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Abstract: In this work, a tetraethylenepentamine (TEPA)-grafted metal-organic framework material
(MIL-101) was synthesized. The introduction of TEPA increased the abundance of functional groups
on the MIL-101. As a powdery adsorbent, MIL-101-TEPA can be difficult to separate. In order
to solve this problem, we combined MIL-101-TEPA with sodium alginate (SA) and injected the
mixture into a CaCl2 solution to solidify the powder into beads with a particle size of 3 mm.
The easily recovered adsorbent was applied to the adsorption of Pb(II) from water. The structure
and characterization of the adsorbent were investigated through scanning electron microscope
(SEM), Fourier-transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), thermogravimetric
analysis (TGA), and X-ray photoelectron spectroscopy (XPS). We also optimized the adsorption
conditions. The results of the study showed that the adsorption process was chemisorptive and
endothermic in nature. The maximum adsorption capacity of the composite beads was 558.6 mg/g.
Meanwhile MIL-101-TEPA@CA showed good repeatable utilization.
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1. Introduction

Pb(II) is a kind of heavy metal that can enter the human body through gas, water, and food.
Once the heavy metal Pb(II) enters the human body, it can be complexed with proteins and amino
acids to affect metabolic function [1]. The long-term accumulation of Pb(II) in the body can cause
Pb(II) poisoning, including symptoms of irritability or depression as well as nervous, cardiovascular,
and pulmonary impairments [2,3]. In recent years, Pb(II) concentrations exceeding standard limits
in both drinking water and liquid food have been reported [4]. Therefore, it is important to remove
residual Pb(II) from drinking water and liquid food.

The adsorption method is the most commonly used to remove Pb(II) from liquids [5]. Adsorbents are
usually dispersed in the liquid containing Pb(II) and are mixed with the liquid by stirring and concussion.
After the adsorption is completed, the adsorbent is recovered by centrifugation or filtration. Traditional
adsorbents include zeolites [6], activated carbon [7], resin [8], and other materials [9]. Among them, activated
carbon is environmentally friendly, shows good adsorption properties, and adsorbs various metal ions
and organic pollutants; it has been used as a commercialized adsorbent. Polymer adsorbents, including
graphene oxide [10], carbon nanotubes [11], carbon nanotubes [12], and chitosan [13], also show good
adsorption capacities for Pb (II).

Metal-organic frameworks (MOFs) are a new type of porous materials [14], recently, MOFs have
been widely used in the field of adsorption [15,16]. These materials are zeolites with networked
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structures, formed by the self-assembly of metal ions with organic compounds containing O or N
elements [17]. MOF materials were first proposed by Yaghi et al [18]. MIL-101(Cr) is a kind of MOF
with an octahedral structure and the chemical formula Cr3F(H2O)2O[BDC]3·nH2O. It has a high specific
surface area, high water stability, and good thermal stability [19,20]. In addition, it can be modified
simply. The Cr ion in MIL-101(Cr) provides unsaturated active metal sites, which can chelate electron-rich
groups and permit the functionalization of MIL-101(Cr). Using this principle, the Férey group reported
an ethylenediamine-modified MIL-101 for the first time [21]. Luo et al. applied ethylenediamine-modified
MIL-101(Cr) to remove Pb(II) [22]. Amino groups also coordinate well with Pb(II); compared to MIL-101(Cr),
the adsorption capacity of ethylenediamine-modified MIL-101 is greatly improved.

MIL-101-TEPA shows a promising adsorption capacity for Pb(II). However, as a powdery
adsorbent, MIL-101(Cr) is hard to capture in liquid. Sodium alginate (SA) is a natural polysaccharide,
composed of β-D-mannuronic acid and α-L-guluronic acid [23]. When cations such as Ca2+ and Sr2+

are present in SA solution, the ion exchange reaction occurs between Na+ in α-L-guluronic acid and the
bivalent cations [24]. A cross-linked network structure is formed by the accumulation of α-L-guluronic
acid, which then forms a hydrogel. SA contains a large number of carboxyl groups and also shows pH
sensitivity. Therefore, SA is widely used in the field of adsorption and medical treatment [25,26].

