

1	Supplementary data for:
2	Furanoate based nanocomposites: a case study using
3	poly(butylene 2,5-furanoate) and poly(butylene 2,5-
4	furanoate)-co-(butylene diglycolate) and bacterial
5	cellulose
6 7	Marina Matos ¹ , Andreia F Sousa ^{1,*} , Nuno HCS Silva ¹ , Carmen S R Freire ¹ , Márcia Andrade ² , Adélio Mendes ² and Armando J D Silvestre ¹
8 9	¹ CICECO – Aveiro Institute of Materials, Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; andreiafs@ua.pt
10 11 12	 ² Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto, Portugal * Correspondence: andreiafs@ua.pt; Tel.: +351 234 370 200
13	1 1 '

14	Table of Contents	
15	1. Structure and morphology	2
16	1.1 ¹ H NMR	2
17	1.2 ATR-FTIR	4
18	1.3 SEM	5
19	2. Contact angles with water	6
20	3. Crystallinity and thermal behaviour	6
21	3.1 X-ray diffraction (XRD) analysis	6
22	3.2 Differential scanning calorimetry (DSC)	7
23	3.3 Thermogravimetric analysis (TGA)	9
24	3. Tensile tests	11
25		
26		

Polymers 2018, 10, 810

1. Structure and morphology

29 1.1 ¹H NMR

Scheme S1. Chemical structures of the triad units of the PBF-co-PBDG copolyesters.

Figure S1. ¹H NMR spectra in TFA-*d* of PBF-co-PBDG copolyesters and related PBF and PBDG
 homopolyesters.

Table S1. Main ¹H NMR resonances of PBF-co-PBDG copolyesters and related PBF and PBDG homopolyesters.

			integration area						
δ / ppm	assignment	triads	PRF	PBF-co-PBDG-					PRDC
_			101	90/10	75/25	50/50	25/75	10/90	TDDG
7.30	f; CH (FDCA)	F-BD-F; F-BD-DG	1.00	1.00	1.00	1.00	1.00	1.00	-
4.50	a4; OCH2 (BD)	F-BD-F	2.00	1.85	1.72	1.52	1.60	2.13	_
4.45	a2, a3;OCH2 (BD)	F-BD-DG	-	0.31	0.85	1.16	3.89	13.80	-
4.36	c; CH2OCH2 (DGA)	DG-BD-DG	-	0.32	0.76	1.51	6.75	43.67	1.00
4.30	a1; OCH2 (BD)	DG-BD-DG	-	0.06	0.18	0.56	4.97	38.27	1.00
1.90	b4; OCH2CH2 (BD)	F-BD-F	2.01	1.86	1.72	1.52	1.60	1.90	-
1.83	b2, b3; OCH2CH2 (BD)	F-BD-DG	-	0.33	0.85	1.29	3.93	11.89	_
1.80	b1; OCH2CH2 (BD)	DG-BD-DG	-	0.05	0.13	0.59	4.94	38.76	1.01

Table S2. Comparison between the initial molar feed percentage and the real molar percentage of furanoate and diglycolate moieties.

45	(co)polymer	F/DGfeed (mol%)	F/DG (mol%)
46	PBF	100/0	100.0/0
47	PBF-co-PBDG-		
47	90/10	90/10	86.2/13.8
48	75/25	75/25	72.5/27.5
	50/50	50/50	57.0/43.0
49	25/75	25/75	22.9/77.1
	10/90	10/90	4.4/95.6
50	PBDG	0/100	0/100.0

1.2 ATR-FTIR

Figure S2. ATR FTIR spectra of the acetylated bacterial cellulose (Ac-BC) and of the unmodified 56 bacterial cellulose (BC) fibres.

 $\begin{array}{ccc} 58 & & & \lambda/\,cm^{\cdot1} \\ \hline 59 & Figure \ S3. \ ATR \ FTIR \ spectra \ of \ PBF-co-PBDG \ copolyesters \ and \ of \ PBF \ and \ PBDG \ related \\ \hline 60 & homopolyesters. \end{array}$

64 **Figure S4.** ATR FTIR spectra of all Ac-BC/PBF-co-PBDG nanocomposites.

