The full CLD (including
zero-length chains) is approximated by the random variable Z with probability mass function given by
Equation (29), where Z is a mixture of a negative binomial distribution with parameters ρ and π and a
constant random variable representing unreacted chains:

Pr(Z = k) =


(1− c)CS +

(
1− (1− c)CS) (1− π)ρ, k = 0

(1− (1− c)CS)

(
k + ρ− 1

k

)
(1− π)ρπk, k ≥ 1

ρ =
((

1 + 2−c
c.CS

)(
1− (1− c)CS

)
− 1
)−1

π = 1−
(

1 + cT + T(2−c)
CS
− cT

1−(1−c)CS

)−1

(29)

As shown in Figure 2, the approximation is best for low conversions (when the CLD is
approximately geometric), high conversions (when the CLD is approximately negative binomial)
and CS close to 1 (when the CLD is approximately geometric) or &50 (when the CLD is approximately
Poisson). A comparison between approximate and calculated distributions for a wide range of CS

and T is given in the Supporting Information (Figures S5–S8). The quality of the approximation is
comparable to that of the commonly-used [31–34] Schulz-Zimm distribution [35,36] (Equation (30)).

n(k) = kz−1yze−yk

Γ(z)
z = 1

Ð−1 , y = z
DPn

(30)

Comparisons of the negative binomial and Schulz-Zimm distributions are presented in the
Supporting Information, Table S1, Figures S9–S12.

The results obtained in this work assume an initial degree of polymerization of 0, and are thus
valid for chains grown from a small molecule initiator or chain transfer agent, or individual blocks of a
block copolymer. The total CLD of a block copolymer is given by the sum of the CLDs of its individual
blocks. This sum is not a negative binomial distribution unless all blocks were polymerized to full
conversion and DPn/(DPn + CS) is the same for each block. In real polymerizations, the presence of side
reactions such as termination and irreversible chain transfer may result in significant deviations from
the ideal case considered here [18]. However, when relatively short chains are targeted, such reactions
may be disregarded [6,7]. Thus the negative binomial distribution may usefully serve as a model for
the CLD of short blocks within multiblock copolymers prepared by RDRP [4–9]. Additionally, the
simplicity of the negative binomial distribution and its implementation in readily-available software
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such as Excel™ facilitates the visualization of CLDs as an aid to teaching or comprehension. This allows
features such as the number of unreacted chains or the relative proportions of high and low molecular
weight polymer to be estimated, and provides a more nuanced picture of the overall CLD than the
dispersity alone.
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5. Conclusions

The chain length distribution of an ideal RDRP at full conversion is given by a negative binomial
distribution with parameters CS and DPn/(DPn + CS). Unlike previously derived expressions for the
CLD of an RDRP process, this distribution can be expressed as a simple function of two fundamental
parameters of the polymerization. This simplicity is achieved, however, at the cost of assumptions
such as the complete absence of termination, which will not hold in real polymerizations. Nevertheless,
such a simple model will be useful in situations where side-reactions may be assumed to be negligible,
and complements more complex models such as those of Tobita [22,23] and Konkolewicz et al. [24–26]
that deal with more realistic systems that incorporate irreversible termination and transfer reactions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/8/887/s1.
Simulated CLDs for a wide range of CS and targeted degrees of polymerization, accompanied by calculated CLDs
and negative binomial approximations. Comparison of goodness of fit of negative binomial approximation and
Schulz-Zimm distribution to calculated CLDs. Details of procedure used to simulate the CLD.
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