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Abstract: In this paper, we show that the 3D Finsler geometry (FG) modeling technique successfully
explains a reported experimental result: a thin liquid crystal elastomer (LCE) disk floating on the
water surface deforms under light irradiation. In the reported experiment, the upper surface is
illuminated by a light spot, and the nematic ordering of directors is influenced, but the nematic
ordering remains unchanged on the lower surface contacting the water. This inhomogeneity of the
director orientation on/inside the LCE is considered as the origin of the shape change that drives the
disk on the water in the direction opposite the movement of the light spot. However, the mechanism
of the shape change is still insufficiently understood because to date, the positional variable for
the polymer has not been directly included in the interaction energy of the models for this system.
We find that this shape change of the disk can be reproduced using the FG model. In this FG model,
the interaction between σ, which represents the director field corresponding to the directional degrees
of LC, and the polymer position is introduced via the Finsler metric. This interaction, which is a direct
consequence of the geometry deformation, provides a good description of the shape deformation of
the LCE disk under light irradiation.

Keywords: liquid crystal elastomer; light irradiation; dye-doped; Monte Carlo; statistical mechanics;
Finsler geometry

1. Introduction

Liquid crystal elastomer (LCE) is a material in which LC molecules are chemically bonded
to polymers, and its most remarkable property is that the anisotropy in the direction of nematic
ordering of the LC molecules is reflected in the macroscopic shape [1–5]. Photoinduced bending of
liquid-crystalline gel, which includes azobenzen monomers, shares the same mechanism [6,7]. In other
words, the macroscopic shape of the LCE is sensitive to the microscopic orientation of the LCs and vice
versa. Indeed, LCE elongates into a spontaneously chosen direction at low temperature if no constraint
is imposed on the LC molecules, while at high temperatures, the elongation is suppressed due to the
phase change from nematic to isotropic. External fields such as electric field and mechanical stresses
also elongate the LCEs, and these field-driven elongations have been studied intensively [8–12].

Because of these interesting properties, a great deal of attention has been paid to LCEs,
and studies of their technological applications, such as artificial muscles, have been conducted [13–15].
A polymer-dispersed LCE has recently been proposed as a functional and shape-programmable material
for additive manufacturing [16]. A cellulose liquid crystal motor has also been proposed [17]. In the
statistical mechanical studies of LCEs, the variable σ for directors and strains are introduced, and the
obtained results successfully describe the experimental data [2–5]. However, the strains themselves are
not always identical to the LCE shape, so the position vector is better or more straightforward for the
analyses of material shape such as polymers [18,19].
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In Refs. [20,21], the interaction between the LC molecules and polymers is coarse-grained and
implemented in the 3D Finsler geometry (FG) model, and the elongation phenomenon is successfully
explained. The soft elasticity, in which the stress-strain diagram includes a plateau, is also reproduced
by the FG model. This soft elasticity arises because the director orientation and the shape of material
interact with each other. The so-called J-shaped stress-strain diagrams of soft biological tissues such
as animal skin and muscles are also reproduced by the 2D FG model [22]. In the FG models for the
soft-elasticity and J-shaped diagram, we discard the detailed information of the interaction between
the LCs and polymers, and instead, we modify the underlying geometry such that the internal
metric function of the materials is changed from Euclidean to Finsler. In this sense, the interaction is
determined in a more basic and constructive manner from the geometries inside the material and the
space<3. As a result of this procedure, the interaction between the direction σ of the directors and the
position r(∈ <3) of the polymers is automatically introduced in the model. This is in sharp contrast
to the ordinary modeling techniques, in which an interaction energy is explicitly introduced in the
Hamiltonian. Therefore, this FG modeling technique is completely new and should hence be checked
thoroughly by application it to a variety of experimentally observed phenomena.

In this paper, we apply the 3D FG model to the interesting experimental observation that a thin
and small LCE disk moves on the water due to light irradiation [1]. This phenomenon has attracted a
great deal of attention in engineering applications because it is considered a model for a micro robot
actuated by a non-mechanical stimulus [6,7,17]. The driving force that moves the disk on the water
comes from the shape change. By moving a spot irradiated by light from the center to the radial
direction on the disk surface, the position of the bending on the edge of the disk can be controlled.
This shape change at the edge moves in the same direction as the spot; at the same time, the water is
pushed in the same direction that the bending edge moves, and then, by the action-reaction principle,
the disk moves back or swims in the opposite direction on the water. We expect that such a shape
change can be studied by using the FG model because the position variable r is directly included as a
variable. Therefore, it is worthwhile to study whether the experimentally reported shape change of the
disk is consistent with the results of the 3D FG model.

