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Abstract: The influence of SiO2/TiO2 nanocomposites on the performance of organic light-emitting
diodes (OLEDs) based on poly(9,9′-di-n-octylfluorenyl-2,7-diyl) (PFO) and various amounts of
poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) was investigated. Prior to
the fabrication of the OLEDs on indium-tin oxide (ITO) substrates, the hybrids of PFO/MEH-PPV,
in the presence and absence of the SiO2/TiO2 nanocomposites, were prepared via the solution
blending technique. Improvement of the performances of the devices in the presence of the SiO2/TiO2

nanocomposites was detected. The existence of the SiO2/TiO2 nanocomposites led to better
charge carrier injection and, thus, a significant reduction in the turn-on voltage of the devices.
The enhancement of MEH-PPV electroluminescence peaks in the hybrids in the presence of
SiO2/TiO2 nanocomposites is not only a result of the Förster resonance energy transfer, but also of
hole-electron recombination, which is of greater significance. Moreover, the existence of the SiO2/TiO2

nanocomposites led to a shift of the CIE chromaticity coordinates of the devices.

Keywords: organic light-emitting diodes (OLEDs); PFO/MEH-PPV hybrids; SiO2/TiO2 nanocomposite;
optoelectronic properties

1. Introduction

There are many advantages that make conjugated polymers attractive as emissive materials in
organic light-emitting diode (OLED) devices. Examples of these advantages are low operating voltage,
low cost of fabrication, ease of processing and manufacturing, flexibility, capability to build devices
with large-area and good solubility in common organic solvents and photothermal stability [1–4].
OLEDs with various colors can be achieved by several techniques, such as: (i) building bilayers in
a tandem diode structure [5,6]; (ii) using a single polymer with multiple functional groups [7,8]; (iii)
blending of conjugated polymers [9,10]; (iv) mixing polymers with nanostructured materials [11,12],
quantum dots [13,14] and small phosphorescent [15,16] or fluorescent [8,17] molecules.

For display applications, polyfluorene (PF) and polyphenylene vinylene (PPV) derivatives have
emerged as an attractive class of conjugated polymers because of their good processability and high
charge carrier mobility coupled with efficient electroluminescence [18,19]. OLEDs based on hybrids
of poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO), which acts as a donor material and has a relatively
large band gap, and poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV), acting as
an acceptor material, have attracted research attention [20,21]. By combining two conjugated polymers
with contrasting electrical properties, OLEDs based on hybrids of conjugated polymers, as emissive
layers, offer numerous advantageous features compared to single component layers, with luminance
efficiency being improved by balancing electron and hole injection [22,23]. In spite of these features, hybrid
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components require further precautions because a material that emits at a lower energy may also absorb
in the range of the spectral emission of another material that emits at a higher energy [9,24], resulting in
nonradiative energy transfer processes (Förster resonance energy transfer mechanism) [25,26]. The band
intensity of the higher energy emission may be reduced or even eliminated when the nonradiative energy
transfer processes is very efficient. Nevertheless, both an increase in the luminous performance and
color tuning can be achieved concurrently by the careful choice of the concentration of the lower energy
material [9] or by incorporation of suitable nanostructure materials in the hybrids [27,28]. Therefore, it is
necessary to understand the emission dynamics of the hybrid materials to interpret the performance of
the device.

In a recently-published report, it was demonstrated that the emission intensities of pure SiO2

and TiO2 nanoparticles can be enhanced by mixing them to form SiO2/TiO2 nanocomposites [29].
This enhancement in the emission intensities can be attributed to the presence of oxygen vacancies and
the trapped electrons at the interface of SiO2/TiO2 nanocomposite thin films [29]. Therefore, it can be
hypothesized that the incorporation of SiO2/TiO2 nanocomposites into the hybrids of PFO/MEH-PPV
will lead to distinctive enhancement in OLED device performance.

In the current study, the enhancement of OLED performance based on a hybrid of donor (PFO)
and various acceptor (MEH-PPV) amounts in the presence and absence of SiO2/TiO2 nanocomposites
will be characterized in terms of electroluminescence spectra (EL), current-voltage measurements,
turn-on voltage and color measurements.