In this work, we have adopted tetraethylenepentamine (TEPA), a rich amine-containing chemical
compound, to modify MIL-101(Cr). MIL-101-TEPA was used to adsorb Pb(II). SA was mixed with
MIL-101-TEPA and the mixture was injected into a CaCl2 solution for solidification into MIL-101-
TEPA@calcium alginate (CA) beads with a particle size of 3 mm. The larger-sized mixed adsorbent
could be recovered by simple filtration.

2. Materials and Methods

2.1. Materials

Cr(NO3)3·9H2O, p-phthalic acid (BDC), CaCl2, hydrofluoric acid (HF), SA (200 ± 20 mPa·s),
and TEPA were purchased from Aladdin Chemical Reagent Co., Ltd. (Shanghai, China). Pb(NO3)2,
N,N-dimethylformamide (DMF), ethanol, and acetic acid were of analytical reagent grade and
purchased from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China).

2.2. Preparation of MIL-101-TEPA@CA Beads

2.2.1. Preparation of MIL-101

Férey’s group firstly synthesized MIL-101. In this work we adopted Férey’s scheme to prepare MIL-101.
The reagent molar ratio of Cr(NO3)3·9H2O, BDC, HF, and H2O was 1:1:1:278. More concretely, 0.01 mol
of Cr(NO3)3·9H2O and BDC were dispersed in 50 mL deionized water and processed ultrasonically to
accelerate dissolution; 0.01 mol HF was then added to the above mixture. After 30 min continuous stirring,
the mixed solution was transferred to a reaction kettle. The reaction temperature was 473 K and the reaction
time was 8 h. The obtained product was washed three times alternately by DMF and ethanol. After washing,
the product was placed in a vacuum drying box and dried for 24 h at 343 K.

2.2.2. Preparation of MIL-101-TEPA

MIL-101-TEPA was prepared by the previously reported method [27]. Based on the experimental
results, the method was adjusted and improved. After drying at 403 K, 0.6 g MIL-101 was dispersed
into 60 mL anhydrous absolute ethanol, followed by the addition of 2 mmol TEPA. The final mixed
solution was refluxed for 12 h at 363 K. The product was washed two times alternately in methanol
and deionized water, after drying in a vacuum box at 373 K for 12 h, MIL-101-TEPA was obtained.
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2.2.3. Preparation of MIL-101-TEPA@CA Beads

SA solution with a concentration of 2% was named solution A. MIL-101 (0.2 g) was dispersed
in a separate container with 10 mL deionized water as solution B. After ultrasonication for 20 min,
equal volumes of solutions A and B were fully mixed. The mixed colloidal solution was extracted with
a syringe and slowly dripped into 200 mL of a 2% CaCl2 solution for curing. In the process of dripping,
the beaker of CaCl2 solution was stirred continuously using a magnetic agitator to accelerate the curing
process and prevent the adhesion of the microspheres. After curing for 30 min, the remaining ions on
the surfaces of the beads were washed by deionized water.

Simple CA beads were also prepared by the following method: 0.4 g SA was dissolved in 20 mL
deionized water, and the process of curing and washing was applied as in the preparation of the
MIL-101-TEPA/CA beads. The prepared beads were placed in the drying box, and the temperature
was held at 313 K for drying overnight. The dry weight of the MIL-101-TEPA/CA wet beads per gram
was 32 mg; that of SA wet beads per gram was 32.26 mg.

2.3. Characterization

A Scanning electron microscopy (SEM, S4800, Hitachi Corp., Tokyo, Japan) and transmission electron
microscopy (TEM, JEM-2100, Hitachi Corp., Tokyo, Japan) were used to record the surface morphology of
the adsorbent. Energy-dispersive spectroscopy (GENESIS XM, EDAX Corp., New Castale, DE, USA) were
used to analyze the element distribution. Fourier-transform infrared (FTIR) spectroscopy was conducted by
a Tensor II spectrometer (Bruker Corp., Karlsruhe, Germany) to identify the surface groups of the adsorbent.
X-ray photoelectron spectroscopy (XPS) was performed using AXIS ULTRA DLD, (Shimadzu, Tokyo, Japan).
Thermogravimetric (TGA) analysis was performed using a TG/DTA (Perkin-Elmer, New Castale, DE, USA),
and X-ray diffraction (XRD) was performed using a D8 Advance X-ray diffractometer (Bruker Corp.,
Karlsruhe, Germany).