We should comment that the FG modeling technique can also be applied to a deformation of
LCE piece in more general situation even for composite materials such as polymer-dispersed LCE [16].
Such an applicability of FG model is naturally expected because the deformation of the variable r is
automatically determined from the variable σ, and the deformation of r is independent of the reason
for distorting σ because of the implemented interaction between r and σ.

2. Reported Experiment

We describe the experiment reported in Ref. [1] and summarize the current understanding of
the shape deformation by light irradiation. A dye-doped nematic LCE is used in the experiment;
the disk size is 5 mm in diameter and 0.32 mm thick, so the ratio D/H of thickness H and diameter D
is approximately D/H=16. This small piece of LCE floats nearly motionless on the surface of a water
reservoir, which has a depth of 2 cm. The direction of the nematic director, which is the constituent LC
molecule, is parallel to the surface.

This LCE sample is illuminated from above by an argon-ion laser with a beam width of 3 mm.
The light spot is located on the center of the disk in the beginning and is then moved toward an edge
along the direction perpendicular to the LC alignment direction. Then, the sample moves opposite to
the direction in which the light spot moves (see Figure 1).

The authors of Ref. [1] discussed why the LCE sample moves on the water surface. One possible
reason that they suggested was the shape deformation, as shown in Figure 1. A part of sample edge
is lifted and strongly deformed compared to the other part of the edge, and this deformed position
moves with the movement of the light spot. This deformed edge pushes water in the same direction
as the light movement, and by the action-reaction principle, the LCE sample moves in the opposite
direction. This is a rough outline of the mechanism of the swimming mentioned in the Introduction.
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Figure 1. Shape deformation of LCE sample floating on the water under laser light illumination from
above [1]. The deformation of the sample edge moves with the movement of the light spot, and at the
same time, the LCE sample moves in the opposite direction. The nematic director direction is parallel
to the dashed line on the sample surface.

The effect of light on the dye-doped nematic LCE samples is also discussed in Ref. [1]. Based on
these discussions, there are two possible effects: the first is dye-mediated heating due to the light
absorption, with the increase in temperature causing a transition from the nematic ordered phase to
the disordered or isotropic phase. The second also reduces the orientation order due to the effect of the
photoisomerization of the dissolved dye. The dye-doped LC molecules play the role of an impurity
if they change from the trans state to the cis state via irradiation. These two effects are expected to
reduce the orientation ordering of directors, and this change in the director orientation leads to a shape
change. We should note that these two effects have been throughly investigated and are now well
understood [23–28].

However, it is unclear why a change in the orientation order causes shape deformation. This is
actually very difficult to study from the microscopic perspective because the interaction between
the LCs and polymers is unclear. Here, “unclear” means that the corresponding Hamiltonian in
the statistical mechanical models remains unknown because the polymer position r is not directly
used. One of the reasons for the lack of a Hamiltonian that includes r is that the interaction is very
difficult to assume due to the hierarchical structure of polymer, which is composed of monomers and
forms a crystalline/non-crystalline structure, with these structures also forming domains. All of these
hierarchical structures are connected to the shape deformation; for this reason, a simple interaction
energy is not expected as the Hamiltonian [29–31].

3. 3D FG Model of LCE

To understand why a dye-doped nematic LCE deforms under light illumination, we employ a
model that is completely different from the models utilized in previous statistical mechanical studies
of materials, as mentioned in the Introduction. The model in this paper is an FG model and is identical
to the model used in Ref. [21]; however, we describe the model for the readers’ convenience.

First, the 3D lattices for the simulations are shown in Figure 2a–c. For the LCE sample in the
experiment, the ratio D/H of height H and diameter D is D/H = 16, as mentioned in the previous
section. Thus, we use three different lattices of D/H = 12, D/H = 16, and D/H = 20, as shown in
Figure 2a–c.

We show the data for the lattices, including the lattice of N = 10,346, D/H = 8, in Table 1. The size
of the lattice is given by (N, NB, NT, Ntet), where N, NB, NT, and Ntet are the total numbers of vertices,
edges (or bonds), triangles, and tetrahedrons, respectively. The Euler numbers N−NB +NT −Ntet(= 1)
of these lattices are identical to those of a tetrahedron, which is characterized by (N, NB, NT, Ntet) =

(4, 6, 4, 1), because the cylinders are topologically identical to a tetrahedron. The symbols NU, NL

denote the total number of vertices on the upper and lower surfaces, respectively, and NU
B , NL

B and
NU

T , NL
T respectively denote the total number of bonds and the total number of triangles on these

two-dimensional surfaces. These data also satisfy NU,L
−NU,L

B +NU,L
T = 1 because a disk is topologically

identical to a sphere with a hole, e.g., a triangle.
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Figure 2. 3D disks of three different ratios D/H with diameter D and thickness H. The ratio D/H
and the total number of vertices N are (a) D/H = 12, N = 10,566, (b) D/H = 16, N = 10,980, and
(c) D/H = 20, N = 10,563. The scales of the figures are the same.