66 1.3 SEM

67

68 Figure S5. SEM micrographs of Ac-BC film and of the nanocomposites of the (a) surface (500 x and 5.0 kx) and

 $69 \qquad (b)\ cross-section\ (800\ x\ and\ 5.0\ kx).$

73

72 2. Contact angles with water

				CAwa	_{ater} / °				
Sample	time / s								
	0	5	10	15	20	25	30	40	
	$82.10 \pm$	$71.09 \pm$	69.22 ±	67.93 ±	67.45 ±	66.83 ±	66.48 ±	65.97	
Ас-ВС	1.93	2.34	3.05	3.33	3.03	3.32	3.42	3.60	
	$116.40 \pm$	102.43 ±	101.96 ±	$100.57 \pm$	98.14 ±	97.37 ±	96.89 ±	96.45	
Ас-ВС/РВР	2.11	5.03	4.52	5.37	4.36	4.05	3.84	4.04	
Ac-BC/PBF-co-	$105.10 \pm$	87.36 ±	$83.01 \pm$	82.84 ±	82.41 ±	82.44 ±	$82.04 \pm$	81.67	
PBDG-90/10	0.77	2.41	3.30	3.30	3.25	3.59	3.62	3.57	
Ac-BC/PBF-co-	$101.85 \pm$	85.47 ±	$78.85 \pm$	$77.40 \pm$	75.97 ±	73.96 ±	73.61 ±	72.28	
PBDG-75/25	2.08	3.87	3.51	3.70	3.82	3.62	3.26	3.82	
Ac-BC/PBF-co-	86.97 ±	72.32 ±	69.39 ±	67.24 ±	$65.30 \pm$	$64.04 \pm$	63.62 ±	62.15	
PBDG-50/50	2.49	2.75	3.11	2.81	2.51	2.67	2.74	2.75	
Ac-BC/PBF-co-	$74.29 \pm$	53.56 ±	$50.50 \pm$	$48.82 \pm$	47.46 ±	46.85 ±	$46.26 \pm$	45.10	
PBDG-25/75	1.37	3.82	3.45	3.15	2.34	2.21	2.05	1.66	
Ac-BC/PBF-co-	$70.40 \pm$	46.56 ±	45.48 ±	44.81 ±	44.61 ±	44.37 ±	44.27 ±	43.36	
PBDG-10/90	3.96	1.71	1.78	1.78	1.48	1.70	1.73	1.83	
	73.65 ±	54.04 ±	49.84 ±	$48.18 \pm$	47.57 ±	46.74 ±	46.69 ±	45.96	
Ac-BC/ PBDG	1.67	4.32	2.73	2.06	1.37	1.79	1.95	1.92	

Table S3. Water contact angles of the composites films measured at several points in time for 40 s.

74

75

76

77 **3.** Crystallinity and thermal behaviour

78 3.1 X-ray diffraction (XRD) analysis

- 81
- 82

83	3.2 Differential	scanning	calorimetry	(DSC)
----	------------------	----------	-------------	-------

84 Table S4. Important thermal values of the (co)polyesters and Ac-BC obtained by DSC and TGA85 analyses.

sample		$T_g / {}^{\circ}\!C$	$T_{cc} / °C$	$T_m / °C$	Td, 5% / $^{\mathrm{o}}\mathrm{C}$	$T_d / °C$
PBF		46.1	-	173.9	348.7	380.5
PBF-co-PBD	G-		-			
90	/10	25.1	-	161.7	328.6	368.4
75	/25	13.8	81.5	136.2	303.1	360.3
50	/50	-2.7	-	93.2	322.1	365.3
25	/75	-17.6	-	48.0	305.4	378.1
10	/90	-26.4	-	48.0	297.5	362.1
PBDG		-26.6	-	65.6	294.9	360.1
Ac-BC		-	-	-	278.2	363.0

88 Figure S7. DSC traces of the PBF-co-PBDGs and related PBF and PBDG homopolyesters.

89

91 3.3 Thermogravimetric analysis (TGA)

Figure S8. Thermogravimetric curves of the PBF-co-PBDGs and related PBF and PBDG
 homopolyesters: TGA (a) and (b) DTG.

Figure S9. Thermogravimetric curves of the nanocomposites and Ac-BC: TGA (a) and (b) DTG.

99 3. Tensile tests

100**Table S5.** Young's modulus, elongation at breakage and tensile strength of the nanocomposites and101of Ac-BC component.

sample ¹	Young's modulus / MPa	Elongation at break (%)	Tensile strength / MPa
Ac-BC	1172.8	1.57	14.51
Ac-BC/PBDG	499.8	8.85	11.05
Ac-BC/PBF-co-			
PBDG-			
90/10	1239.3	0.62	7.62
75/25	447.8	0.99	6.32
50/50	360.2	7.19	7.36
25/75	30.3	25.02	6.22
10/90	374.4	7.28	8.07

102 ¹ Ac-BC/PBF nanocomposite was not evaluated by tensile testing due to its brittle character, which broken easily

103 precluding its test.