2. Materials and Methods

Both poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV, MW = 40,000 g/mol)
and poly(9,9′-di-n-octylfluorenyl-2.7-diyl) (PFO, MW = 58,200 g/mol) were purchased from Sigma
Aldrich, Saint Louis, MO, USA, and used as received without further purification. The SiO2/(20%TiO2)
was prepared as described in a recent report [29]. Prior to fabrication of the thin films, all materials were
dissolved in toluene, which was purchased from Fluka (Buchs, Switzerland).

The hybrids of PFO/MEH-PPV with various weight ratios of MEH-PPV (0.1, 0.5, 1.0, 5.0 and 10 wt.%),
in the presence and absence of a fixed ratio of 10% SiO2/(20% TiO2) nanocomposites, were prepared by
the solution blending technique. Before fabrication of the OLEDs, the indium-tin oxide (ITO) substrates
(1.2 cm× 2 cm) were treated as reported in recent work [30]. Then, the prepared materials were employed
as emissive layers by deposition onto ITO substrates using spin coating (2000 rpm for 20 s), followed by
annealing at 120 ◦C in a vacuum oven to remove the solvent. To deposit an aluminum cathode, the ITO
substrates with the emissive layers were moved to an electron beam chamber, where the deposition
rate was 2 Å/min at a chamber pressure of 2.5 ×10−6 Pa. For all the OLED devices, the thickness of
the fabricated Al cathode was 150 nm, and the active area of each device was 0.076 cm2.

A Keithley 238 measurement system (Cleveland, OH, USA) was used for I-V measurements,
and an HR2000 Ocean Optics Spectrometer (Metric Drive, FL, USA) was used for EL and color measurements.

3. Results and Discussion

3.1. Current-Voltage Measurements

Figure 1 shows the current-voltage (I-V) characteristics of pristine MEH-PPV and PFO/MEH-PPV
hybrid-based OLED devices in both the absence and presence of SiO2/TiO2 nanocomposites. It can be
observed that the current increased in the presence of the SiO2/TiO2 nanocomposites, while the turn-on
voltage decreased, which demonstrated the improvement of the performance of the OLED device.
The higher voltage (>10 V) led to enhancement of the light emissive layer resistivity, and then,
the currents rapidly decreased. Nevertheless, the incorporation of SiO2/TiO2 nanocomposites resulted
in an increase in the current of more than 40-times compared to that measured in their absence.
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Figure 1. Current-voltage (I-V) measurements of the OLEDs based on hybrids of PFO/MEH-PPV.  
(a) In the absence of SiO2/TiO2 nanocomposites; (b) in the presence of SiO2/TiO2 nanocomposites. The 
inset shows the I-V curve of the OLEDs based on pristine MEH-PPV. 

The higher current can be attributed to a reduction in the resistance and activation energy of the 
emissive layer [20,31]. The lower turn-on voltage of injection current in the presence of SiO2/TiO2 
nanocomposites compared to their absence can be attributed to a better charge  
carrier injection [28,32]. 

However, the gradual reduction in current upon incrementing the MEH-PPV content (more than 
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within the hybrids, more holes and electrons were trapped, and consequently, lower current (and 
higher resistivity) was observed. This current reduction can be ascribed to MEH-PPV trapping both 
holes and electrons in PFO and instantaneously holding back their transport. Many reports 
demonstrate that lower current (and higher resistivity) may cause higher efficiency in exciton 
confinement and hole-electron recombination, which are crucial for better OLED  
device performance [33–35]. 
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Figure 2 presents the EL spectra of OLED devices based on pristine MEH-PPV and PFO/(0.1, 0.5, 
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EL spectra of all OLED devices were dominated by the MEH-PPV emission with a lesser contribution 
from PFO emission at 440 nm. The profile does not match the behavior observed in the fluorescence 
spectra (not shown here), where the contribution from the emission of PFO was much more 
pronounced. In the case of SiO2/TiO2 nanocomposites being present, a significant observation in EL 
spectra can be detected when the content of MEH-PPV exceeded 0.1 wt.%. The peak assigned to the 
MEH-PPV (740 nm) was enhanced and red-shifted with increasing MEH-PPV content, whereas the 
peak intensity at 550 nm was decreased. By comparing the EL spectra with the fluorescence spectra 
in all the OLED devices, the relative EL intensity peak of the PFO diminished significantly upon 
incrementing the MEH-PPV content. Such significant differences in fluorescence and EL spectra for 
hybrids of polyfluorene derivatives have been reported [9,36,37]. Moreover, the significant difference 
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(FRET) was not the only mechanism occurring in the OLED devices during the EL measurements [5]. 
Whilst fluorescence spectra are created via various types of energy transfer processes or direct 
excitation, the EL spectra strongly depend on additional factors such as charge transport, charge 
injection from the electrodes, recombination processes and exciton generation.  
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Figure 1. Current-voltage (I-V) measurements of the OLEDs based on hybrids of PFO/MEH-PPV.
(a) In the absence of SiO2/TiO2 nanocomposites; (b) in the presence of SiO2/TiO2 nanocomposites.
The inset shows the I-V curve of the OLEDs based on pristine MEH-PPV.