Table 1. The four different lattices used in this paper. The first lattice of size N = 10,346 is used only for
the calculation of Gaussian curvature.

N NB NT Ntet D/H NU,L NU,L
B

NU,L
T

10,346 69,964 116,041 56,422 8 1344 3916 2573
10,566 70,503 116,037 56,099 12 1718 5023 3306
10,980 72,049 117,623 56,553 16 2088 6120 4033
10,563 67,752 109,460 52,270 20 2322 6814 4493

To describe the model, we start with the continuous Gaussian bond potential such that

S1(r, σ) =
∫ √

gd2xgab ∂r
∂xa
·
∂r
∂xb

, (1)

where r(∈ <3) is a material position, xa(a = 1, 2, 3) is a local coordinate inside the material, g is
the determinant of the Finsler metric gab, which is a 3 × 3 matrix, and gab is the inverse of gab.
This continuous S1 is discretized on 3D lattices such as those in Figure 2a–c, which are composed of
tetrahedra. Please note that this S1 depends not only on r but also on σ(∈ S2 : unit sphere), which is a
director field corresponding to the directional degrees of freedom of the LC molecule. The dependence
of S1 on σ comes from the fact that gab depends on σ. Note also that this S1 is a 3D extension of
2D S1, which is a model for the membranes [32–38], and 2D S1 is an extension of the 1D model
for polymers [39]. Therefore, this type of Gaussian potential S1 in Equation (1) is of fundamental
importance in the studies of polymers.

To evaluate the dependence of S1 on σ, we write the discrete 3D Finsler metric gab =
1/v2

12 0 0
0 1/v2

13 0
0 0 1/v2

14

 , which is obtained by replacing the element 1 of Euclidean metric δab

with 1/v2
i j. This Finsler metric is defined on the tetrahedron in Figure 3a, where the local coordinate

origin is at the vertex 1. In this gab, vi j is given by

vi j = |ti j · σi|+ v0, ti j = ~̀i j/`i j, ~̀i j = r j − ri, (2)

where ti j is the unit tangential vector from the vertex i to j (Figure 3b). This vi j corresponds to the unit
of the Finsler length [20,40–42], and it depends on σ; hence, gab depends on σ. We should note that v0

in vi j plays the role of a cut-off because 1/v2
i j is divergent if ti j is vertical to σi. We fix v0 to v0 = 0.001 in

this paper.
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Figure 3. (a) A tetrahedron, which forms lattices for the simulation, and a variable σ1 at the vertex 1,
and (b) the tangential component |ti j · σi| of σi along the bond i j.

A discrete version of S1 is obtained by replacing the differentials ∂ar with differences such as
r j − ri and the integral

∫
d2x with the sum

∑
i. Including several terms, we have the Hamiltonian S(r, σ)

such that

S(r, σ) = λS0(σ) + S1(r, σ) + κS2(r) + U3D(r) + Uvol(r),

S0(σ) =
1
2

∑
i j

(
1− 3(σi · σ j)

2
)

,

S1(r, σ) =
∑

i j

Γi j`
2
i j, Γi j =

1
4N̄

∑
tet

γi j(tet), `2
i j = (ri − r j)

2,

S2(r) =
∑

i

[1− cos(φi −π/3)] ,

U3D(r) =
∑
tet

U3D(tet), U3D(tet) =
{

0 (Vol(tet) > 0)
∞ (otherwise)

,

Uvol(r) =
{

0 (| V −V0 |≤ ∆V)

∞ (otherwise)
.

(3)

This Hamiltonian S(r, σ) does not include the energy term for the light irradiation. A detailed
description of how to treat this important term is provided in the next section. Here, we describe the
terms included in the basic Hamiltonian S(r, σ) in more detail.

The first term S0 is the Lebwohl-Lasher potential, which is always assumed for the nematic
transition of LC molecules [43]. Because of this non-polar interaction of σ in S0, σ is identified as −σ,
and σi · σ j→1 (σi · σ j→0) is expected for sufficiently large (small) λ.

The second term is a discrete version of the continuous S1 in Equation (1). In the discrete S1, N̄ is
given by

N̄ = (1/NB)
∑

i j

ni j, (4)

where ni j denotes the total number of tetrahedra sharing the bond i j, and NB(=
∑

i j 1) is the total
number of bonds. The symbol

∑
i j in S1 denotes the sum over all bonds i j, “tet” in γi j(tet) denotes all

tetrahedra connected to the bond i j, and γi j(tet) for the tetrahedron in Figure 3a are given by

γ12 =
v12

v13v14
+

v21

v23v24
, γ13 =

v13

v12v14
+

v31

v32v34
, γ14 =

v14

v12v13
+

v41

v43v42
,

γ23 =
v23

v21v24
+

v32

v31v34
, γ24 =

v24

v23v21
+

v42

v41v43
, γ34 =

v34

v31v32
+

v43

v41v42
.

