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Abstract: Cyclic polylactide (cPLA) is a structural isomer of linear polylactide (PLA) although
it possesses unique functionalities in comparison to its linear counterpart. Hitherto, the control
of stereochemical purity in conventional cPLA synthesis has not been achieved. In this study,
highly stereochemically pure cPLA was synthesized in the absence of a metal catalyst and organic
solvent, which required high consumption of the residual monomer. The synthesis was conducted
in supercritical carbon dioxide under CO2 plasticizing polymerization conditions in the presence
of an organocatalyst and thiourea additives. In comparison with the stereocomplexes synthesized
through conventional methods, cPLA from L-lactide (cPLLA) and cPLA from D-lactide (cPDLA) were
synthesized with higher stereochemical purity and improved thermal stability. Moreover, the method
presented herein is environmentally friendly and thus, applicable on an industrial level.

Keywords: organocatalyst; thiourea; cyclic polylactide; CO2 plasticizing polymerization;
stereocomplexes

1. Introduction

Linear polylactides (PLAs) have high biodegradability and biocompatibility, with their potential
applications in the medical, pharmaceutical and materials fields having drawn a significant amount of
attention [1–3]. Cyclic polylactide (cPLA), which is a structural isomer of PLA with an unique topology,
also displays favorable properties [4–8]. For example, a study on the effect of cPLAs on tumor cells and
tumor-bearing mice demonstrated that cPLAs effectively inhibit tumor cell growth [9]. Furthermore, in
a recent study, cPLA was used as a stabilizer for palladium nanoparticles in the synthesis of a cPLA-clay
hybrid material, which can be a recyclable catalyst, for use in the aminocarbonylation reaction of aryl
halides with various amines [10]. Despite these attractive properties, cPLAs remain underexplored in
comparison to linear PLAs both with respect to their synthesis and practical applications [10].

Until now, three strategies have been reported for the synthesis of cPLAs (Scheme 1):
(1) polymerization and separation; (2) polymerization and cyclization; and (3) ring-opening
polymerization (ROP) and cyclization. Strategy (1) has proved to be inefficient as even when
fractionated by a reverse-phase octadecylsilyl (ODS) column chromatography, a mixture of linear
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PLAs and cPLAs is obtained [11]. Strategy (2) requires several steps, although uniform cPLAs can
be eventually separated using a gel filtration column [12–16]. Nevertheless, it is still inappropriate
for large-scale syntheses. In contrast, strategy (3) allows for a simple and straightforward one-step
synthesis of cPLAs. The latter of these strategies was reported in 2007 using an organocatalytic
method [17–23], while researchers have used a metal complex catalytic method in 2011 [24–29].

Polymers 2018, 10, x FOR PEER REVIEW  2 of 9 

 

fractionated by a reverse-phase octadecylsilyl (ODS) column chromatography, a mixture of linear 
PLAs and cPLAs is obtained [11]. Strategy (2) requires several steps, although uniform cPLAs can be 
eventually separated using a gel filtration column [12–16]. Nevertheless, it is still inappropriate for 
large-scale syntheses. In contrast, strategy (3) allows for a simple and straightforward one-step 
synthesis of cPLAs. The latter of these strategies was reported in 2007 using an organocatalytic 
method [17–23], while researchers have used a metal complex catalytic method in 2011 [24–29]. 

 
Scheme 1. Synthetic strategies of cyclic polylactide (cPLA). 

According to these reports, cPLA was obtained with high conversion (85–97%), moderate 
polydispersity index (PDI = 1.22–3.60) and high number-average molecular weight (Mn = 6400–
69,000). The metal complex catalysts displayed poor reactivity and required high temperatures (30–
160 °C) and long reaction times (4–18.5 h). In contrast, the reaction efficiency of N-heterocyclic 
carbene (NHC) as an organocatalyst was extremely high and the polymerization reaction occurred 
within 30 s at 25 °C. However, there were several drawbacks in that the polymerization reactions 
were conducted in flammable or toxic organic solvents, such as THF or CH2Cl2, and required drybox 
or Schlenk techniques under nitrogen, thereby limiting the potential for industrialization [19]. 

In general, the available methodologies fail to control the stereochemistry of PLAs, which is one 
of the most important parameters in material development as it has a significant effect on the 
properties [30,31]. In fact, in most examples of cPLA syntheses, racemic lactides are employed and 
thus, control of the stereochemical purity is insufficiently achieved. To the best of our knowledge, the 
stereocomplexes of cPLA were reported in 2011 by Waymouth et al. [19]. However, the fraction of 
isotactic (iii) tetrads of cPLA prepared from L-lactide was 0.81–0.83, suggesting that epimerization 
occurred during the polymerization step. Recently, Kricheldorf et al. reported a racemization-free 
polymerization, in which a cyclic tin catalyst was employed under bulk polymerization conditions, 
but a high temperature (160 °C) was required [29]. 

Based on our previous findings on the synthesis of stereochemically pure linear PLA [32], in this 
study, we have developed a method for the synthesis of highly pure cPLA in the absence of metals, 
organic solvents or residual monomers. Instead, the approach employs an organocatalyst in 
supercritical carbon dioxide (scCO2) under CO2 plasticizing polymerization (CPP) conditions at low 
temperatures. The results were promising as both L- and D-cPLA were synthesized in high 
stereochemical purity from L- and D-lactide 1, respectively (Scheme 2), which are hereafter denoted 
as cPLLA and cPDLA, respectively. An improvement in the thermal properties of the 
stereocomplexes was also observed. 