The higher current can be attributed to a reduction in the resistance and activation energy of
the emissive layer [20,31]. The lower turn-on voltage of injection current in the presence of SiO2/TiO2

nanocomposites compared to their absence can be attributed to a better charge carrier injection [28,32].
However, the gradual reduction in current upon incrementing the MEH-PPV content (more than

1.0 wt.%) indicated the high resistivity of the devices. Once the content of MEH-PPV exceeded 1 wt.%
within the hybrids, more holes and electrons were trapped, and consequently, lower current (and higher
resistivity) was observed. This current reduction can be ascribed to MEH-PPV trapping both holes
and electrons in PFO and instantaneously holding back their transport. Many reports demonstrate
that lower current (and higher resistivity) may cause higher efficiency in exciton confinement and
hole-electron recombination, which are crucial for better OLED device performance [33–35].

3.2. Electroluminescence Spectra

Figure 2 presents the EL spectra of OLED devices based on pristine MEH-PPV and PFO/(0.1, 0.5,
1.0, 5.0, 10 wt.%) MEH-PPV hybrids in the absence and presence of SiO2/TiO2 nanocomposites.
The EL spectra of all OLED devices were dominated by the MEH-PPV emission with a lesser
contribution from PFO emission at 440 nm. The profile does not match the behavior observed in
the fluorescence spectra (not shown here), where the contribution from the emission of PFO was much
more pronounced. In the case of SiO2/TiO2 nanocomposites being present, a significant observation in
EL spectra can be detected when the content of MEH-PPV exceeded 0.1 wt.%. The peak assigned to
the MEH-PPV (740 nm) was enhanced and red-shifted with increasing MEH-PPV content, whereas
the peak intensity at 550 nm was decreased. By comparing the EL spectra with the fluorescence spectra
in all the OLED devices, the relative EL intensity peak of the PFO diminished significantly upon
incrementing the MEH-PPV content. Such significant differences in fluorescence and EL spectra for
hybrids of polyfluorene derivatives have been reported [9,36,37]. Moreover, the significant difference
between the fluorescence and EL spectra was strong evidence that Förster resonance energy transfer
(FRET) was not the only mechanism occurring in the OLED devices during the EL measurements [5].
Whilst fluorescence spectra are created via various types of energy transfer processes or direct excitation,
the EL spectra strongly depend on additional factors such as charge transport, charge injection from
the electrodes, recombination processes and exciton generation.
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Figure 2. Electroluminescence (EL) spectra of the OLEDs based on PFO/MEH-PPV hybrids at applied
voltages corresponding to maximum luminance. (a) In the absence of SiO2/TiO2 nanocomposites;
(b) in the presence of SiO2/TiO2 nanocomposites. The inset shows the EL spectra of the OLEDs based on
pristine MEH-PPV.

A cascade mechanism can be proposed for charge injection in the hybrids that prefers exciton
formation in a lower energy gap polymer. The strong relative decrease of the PFO spectrum contribution
to the EL spectra for all the OLED devices suggested that after the injection of holes and into the OLED
device, either the recombination favorably happened in the MEH-PPV monomers or the excitons were
primarily generated in this polymer phase.