(5)
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We should note that γi j = γ ji and, hence, Γi j = Γ ji for all i j.
κS2 is an energy term that controls the stiffness of the material, and the coefficient κ is the stiffness

constant. In S2,
∑

i denotes the sum of internal angles i of all triangles, and φi is the internal angle as
shown in Figure 3a. For sufficiently large κ, all internal angles of triangles are expected to be φi → π/3,
and hence the shape of tetrahedra becomes regular. In contrast, for sufficiently small κ, the tetrahedra
can considerably deviate from the regular shape.

The term U3D(r) is the constraint potential for maintaining the positivity of each tetrahedron
volume. The final term Uvol(V0) is also the constraint potential for maintaining a constant total volume,
which is given by V0. This V0 is determined from the model without Uvol(V0). Details of this point are
discussed in the next section.

The discrete partition function is given by

Z =
∑
σ

∫ N∏
i=1

dri exp[−S(r, σ; Uvol)], (6)

where Uvol in S(r, σ; Uvol) is written to highlight the constraint on the volume.
∑
σ denotes the

sum over all possible values of σ(= {σ1, σ2, · · · , σN}), and
∫ ∏N

i=1 dri denotes the 3N-dimensional
multiple integrations.

4. Monte Carlo Technique and Implementation of Light Irradiation Effect

The standard Metropolis technique is used to update the variables r and σ [44,45]. A new variable
r′ = r + δr is accepted with the probability Min[1, exp(−δS)], where δS = S(new) − S(old). The rate
of acceptance of r′ is controlled to be approximately 50% by the radius R0 of the sphere containing
the three-dimensional random vector δr. On the other hand, a new value σ′ is randomly determined
on the unit sphere S2 using three different random numbers, and it is independent of the old value σ.
To be more precise, three different uniform random numbers σx,y,z ∈ (−0.5, 0.5] are generated with the
constraint σ2

x + σ2
y + σ2

z ≤ 0.25. This constraint makes the point (σx, σy, σz) uniform in the sphere of
radius 0.5. Then, the vector (σx, σy, σz) is normalized such that σ2

x + σ2
y + σ2

z = 1. Thus, the distribution
of this unit vector (σx, σy, σz) is expected to be uniform on the unit sphere.

We should note that S(r, σ) is invariant under σ→ −σ transformation, i.e., that σ is degenerate,
because of the non-polar interaction in S0, as mentioned above. The rate of acceptance of σ′

is uncontrollable and depends on the coefficient λ of the energy S0 in Equation (3). The total
number of iterations called Monte Carlo sweeps (MCS), is typically 5 × 107 to 1 × 108 after 5 × 106

thermalization MCS.
We now describe how to implement “the light irradiation” in the model. As described in the

Introduction and in Section 2, the effect of light irradiation is to reduce the orientation ordering of
σ [23–28]. To focus on this effect, we should remind ourselves that the ordering of σ can be controlled by
the parameter λ in the FG model. Indeed, for a sufficiently large λ, the variables σ align spontaneously
into a single direction, and the system becomes nematic if no external force is applied; on the contrary,
for a sufficiently small λ, σ becomes isotropic under the same conditions for the external forces.
Another technique for the implementation of this effect is to introduce temperature into the model as
1/T directly in the Boltzmann factor exp(−S/T) in Equation (6). However, this factor 1/T changes all
of the coefficients λ, γ(= 1) and κ to λ/T, γ/T and κ/T, respectively, where γ is the surface tension
coefficient and is not included in S of Equation (3). If we assume a sufficiently high temperature
such as T → ∞, then the new factors become γ/T → 0 and κ/T → 0. However, this modification is
expected to be too strong for the model because γ/T→ 0 can make the tetrahedron infinitely oblong
under the constraint Uvol. Therefore, it is better to use λ to change the orientation of σ.
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The problem is how to modify λ to implement the effect of light irradiation. Recalling that the
interaction (σi · σ j)

2 in S0 is defined on the bond i j, we find that one possible modification of the model
is to change the first term S0 in S of Equation (3) as follows:

S′0 =
1
2

∑
i j

λi j
(
1− 3(σi · σ j)

2
)

, λi j =

{
0 (vertex i or j is irradiated)
1 (otherwise)