2.4. Adsorption Experiment

The MIL-101-TEPA@CA beads were applied for the removal of Pb(II). The configuration of the
Pb(II) mother liquid is as follows: 0.4 g Pb(NO3)2 was dissolved in 250 mL deionized water. This liquor
was refrigerated at 277 K; each Pb(II) solution used in this experiment was diluted from the mother
liquor. We compared the adsorption capacities of the adsorbents prepared in this work. In addition,
the adsorption conditions were optimized, including the adsorbent dose, adsorption temperature,
adsorption time, pH, and concentration of the Pb(II) solution. The balance relation between mass
and time is shown in Equation (1), which was used to determine the adsorption amount of Pb(II).
The balance relation between the mass and initial concentration is shown in Equation (2).

qt =
(C0 − Ct)V

m
(1)

qe =
(C0 − Ce)V

m
(2)

where C0 (mg/L) is the initial concentration, m (g) is the dose of MIL-101-TEPA@CA, V (L) is the
volume of the Pb(II) solution, Ct (mg/L) is the concentration of Pb(II) at a certain time, and Ce (mg/L)
is the Pb(II) concentration after adsorption has achieved equilibrium. The removal ratio (R) of Pb(II) is
calculated by Equation (3):

R =
C0 − Ce

C0
× 100% (3)

2.5. Reutilization Test

HCl with a concentration of 0.1 mol/L was applied to remove Pb(II) adsorbed by
MIL-101-NH2@CA. In a typical removal process, 0.5 g of Pb(II)-loaded MIL-101-NH2@CA was placed
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in 50 mL eluent and shaken at room temperature for 4 h. This operation was repeated until no Pb(II)
was detected in the desorbed eluate. The desorbed MIL-101-NH2@CA was reused five times and its
adsorption capacity was measured after each use.

3. Results and Discussion

3.1. Synthesis of MIL-101-TEPA@CA

MIL-101 was synthesized by chromate and BDC in deionized water containing the mineralizer of
HF. Abundant unsaturated active sites existed in the central metal Cr3+ of MIL-101. These sites could
react with electron-rich groups such as ethylenediamine and TEPA, to realize functionalized MIL-101.
Na+ in SA could be replaced by Ca2+; however, the resulting CA was insoluble in water. Based on
this principle, after mixing the MIL-101-TEPA and SA solutions, MIL-101-TEPA@CA beads could be
prepared in a CaCl2 solution. The process of preparing MIL-101-TEPA@CA is shown in Scheme 1.
The best concentration of SA for bead formation is 1–2%; when the concentration of SA is greater
than 1%, the viscosity of the SA/MIL-101-TEPA mixture impedes the formation of the regular beads.
Therefore, the concentration of SA is set to 1%. The effect of the additive amount of MIL-101-TEPA
on the adsorption efficiency of the composite beads was investigated, with results shown in Figure
4a. The adsorption performance of MIL-101-TEPA@CA for Pb(II) is increased with increases in the
MIL-101-TEPA:CA mass ratio. When the mass ratio of MIL-101-TEPA:SA exceeds 1, the beads are
irregular in globosity and easily broken. Thus, we set the mass ratio of MIL-101-TEPA and SA to 1:1.
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Scheme 1. Preparation of MIL-101-TEPA@CA.