Since the HOMO and LUMO of MEH-PPV lay within the range of those of PFO [20,38], it is
possible that exciton formation in MEH-PPV occurred through the cascade mechanism. Moreover, due to
the position of the MEH-PPV, there was a strong probability that it may have been acting as a trap for
the charge carriers and then enhanced charge recombination in this phase. This probability was also
evidenced significantly by the reduction in turn-on voltage, as discussed in the section above.

It can be concluded that in the EL spectra, the dominance of the peaks assigned to MEH-PPV in
the hybrids was not only the result of FRET, but also arose from hole-electron recombination, which is
of greater significance.

3.3. Color Measurements

Figure 3 shows the CIE coordinates of the PFO/0.5 wt.% MEH-PPV-based OLED device in
the absence and presence of SiO2/TiO2 nanocomposites when the applied voltage was varied from
26–34 V. A blue-shift in the emitted color of the OLEDs was detected with increasing voltage due to
phase separation. Many researchers have shown that mixing of two polymers with different emission
and charge-transport properties leads to a shift in the color of emission of the OLEDs with varying
operating voltage [39,40]. Submicrometer-sized domains with a range of compositions can be caused
by phase separation. Subsequently, some of the excited states can be created in the polymer with
the higher band gap and then lost to the lower band gap polymer by exciton transfer. The existence
of the blue-shifted colors at higher voltages was due to the fact that the electron-hole injection in
the higher energy gap required a higher field [40].
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Figure 3. CIE coordinates of the OLEDs based on PFO/MEH-PPV hybrids when the applied voltage
was increased from 26–34 V. (a) In the absence of SiO2/TiO2 nanocomposites, (b) in the presence of
SiO2/TiO2 nanocomposites.

Table 1 summarizes the CIE chromaticity coordinates of the OLEDs based on PFO/MEH-PPV
hybrids, with and without SiO2/TiO2 nanocomposites, at the applied voltage that caused the highest
luminance. The slight shift in CIE coordinate values upon the increment of the MEH-PPV content
confirmed that the produced color was stable and consistent with the EL spectra.

Table 1. The CIE chromaticity coordinates delivered by the OLEDs at the applied voltage, which caused
highest luminance.

Acceptor Content in
the Blend (wt. %)

In the Presence of SiO2/TiO2
Nanocomposite

In the Absence of SiO2/TiO2
Nanocomposite

CIE Coordinates
V (Volt)

CIE Coordinates
V (Volt)

X Y X Y

0.1 0.313 0.395 31.5 0.294 0.284 36
0.5 0.337 0.447 30.5 0.298 0.305 34
1 0.333 0.413 29.5 0.285 0.37 39.5
5 0.318 0.279 34 0.374 0.346 34.5

10 0.307 0.226 39.5 0.319 0.243 38

Moreover, the existence of SiO2/TiO2 nanocomposites played a crucial role in shifting CIE
chromaticity coordinates with respect to those in their absence. This finding is in agreement with
the EL spectra (Figure 2), which were red-shifted in the presence of SiO2/TiO2 nanocomposites.
This shifting can be attributed to efficient Förster resonance energy transfer in the presence of SiO2/TiO2

nanocomposites and also to the extension of hole-electron recombination zones [11].

4. Conclusions

The solution blending technique was successfully employed to prepare PFO/MEH-PPV hybrids,
in the presence and absence of SiO2/TiO2 nanocomposites, which were used as the emissive layer
in OLED devices. The incorporation of SiO2/TiO2 nanocomposites into the hybrids played a crucial
role in enhancing the optoelectronic properties of the devices. The improvement of the performance
of the OLED device is demonstrated by the significant reduction in turn-on voltage and the increase
in the current of the devices in the presence of SiO2/TiO2 nanocomposites compared to those values
in their absence. This improvement in the device performance started to reduce when the MEH-PPV
content exceeded 1.0 wt.%, even in the presence of the SiO2/TiO2 nanocomposites, because MEH-PPV
trapped both holes and electrons in the PFO. The shift of EL spectra and CIE coordinates upon addition



Polymers 2018, 10, 800 6 of 7

of SiO2/TiO2 nanocomposites illustrated efficient Förster resonance energy transfer and extension of
the recombination zone for holes and electrons in the OLED devices.
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