, (7)

where the irradiated vertex i or j is on the upper surface of the disk. In this definition, the irradiation
of bond i j is represented by λ=0 on this bond. Indeed, it is easy to see that λS′0 for λi j = 0 (⇔ bond i j
is irradiated) is identical to λS0 for λ=0, which corresponds to the disordered phase of σ, and that λS′0
is identical to λS0 in the case of λi j = 1 (⇔ bond i j is not irradiated). In Figure 4a, we illustrate the
irradiated (⇔ solid square symbol) and not irradiated (⇔ open and solid circles) vertices. The vertices
inside the domain with diameter d are irradiated. The vertices that are not irradiated are divided into
two groups: one contains the vertices that are connected to the irradiated vertices (⇔ open circle),
and the other contains the vertices that are not directly connected to the irradiated vertices (⇔ solid
circle). The domains for light irradiation are shown in Figure 4b,c, where the alignment of the nematic
director is in the x-direction. �

d

Light
(λ=0)

�(a)                (b)                               (c)                                                                         : � = 0 (irradiated): � = 0: �(≠ 0) 
�d

Figure 4. (a) An illustration of irradiated vertices, their neighboring vertices and non-irradiated vertices
at a section of the disk lattice, (b,c) top view of irradiated disks, where the ratio d/D = 0.5 and the
center of irradiated domain in (b) are different from those in (c).

If we consider 1/λ to be the temperature, the definition of the light irradiation in Equation (7)
can be rephrased as follows: the temperature is defined on the bonds through λi j in Equation (7) such
that λi j = 0 (λi j = 1) corresponds to a high (low) temperature. This implies that only bond i j, one of
the vertices of i and j is irradiated at least, corresponds to the high temperature (see Figure 4a) and
that all of the remaining bonds correspond to the low temperature characterized by 1/λ. Please note
that S′0 is identical to S0 in Equation (3) if R=0. Indeed, if R = 0, then all vertices are not irradiated,
and hence, λi j = 1 for all bonds i j. To summarize, the introduction of λi j in Equation (7) is equivalent
to introduce a domain of disordered nematic directors.

We should note that the irradiated vertices inside the region of radius d fluctuate around their
original positions and remain irradiated, even when they move outside the region. This point that
the irradiated vertices are fixed and independent of their positions is different from the experimental
situation, where the irradiated position on the surface is not always identical to the positions of
molecules, which also fluctuate thermally. However, our strategy is not so poor because in real LCE
samples, the total number of irradiated LC molecules inside the irradiated region is sufficiently large
compared to that of the boundary. The light intensity is not always uniform, and the intensity on
the boundary is weaker than that of the center of light spot. For these reasons, the modeling for
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the light irradiation in the FG model in Equation (7) is sufficiently simple and is considered a good
approximation for the experiment.

We comment on how to obtain the constant volume V0 for the constraint Uvol(V0) in Equation (3).
Here, we call the simulation with (without) Uvol(V0) a V-fix (V-free) simulation. To obtain V0,
we perform V-free simulations under the same parameters κ and λ as in the V-fix simulations to
be performed. In this V-free simulation, the light is not irradiated (⇔ d/D = 0) because the light
irradiation does not change the volume of the sample LCE in the experiment [1].

5. Simulation Results

5.1. Simulation Unit and Physical Unit

Before presenting the simulation data, we comment on the simulation/physical unit, especially the
length unit, although the simulation results are not compared to the experimental data, except for
the shape of the LCE disks. In the simulations, kBT, which has the unit Nm, is always fixed to 1,
where kB and T are the Boltzmann constant and the temperature, respectively. Another parameter that
is modified for simplicity is the lattice spacing a m, which is also fixed to a = 1. These parameters
are eliminated from the simulation data for simplicity. Therefore, all quantities with units of length
should be multiplied by a if these are compared to the corresponding experimental data. The problem
is whether the physical value of a is meaningful. If the physical length of a is less than the order of
distance between LC molecules such as 10 Dvdw, where Dvdw is the van der Waals distance, it is very
hard to interpret the simulation results. Therefore, we check this point here.

The problem is that we have no physical quantity that can be compared with the experimental
data, except for the shapes of the LCE disk, which are obtained as snapshots. One possible value for
a is a = 1 × 10−7 m, which was obtained in Appendix B of Ref. [21]. This value can be used for the
model in this paper because the models in this paper and in Ref. [21] are the same, except for the
following two facts. First, in Ref. [21], a mechanical constraint is imposed on the LCE to calculate the
stress strain diagram, while it is not imposed on the model in this paper; second, the constraint for the
volume Uvol(r) is imposed on the model in this paper, but it is not imposed on the model in Ref. [21].
Another possible value for a can be obtained by comparing the disk size. The experimental disk size is
Dexp = 5 mm, as mentioned in Section 2, while it is approximately given by D ' 10 in the simulation
units, even though this D is slightly dependent on the simulation conditions, such as λ. To compare
this D with Dexp, we should multiply D by the constant a to obtain Dexp = aD; we have

a = Dexp/D = 5× 10−4 m. (8)

This value is relatively larger than the value above a = 1× 10−7 m; however, it is sufficient because
σ is a coarse-grained variable. To be more precise, the variable σ should be understood as an average
direction of many LC molecules, or in other words a group of LC molecules is represented by a single
σ. This coarse-graining is not special to the FG model but it is always assumed in lattice simulations
for spin models for example.