3.2. Characterization

3.2.1. SEM Observation

The scale bar of all micrographs in Figure 1 is 3 µm. As shown in Figure 1a, the surface morphology
of MIL-101 is regular and octahedral. In Figure 1b, after the TEPA is grafted onto the surface of MIL-101,
the MIL-101-TEPA retains completely octahedral particles [28]. It can be concluded that the grafting
process causes no changes in the morphology of MIL-101. When MIL-101-TEPA is mixed with SA,
composite beads are formed. In Figure 1c, MIL-101-TEPA shows aggregation. This phenomenon
is attributed to the crosslinking of CA. The EDS in Figure 1d and e shows the distribution of C,
N, O, Na, Cl, Ca and Cr throughout the MIL-101-TEPA@CA composite. Cr is characteristic of
MIL-101, N is characteristic of TEPA, Na originates in SA, and Ca, Cl originate in CaCl2 solution.
Therefore, the composite material has been prepared successfully. Figure 1f shows the TEM image of
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MIL-101-TEPA@CA, MIL-101-TEPA still remains regular and octahedral. The irregular bird nesting
part is the crosslinking CA.
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3.2.2. FTIR Analysis

As shown in Figure 2a, the vibration of O–H leads to the peak at 3415 cm−1 appearing in the infrared
(IR) spectrum. The two peaks observed at 1627 cm−1 and 1399 cm−1 can be attributed to symmetric
carbonyl stretching vibrations [29]. The vibration of Cr–O causes a deep peak at 578 cm−1 [30]. These three
characteristic peaks demonstrate the successful synthesis of MIL-101. After TEPA grafting on MIL-101,
two new peaks appear in the IR spectrum of MIL-101-TEPA. The peak at 827 cm-1 corresponds to the
telescopic vibration of –NH2, while that at 1563 cm−1 is attributed to bending vibrations of N–H in
TEPA [31]; this indicates that TEPA is successfully grafted onto MIL-101. According to the IR spectrum
of MIL-101-TEPA@CA in Figure 2c, the transmission is decreased; this is attributable to the addition of
CA. After Pb(II) loading, the peak caused by the symmetric carbonyl stretching vibrations is moved from
1399 to 1381 cm−1. Meanwhile, the peak attributed to the bending vibrations of N–H is weakened. It can be
concluded that carboxyl and amino groups participated in the adsorption process.

Polymers 2018, 10, x FOR PEER REVIEW  6 of 15 

 

symmetric carbonyl stretching vibrations [29]. The vibration of Cr–O causes a deep peak at 578 cm−1 

[30]. These three characteristic peaks demonstrate the successful synthesis of MIL-101. After TEPA 
grafting on MIL-101, two new peaks appear in the IR spectrum of MIL-101-TEPA. The peak at 827 
cm-1 corresponds to the telescopic vibration of –NH2, while that at 1563 cm−1 is attributed to bending 
vibrations of N–H in TEPA [31]; this indicates that TEPA is successfully grafted onto MIL-101. 
According to the IR spectrum of MIL-101-TEPA@CA in Figure 2c, the transmission is decreased; this 
is attributable to the addition of CA. After Pb(II) loading, the peak caused by the symmetric carbonyl 
stretching vibrations is moved from 1399 to 1381 cm−1. Meanwhile, the peak attributed to the 
bending vibrations of N–H is weakened. It can be concluded that carboxyl and amino groups 
participated in the adsorption process. 

3.2.3. XRD Analysis 

As shown in Figure 2c, XRD patterns of MIL-101-TEPA and MIL-101 show spectral line 
characteristics typical of crystalline materials. The peaks at 5.20°, 8.89°, 9.50° and 16.97° are 
characteristic of MIL-101 and we can confirm that the prepared material is MIL-101 [32,33]. 
Meanwhile, after TEPA is grafted on MIL-101, the XRD pattern is unchanged; this shows that the 
introduction of TEPA does not destroy the crystallinity. After CA crosslinking with MIL-101-TEPA, 
the XRD pattern shown in Figure 2d retains the characteristic peaks at 5.20° and 8.89°. The increasing 
of the signal-to-noise ratio in the XRD pattern conceals any other characteristic peaks. 

4000 3200 2400 1600 800

1627

3462

578

Tr
an

sm
itt

an
ce

Wavenumber(cm-1)

 MIL-101
 MIL-101-TEPA
 

1563 827
1399

a

 

4000 3200 2400 1600 800

1381
Tr

an
sm

itt
an

ce

W avenumber(cm -1)

 M IL-101-TEPA@ CA
 M IL-101-TEPA@ CA-Pb(II)

b

1399
1563

 

5 10 15 20 25 30 35 40

In
te

ns
ity

(a
.u

.)