Using Dexp = aD, D = 10 and a ' 10−9 m, which is approximately 10 times larger than Dvdw,
we have the minimum size Dexp = 10−8 m, to which the model is applied. This size is sufficiently small
for technological applications such as actuators. In contrast, we have no limitation on the maximum
size of Dexp. Therefore, we can actually assume arbitrary size for the disk, because the lattice spacing a
is an arbitrary parameter except for the constraint a > 10−9 m.

5.2. Snapshots

Figure 5a–c are snapshots of disks without light irradiation (⇔ d/D = 0), and the sizes of the
lattices are (a) D/H = 12, N = 10,566, (b) D/H = 16, N = 10,980, and (c) D/H = 20, N = 10,563.
Note that these D/H values of the original disks are different from the actual D/H values of the
lattices in Figure 5a–c: these lattices are anisotropically deformed because the system is in the nematic
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phase, as discussed below. The parameter κ is assumed to be κ = 0.5 for all disks. We also performed
simulations for κ = 0 and κ = 0.8; however, these are not suitable for our purpose. In fact, the disks
are not always flat for κ = 0, even in the absence of light irradiation, because of the large shape
fluctuations. By contrast, the bending of the disks is not always sufficient for κ = 0.8, even when
the light is irradiated. Therefore, we consider that κ = 0 is too small and that κ = 0.8 is too large.
Therefore, we assume that κ = 0.5.(a)                                (b)                                  (c) 

Figure 5. Snapshots of disks obtained in the simulations without light irradiation and under the
conditions (a) λ = 1.2, (b) λ = 2.4, and (c) λ = 1.2 with κ = 0.5. The sizes are (a) D/H = 12, N = 10,566,
(b) D/H = 16, N = 10,980, and (c) D/H = 20, N = 10,563. The arrows (↔) represent the nematic
director direction.

The parameter λ should be sufficiently large because the LCE sample is in the nematic phase
on the water; therefore, we assume (a) λ = 1.2, (b) λ = 2.4, and (c) λ = 1.2 to realize the nematic
configurations. We find in Figure 5a–c that the directors σ align in specific directions, as indicated
by the arrows on the figures. These directions are determined by the initial configuration for σ in
MC simulations because the assumed λs are sufficiently large for the system to remain in the initial
nematic configuration. As mentioned above, the disks deform their shape from the original circle
shape to the ellipse shape, in which the diameter along the director direction is slightly larger than
the diameter along the perpendicular direction. Moreover, the thickness H of the disks shrinks from
their initial values, corresponding to the initial lattices in Figure 2a–c. If λ is too small, as in the case of
λ = 0, the director σ becomes random and does not align, even when the initial value of σ is fixed to a
nematic configuration.

We should emphasize that the director σ becomes random in the isotropic phase if λ is fixed to
λ = 0, for example, because the tetrahedra of the 3D disks are relatively close to the regular shape in
their original configurations, as shown in Figure 2a–c. For these configurations, there is no reason for σ
to align to a direction even when this direction is given as an initial configuration. On the other hand,
if the configuration of σ is given by an initially aligned direction at sufficiently large λ, this makes the
shape of the tetrahedra deformed or anisotropic. Therefore, the disks shown in Figure 5a–c obtained at
sufficiently large λ are understood to be “stressed” by the alignment of σ, even though these are in the
minimum energy states.

We show the snapshots of bending disks irradiated at the central part (Figure 6a–c) and those
irradiated at one side between the center and edge (Figure 6d–f), which correspond to Figure 4b,c,
respectively. The size of the disk is D/H = 12, N = 10,566, which corresponds to the disk shown in
Figures 2a and 5a. Small spheres on the upper surface of the snapshots in Figure 6 denote the irradiated
vertices and the vertices connected to the irradiated vertices (see Figure 4a). The arrows (↔) and the
symbol (⊗) denote the direction of the directors σ, which are shown in the snapshots by the small bars.
We should note that the directions of almost all bars are identical to the directions indicated by (↔)
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and (⊗). The viewing angle of Figure 4b is vertical to that of Figure 4c, and those of Figure 4e,f are
vertical to each other. From these snapshots, we find that the shape of the disks is almost the same as
that of the experimentally observed ones in Figure 1a,b. Indeed, it is easy to see that the bending part
of the edges moves from the center to the direction of the motion of the irradiated region.(a)                                  (b)                                  (c) (d)                                  (e)                                  (f) 

Figure 6. (a–c) Snapshots of disks irradiated by light at the central region, and (d–f) snapshots of
disks irradiated at the region between the center and edge. The small spheres represent the irradiated
vertices and their nearest neighbor vertices, and the symbols (↔) and (⊗) represent the nematic director
directions. The original disk size is D/H = 12, which corresponds to the size in Figure 1a. It is assumed
in the simulations that κ = 0.5 and λ = 1.2. N = 10,566.

The FG model obtains the same shape as experiment because the directors at the irradiated region
become randomly oriented or form an isotropic configuration. In the isotropic phase, the 3D disk is
restored to its original shape and consists of almost regular tetrahedra, and the direction of the edges of
the tetrahedra becomes random. In short, the shape of the tetrahedra changes from oblong to regular
as a consequence of the light irradiation. Indeed, the triangles on the upper surface remain oblong
along the nematic director direction if it is not irradiated, but under light irradiation, the triangle shape
changes from oblong to regular. Therefore, the irradiated region, e.g., in Figure 6a, shrinks along the
direction (↔, ⊗) and expands along the direction vertical to the direction (↔, ⊗).

The simulations are performed on disks of size D/H = 16, N = 10,980, and D/H = 20, N = 10,563,
as shown in Figure 2b,c, respectively. The snapshots are shown in Figure 7a–f and Figure 8a–f. We find
that the bending shapes are almost identical to those in Figure 6a–f. This implies that the shape
deformation observed in the FG model is stable in that the shape remains unchanged with respect to a
small variation in disk size, which is characterized by the ratio D/H.



Polymers 2018, 10, 757 11 of 16(a)                                  (b)                                  (c) (d)                                  (e)                                  (f) 
Figure 7. (a–c) Snapshots of disks irradiated by light at the central region, and (d–f) those irradiated
at the region between the center and edge. The original disk size is D/H = 16 (see Figure 2b).
The parameters are κ = 0.5 and λ = 2.4. N = 10,980.(a)                                  (b)                                  (c) 

(d)                                  (e)                                  (f) 
Figure 8. (a–c) Snapshots of disks irradiated by light at the central region, and (d–f) those irradiated
at the region between the center and edge. The original disk size is D/H = 20 (see Figure 2c).
The parameters are κ = 0.5 and λ = 1.2. N = 10,563.

5.3. Gaussian Curvature

In this section, we show the Gaussian curvature, which characterizes the shape of the disks bending
similar to the disks shown in the previous section [40]. This quantity cannot always be compared
to experimental data because no experimental data have been reported. However, a quantitative
characterization of the bending by light irradiation is interesting, and the Gaussian curvature reflects
surface bending. For these reasons, we calculate the curvature energy SG on the upper surface,
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where the light is illuminated, and on the lower surface in contact with water, and we examine the
difference between these SG values.

The absolute Gaussian curvature |K| is defined by |K| = |∂1n × ∂2n|/|∂1r × ∂2r| [40], where ∂ir
is a tangential vector along the local coordinate axis xi(i = 1, 2), and n is a unit tangential vector
(see Figure 9a). Since |∂1n× ∂2n|/|∂1r× ∂2r| and

∫ √
gd2x can also be written as

|∂1n× ∂2n|
|∂1r× ∂2r|

= lim
A∆→0

a∆

A∆
,

∫
√

gd2x =

∫
dA, (9)

we have ∫
√

gd2x|K| =
∫

dA lim
A∆→0

a∆

A∆
. (10)(a)                (b)                                  (c)����

��
����

�

�� ��

��

�∆


∆Gauss sphere �� ��

��

Figure 9. (a) Tangential vectors ∂1r and ∂2r, and the corresponding unit normal vector n on a smooth
surface in<3, (b) a smooth triangle of area A∆ and with the normal vectors ni(i =1, 2, 3) at the vertices,
(c) a part of the Gauss sphere of area a∆ corresponding to the triangle in (b).

On the right-hand side of the first term of Equation (9), A∆ denotes the area of a smooth
triangle, as shown in Figure 9b, and a∆ is the corresponding area on the Gauss sphere (see Figure 9c).
Recalling that

∫
dA can be replaced by

∑
∆ A∆ in the limit of A∆ → 0, we have a discrete version of the

absolute Gaussian curvature, which we write as SG such that

SG =
∑

∆

a∆. (11)

This SG can be calculated on the upper and lower surfaces of the 3D disks because these surfaces
are considered as triangulated 2D disks. For each triangle ∆, a∆ is calculated using the three unit
normal vectors at the three vertices (Figure 9c). The unit normal vector ni at the vertex i is defined by

ni =

∑
j(i) A j(i)N j(i)∣∣∣∑ j(i) A j(i)N j(i)

∣∣∣ , (12)

where N j(i) is the unit normal vector of triangle j(i) connected to vertex i and A j(i) is its area.