2 Theta degree

 MIL-101
 MIL-101-TEPA

5.20
8.89

c

16.97

9.50

 

0 20 40 60 80

8.99

5.20

In
te

ns
ity

(a
.u

.)

2 Theta degree

d

 

Figure 2. Fourier-transform infrared (FTIR) spectra of (a) MIL-101 and MIL-101-TEPA; (b) 
MIL-101-TEPA@CA and MIL-101-TEPA@CA-Pb(II); XRD patterns of (c) MIL-101 and 
MIL-101-TEPA; and (d) MIL-101-TEPA@CA. 
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Figure 2. Fourier-transform infrared (FTIR) spectra of (a) MIL-101 and MIL-101-TEPA; (b) MIL-101-
TEPA@CA and MIL-101-TEPA@CA-Pb(II); XRD patterns of (c) MIL-101 and MIL-101-TEPA; and (d) MIL-
101-TEPA@CA.

3.2.3. XRD Analysis

As shown in Figure 2c, XRD patterns of MIL-101-TEPA and MIL-101 show spectral line characteristics
typical of crystalline materials. The peaks at 5.20◦, 8.89◦, 9.50◦ and 16.97◦ are characteristic of MIL-101 and
we can confirm that the prepared material is MIL-101 [32,33]. Meanwhile, after TEPA is grafted on MIL-101,
the XRD pattern is unchanged; this shows that the introduction of TEPA does not destroy the crystallinity.
After CA crosslinking with MIL-101-TEPA, the XRD pattern shown in Figure 2d retains the characteristic
peaks at 5.20◦ and 8.89◦. The increasing of the signal-to-noise ratio in the XRD pattern conceals any other
characteristic peaks.
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3.2.4. TGA Analysis

Figure 3a shows the TGA curves of the adsorbents. At temperatures below 130 ◦C, the weight
losses of the three materials of MIL-101, MIL-101-TEPA, and MIL-101-TEPA@CA are 4.95%, 8.35%,
and 10.10%, respectively. The weight loss at this stage is mainly due to the evaporation of free
water. For temperatures of 240–470 ◦C, the weight losses of 45.21% and 39.96% for MIL-101 and
MIL-101-TEPA, respectively, occur quickly. During this stage, the collapse of the MIL-101 skeleton
induces conversion to Cr2O3, and the weight remains stable. At 240–520 ◦C, the weight percentage of
MIL-101-TEPA@CA is decreased by 49.64%; in this stage, the weight loss process also includes the
conversion of CA into CaO. The final residual weight is 30.78%.
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MIL-101-TEPA@CA before and after loading Pb(II): (b) wide-scan; (c) Pb 4f ; and (d) N 1s, C1s spectra
(e) before and (f) after adsorption.
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3.2.5. XPS Analysis

The XPS spectrum of MIL-101-TEPA@CA in Figure 3b indicates five characteristic elements of
Cr, O, C, N and Ca. The first three are the elements comprising MIL-101. Meanwhile, the peak of
N 1s in Figure 3c indicates that TEPA has been grafted on MIL-101 successfully. The Ca 2p peak at
347.1 eV is attributed to the CA precipitate. After the adsorption of Pb(II), an apparent peak of Pb 4f
appears in the XPS spectrum, demonstrating that MIL-101-TEPA@CA can successfully adsorb Pb(II).
As shown in Figure 3d, the binding energy of N 1s is 399.89 eV; after loading with Pb(II), it is 400.07
eV. Meanwhile, the absorption intensity is weakened. This attributed to the complexation of Pb(II)
with amino groups in TEPA [34]. Figure 3e and f are the C1s spectra of MIL-101-TEPA@CA before and
after Pb(II) loading. The binding energy peaks at 533.20, 531.60 and 529.65 eV correspond to COO−,
C–O, and C=O, respectively. After MIL-101-TEPA@CA adsorbs Pb(II), these three binding energies
are moved to 533.25, 531.75 and 531.55 eV, respectively. This is caused by the binding of carboxyl and
hydroxyl groups to Pb(II).