First, we plot SG/NU,L
T vs. λ of the model without the constraint Uvol in Figure 10a,b to examine

how SG reflects the effect of light irradiation on the upper surface. The size of the disk used for the
results in Figure 10a is D/H = 8 and N = 10,346, which is relatively thick, whereas for Figure 10b,
D/H = 12 and N = 10,566, as shown in Figure 2a. The light is irradiated on all of the vertices of the
upper side of the disks, and this condition is expressed by d/D=1 in Figure 4b. The symbols NU

T and
NL

T denote the total number of triangles on the upper and lower surfaces, respectively (Table 1). We find
that there is a nontrivial difference between SG/NU

T and SG/NL
T, which are SG per triangle on the upper

and lower surfaces, respectively, for a large λ region. For the disk with D/H = 8, the difference is
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relatively small, even when λ is sufficiently large. By contrast, the difference can be clearly seen for the
disk with D/H = 12 in Figure 10b.

1 3 5
0

0.1

λ
SG/NT

D/H=8κ=0.5 upper

lower

U,L

(a)
1 3 5

0

0.1

λ
SG/NT

κ=0.5D/H=12

upper

lower

U,L

(b)

Figure 10. SG/NU,L
T vs. λ obtained on the disks of (a) D/H = 8 and (b) D/H = 12. The model for this

calculation has no constraint Uvol.

Next, we show the results obtained for the disks whose snapshots are shown in Section 5.2,
where the constraint Uvol is imposed. The results of the lattice of size D/H = 12, D/H = 16, and
D/H = 20, are plotted in Figure 11a,b, Figure 11c,d, and Figure 11e,f, respectively. On the upper
(lower) Figure 11a,c,e, (Figure 11b,d,f), the results SG/NU

T (SG/NL
T) calculated on the upper (lower)

surface are plotted. The results at λ = 0.5 (and at λ = 0) are independent of the size of light spot d/D
and are almost independent of whether the surface is upper or lower. This is because d/D = 0 on
the light spot has no non-trivial influence on the ordering of σ, which is actually not ordered under
λ≤0.5 in the whole other region. By contrast, SG/NU

T on the upper surface becomes dependent on the
spot size d/D for the large λ region. This occurs because the light irradiation defined by λ = 0 on the
region of diameter d destroys the nematic order of σ for a large λ. We should note that SG/NL

T depends
on d/D, even on the lower surface, where no light is illuminated. For the large λ region, we find
that SG/NL

T at d/D = 0.5 is non-trivially larger than SG/NL
T at d/D = 0. This non-trivial difference

indicates that the disordered configuration of σ on the upper surface for d/D = 0.5 influences σ on the
lower surface.
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Figure 11. SG/NU,L
T vs. λ obtained for the disk with size (a,b) D/H = 12, (c,d) D/H = 16,

and (e,f) D/H = 20. The data SG/NU
T (a,c,e) for the upper surface depend on d/D, and for the

lower surface, only a slight dependence can be seen.
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6. Summary and Conclusions

We used MC simulations to demonstrate that the Finsler geometry (FG) model successfully
reproduces the experimental results of LCE shape deformation under light irradiation reported in [1].
In the simulations, the irradiated region is given by a circle on the disk, and the center of the irradiated
circle is located at the center of the disk and at the midpoint of the center and edge of the disk. For a
sufficiently large λ, which is the coefficient of Lebwohl-Lasher potential S0, the bending shape of the
disk is almost identical to the experimentally observed shapes reported in [1].

For the FG model, the reason for the bending is simply understood as the orientation σ becoming
disordered (⇔ isotropic) on the irradiated region but ordered (⇔ nematic) on the other parts of the
LCE disk. This change in the orientation order of σ comes from the variation of λ. The role of λ
is simply to make the orientation of σ ordered (disordered) if it is sufficiently large (small). On the
other hand, in the FG model itself, the ordering of σ and the macroscopic shape are connected by
the interaction between the direction σ of director and the position r of polymer. This interaction
is indirectly introduced by a modification of the intrinsic geometry of materials from Euclidian to
Finsler. Using the interaction introduced by the FG model technique, we find that (i) the shape of disk
is determined only by the change in the director orientation and (ii) the obtained results are consistent
with the experimental observations.

We should emphasize that in FG modeling, it is not necessary to delve into the details of the
temperature and photoisomerization effects. In this sense, the FG model is a coarse-grained model
and, hence, can be applied to many phenomena that are not always elucidated from the microscopic
perspective. There is no limitation on the size of sample to which FG modeling is applied, although the
sample LCE size targeted in this paper is limited in the range of a few mm.

Funding: This work is supported in part by JSPS KAKENHI Grant No. 17K05149.

Acknowledgments: The author acknowledges Eisuke Toyoda for computer simulations and analyses.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

LCE Liquid crystal elastomer
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