3.3. Optimization of the Adsorption Conditions

3.3.1. Comparison of Adsorption Capacity

The test items were 16.13 mg MIL-101 and MIL-101-TEPA and MIL-101-TEPA@CA with the dry
weight equal to 16.13 mg. These three adsorbents were each placed in 10 mL of 500 mg/L Pb(II)
solutions. The determined adsorption capacity of each adsorbent is shown in Figure 4b. The qe of
MIL-101 is 249.31 mg/g, while that of MIL-101-TEPA is increased to 279.72 mg/g. CA has a good
adsorption capacity for Pb(II) of 273.59 mg/g. However, the mechanical strength of CA is poor, and CA
is easily damaged during adsorption. After introducing MIL-101-TEPA, the qe of MIL-101-TEPA@CA
is improved to 284.76 mg/g; simultaneously, the mechanical strength of CA is improved.

3.3.2. Effect of the Adsorbent Dose

Different weights of MIL-101-TEPA@CA were added to 10 mL 500 mg/L Pb(II) solution to study
the relationship between adsorbent dose and qe. The result is shown in Figure 4c. As the dosage of
MIL-101-TEPA@CA is increased, the qe decreases gradually, because of the increase in Pb(II) near the
adsorbent for lower adsorbent concentrations. The utilization of the adsorption sites is high. As the
adsorbent concentration increases, the utilization of the adsorption sites decreases, followed by a decrease
in adsorption capacity. As the adsorbent concentration increases to 1.613 mg/mL, the Pb(II) removal
rate reaches 91.86%. Considering the dosage and removal rate, the optimal adsorbent concentration is
determined as 1.613 mg/mL; this concentration is used in the remainder of the experiments.

3.3.3. Effect of the pH of Pb(II) Solution

The surface potential of the adsorbent can be influenced by the pH of the adsorption solution.
Adsorbents with stronger electronegativity possess better adsorption capacities for Pb(II). Therefore,
pH optimization is necessary for efficient adsorption. When the concentration of Pb(II) solution is
500 mg/L, the pH value is 5.28. Under alkaline conditions, Pb(II) will precipitate as Pb(OH)2. HCl and
NaOH solutions (0.1 mol/L) were applied to adjust the pH from 2 to 6, to analyze the influence of pH
on the adsorption capacity. As shown in Figure 4d, the qe is increased linearly as the pH increases from
2 to 5. As the pH continues to increase, the adsorption capacity shows a slowing of growth. At lower
pH, the carboxyl group is not easily ionized, affecting the combination between the adsorbent and
Pb(II). The adsorption capacity is 285.11 mg/g when the pH is 6 and 284.76 mg/g for the solution with
unregulated pH. Considering the simplicity of the operation, we determine that it is unnecessary to
adjust the pH for adsorption.
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3.3.4. Effect of the Initial Concentration of Pb(II)

Pb(II) solutions with concentrations from 10 to 1000 mg/L were used to investigate the relationship
between concentration and C0. The study results are shown in Figure 5a. When the C0 is below
100 mg/L, the removal ratio reaches 100%. As the C0 of Pb(II) increases, the removal ratio begins to
decrease, but the adsorption capacity continues to increase. With the increase of Pb(II) concentration,
the opportunity for binding sites to entrap Pb(II) is increased; thus, the adsorption capacity is increased.
At the Pb(II) concentration of 500 mg/L, MIL-101-TEPA @CA can remove more than 90% of Pb(II);
meanwhile qe reaches 284.76 mg/g. Considering the removal ratio, in the following experiments,
we choose 500 mg/mL as the experimental Pb(II) concentration.

3.3.5. Effect of the Adsorption Time

The adsorbent (16.13 mg) was dispersed into 10 mL Pb(II) solution for adsorption. The adsorption
capacity was measured for each time span. As shown in Figure 5b, when the adsorbing time is in the
range 5–90 min, the adsorption capacity is increased quickly. At this time, the concentration of Pb(II) is
high and sufficient adsorption sites are available, allowing a high adsorption rate. In the period from
90 to 180 min, the adsorption capacity increases slowly. This is because of the decreases in the quantity
of available adsorption sites and the Pb(II) concentration. The adsorption process reaches equilibrium
after 180 min, with a total removal rate of 91.86%.

3.3.6. Effect of the Adsorption Temperature

A sample of 16.13 mg MIL-101-TEPA@CA was added to 10 mL of 500 mg/L Pb(II) solution, a series
of temperatures from 293 to 308 K were applied to investigate the significance of temperature in the
adsorption process. According to Figure 5c, as the adsorption temperature is increased, qe increases
from 282.80 mg/g to 287.52 mg/g, while the removal ratio increases from 91.23% to 92.75%. It can be
concluded that a higher temperature favors the adsorption process. The kinematic velocity of Pb(II)
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is increased at higher temperatures, thus increasing the probability of Pb(II) combination with the
adsorbent and thereby increasing the adsorption capacity.

3.3.7. Effect of the Recycling Process

The Pb(II)-loaded MIL-101-TEPA@CA was eluted by 0.1 mol/L HCl. After the desiccation of the eluted
MIL-101-TEPA@CA, the qe of the MIL-101-TEPA@CA was reappraised. The results are shown in Figure 5d.
After six adsorption–elution cycles, the adsorption capacity is decreased from 284.56 mg/g to 248.42 mg/g.
Although the adsorption capacity is clearly decreased, the adsorption rate still exceeds 80%. This shows the
reusability of MIL-101-TEPA@CA.
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3.4. Adsorption Mechanism

3.4.1. Adsorption Isotherm

We use the Langmuir and Freundlich models to determine the adsorption isotherm. The formula
of the Langmuir model is shown in Equation (4); this model is used to explain monolayer adsorption, in
which no spatial hindrance occurs [35]. Meanwhile, the Freundlich adsorption isotherm (Equation (5))
is used to describe multilayer and reversible adsorption processes [36]. RL is a dimensionless separation
factor, it can be obtained by the aid of constant b in Langmuir model. It is used to determine whether
the adsorption occurs preferentially [37].

Ce

qe
=

1
bqm

+
Ce

qm
(4)

lgqe = lgKF +
1
n

lgCe (5)
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lgqe = lgKF +
1
n

lgCe (6)

Here, the maximum adsorption capacity qm (mg/g) can be obtained by the Langmuir model,
b is a constant of Langmuir model; n is a constant of the Freundlich adsorption isotherm relating to
the adsorption intensity, while KF is a constant representing the adsorption capacity. Figure 6a,b show the
fitting results of the Langmuir and Freundlich models, and the related parameters are shown in Table 1.
The correlation coefficient (R2) of the Langmuir model is 0.9910, while that of the Freundlich model is
0.9473; the adsorption process is more suitably fitted by the Langmuir model. This indicates that the
adsorption sites are uniformly distributed on the surface of MIL-101-TEPA@CA. The qm fitted by the
Langmuir model is 543.48 mg/g. The values of RL, as shown in Table 2, are all less than 1, indicating that
the process of MIL-101-TEPA@CA for Pb(II) is energetically favorable. The qm and adsorption mechanism of
MIL-101-TEPA@CA for Pb(II) are compared with those of previously reported adsorbents, as summarized
in Table 3. It can be concluded that MIL-101-TEPA@CA is the most promising adsorbent [38].

Table 1. Parameters of langmuir and freundlich models for Pb(II) removing by MIL-101-TEPA@CA.

T (K)
Langmuir Isotherm Freundlich Isotherm

qm(mg/g) b (L/mg) R2 KF n R2

298.2 543.48 0.040 0.9910 1.27×10−4 0.38 0.9473

Table 2. RL for Pb(II) Removal by MIL-101-TEPA@CA Based on the Langmuir Model.

C0 (mg/L) 10 50 100 200 300 500 800 1000

RL 0.67 0.29 0.17 0.091 0.063 0.038 0.024 0.020

Table 3. Comparison of the maximum adsorption capacity for Pb(II) with reported adsorbents.

Adsorbents qmax(mg/g) Adsorption Mechanism References

NH2-MIL-101(Cr) 81.09 electrostatic interaction [39]
POP-NH2 523.6 coordinated complexation [40]
NFC/PEI 357.14 chemical adsorption [41]

Cellulose 4 192.3 coordinated complexation, electrostatic interaction [42]
Al(OH)3/(PAA-CO-PAM) 106.2 chemical adsorption [43]

Cs-PMA/HNT 357.38 coordinated complexation, electrostatic interaction [44]
MIL-101-TEPA@CA 543.48 coordinated complexation, electrostatic interaction this work

3.4.2. Adsorption Kinetics Study

The pseudo-first-order kinetics model (Equation (7)) is applied to describe the adsorption process
in which the adsorbate attachment to the surface of the adsorbent is controlled by diffusion [45].
The pseudo-second-order kinetics model (Equation (8)) is applied to describe adsorption processes
where the adsorbate attachment to the adsorbent surface is controlled by chemisorptions [46].

ln(qe − qt) = ln qe − k1t (7)

t
qt

=
1

k2q2
e
+

t
qe

(8)

Here, k1 (1/min) and k2 (g/mg·min) are the pseudo-first-order kinetics model and the
pseudo-second-order kinetics model rates, respectively. The fitting curves and the related parameters
are shown in Figure 6c–d, and Table 4, respectively. The correlation coefficient (R2) of the
pseudo-first-order kinetics model is 0.9930; that of the pseudo-second-order kinetics model is 0.9994.
The adsorption process has a high degree of conformance to the pseudo-second-order kinetics model,
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and qe fitted by the pseudo-first-order kinetics model is 285.71 mg/g, near the adsorption capacity
obtained experimentally. Therefore, the adsorption process likely occurs by chemical adsorption.

Table 4. Kinetic models parameters for the Pb(II) removal by MIL-101-TEPA@CA.

qe, exp
Pseudo-First-Order Model Pseudo-Second-Order Model

qe, cal k1 R2 qe, cal k2 R2

284.76 10.70 0.02390 0.9930 285.71 0.0011 0.9994
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3.4.3. Adsorption Thermodynamics Study

The relevant thermodynamic parameters are obtained by Equation (9). The adsorption mechanism
of MIL-101-TEPA@CA for Pb(II) was further studied using the thermodynamic parameters.

∆G = −RT ln
qe

Ce
= −RT(−∆H

RT
+

∆S
R

)

Here, ∆G (kJ/mol) is the Gibbs free energy, ∆H (kJ/mol) is the enthalpy, ∆S (kJ/mol) is the
entropy, T (K) is the thermodynamic temperature, and R is the gas constant. The related parameters
are shown in Table 5. After substituting the known parameters qe and Ce at different temperatures
into Equation (5), ∆G is negative, so the adsorption process is an endothermic reaction. In addition,
∆H is positive, further confirming the above conclusion. Therefore, a relatively high temperature
benefits the adsorption process. ∆S is also negative, so the adsorption of Pb(II) by MIL-101-TEPA@CA
is an entropy-driven process.
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Table 5. Thermodynamics parameters of MIL-101-TEPA@CA for removing Pb(II).

∆G (kJ/mol) T (K) ∆H
(kJ/mol)

∆S
(J/mol·K)293.2 298.2 303.2 308.2

−4.54 −4.82 −5.07 −5.31 10.30 −0.051

4. Conclusions

In this study, MIL-101-TEPA@CA shows a good ability to remove Pb(II) in liquids. The introduction
of TEPA greatly enhances the removal ratio of MIL-101-TEPA for Pb(II). The fabricated beads of
MIL-101-TEPA@CA can be easily recovered from treated liquids by simple filtration. The effects of the
adsorbent dose, adsorption time, initial concentration of Pb(II), pH of the Pb(II) solution, and adsorption
temperature on the adsorption process have been studied. The study of MIL-101-TEPA@CA for Pb(II) proves
that the adsorption process occurs following the pseudo-second-order kinetics model and the Langmuir
adsorption isotherm. The time of adsorption equilibrium is 180 min; after six cycles of reuse, the removal
ratio remains above 82%. In summary, MIL-101-TEPA@CA as an adsorbent shows a high adsorption
capacity and good recyclability.
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