 
Scheme 2. ROP of lactide, which creates PLA and cPLA. 

Scheme 1. Synthetic strategies of cyclic polylactide (cPLA).

According to these reports, cPLA was obtained with high conversion (85–97%), moderate
polydispersity index (PDI = 1.22–3.60) and high number-average molecular weight (Mn = 6400–69,000).
The metal complex catalysts displayed poor reactivity and required high temperatures (30–160 ◦C)
and long reaction times (4–18.5 h). In contrast, the reaction efficiency of N-heterocyclic carbene (NHC)
as an organocatalyst was extremely high and the polymerization reaction occurred within 30 s at
25 ◦C. However, there were several drawbacks in that the polymerization reactions were conducted
in flammable or toxic organic solvents, such as THF or CH2Cl2, and required drybox or Schlenk
techniques under nitrogen, thereby limiting the potential for industrialization [19].

In general, the available methodologies fail to control the stereochemistry of PLAs, which is
one of the most important parameters in material development as it has a significant effect on the
properties [30,31]. In fact, in most examples of cPLA syntheses, racemic lactides are employed and
thus, control of the stereochemical purity is insufficiently achieved. To the best of our knowledge, the
stereocomplexes of cPLA were reported in 2011 by Waymouth et al. [19]. However, the fraction of
isotactic (iii) tetrads of cPLA prepared from L-lactide was 0.81–0.83, suggesting that epimerization
occurred during the polymerization step. Recently, Kricheldorf et al. reported a racemization-free
polymerization, in which a cyclic tin catalyst was employed under bulk polymerization conditions,
but a high temperature (160 ◦C) was required [29].

Based on our previous findings on the synthesis of stereochemically pure linear PLA [32], in this
study, we have developed a method for the synthesis of highly pure cPLA in the absence of metals,
organic solvents or residual monomers. Instead, the approach employs an organocatalyst in supercritical
carbon dioxide (scCO2) under CO2 plasticizing polymerization (CPP) conditions at low temperatures.
The results were promising as both L- and D-cPLA were synthesized in high stereochemical purity
from L- and D-lactide 1, respectively (Scheme 2), which are hereafter denoted as cPLLA and cPDLA,
respectively. An improvement in the thermal properties of the stereocomplexes was also observed.
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2. Materials and Methods

2.1. Materials

In this study, 1-(3,5-Bis(trifluoromethyl)phenyl)-3-cyclohexyl thiourea was synthesized according
to literature procedures [33]. All other chemicals and solvents were commercially available and used
as received. L-Lactide was provided by Ricoh Co., Ltd. (Tokyo, Japan), while CO2 was obtained from
Air Liquide Kogyogas Ltd. (Tokyo, Japan).

2.2. Synthesis

Polymerization reactions were conducted in a scCO2 reaction system using the TVS-N2-type
portable reactor (20 MPa, 260 ◦C) manufactured by Taiatsu Techno Corporation (Tokyo, Japan)
with the JASCO PU-1586 scCO2 pump (JASCO Corporation, Tokyo, Japan). L-Lactide (1, 864 mg,
6.0 mmol, 1.0 eq) and the organocatalyst (4-(dimethylamino)pyridine (DMAP), 0.40 mmol, 6.6 mol %)
were added to a 12-mL pressure-resistant reactor, before the mixture was heated to 60 ◦C using a
water bath. The vessel was charged with scCO2 (60 ◦C, 10 MPa) and the solution was stirred for
5 min. The reaction mixture was allowed to stand for 5 h, before the pressure was reduced from
supercritical to atmospheric, yielding cPLA as a white solid. For the thiourea-mediated cPLLA synthesis,
1-(3,5-bis(trifluoromethyl)phenyl)-3-cyclohexyl thiourea (1 mol %) was added to the mixture of lactide
and DMAP. This mixture was subjected to the polymerization reaction for 2.5 h as described above.

cPLLA and cPDLA samples with different number-average molecular weights were isolated
by preparative gel permeation chromatography (GPC) using a recycling high performance liquid
chromatography (HPLC) system (YMC LC-Forte/R, YMC CO., Ltd., Kyoto, Japan) with a YMC-GPC
T30000 (21.2 mm × 600 mm) and YMC-GPC T4000 (21.2 mm × 600 mm) columns in series (CHCl3
as the eluent, flow rate of 6.0 mL/min). For preparation of the stereocomplex of cPLA [19], cPLLA
(50 mg) and cPDLA (50 mg) were dissolved separately in 5 mL of CH2Cl2. These solutions were mixed
together in a 20-mL flask and stirred for 5 min at room temperature. The solvent was evaporated
slowly (200 torr) at room temperature, before the residue was dried under a vacuum to remove the
residual solvent. The resulting material was used for DSC measurements.

2.3. Characterization

The conversion by polymerization was determined through 1H NMR analysis. 1H NMR
(300 MHz) spectra were recorded using the JEOL JNM-AL spectrometer (JEOL, Tokyo, Japan) at
ambient temperature. The spectra were recorded using CDCl3 as a solvent and tetramethylsilane
(TMS) as an internal standard (δ = 0 ppm). The number- and weight-average molecular weights (Mn,
Mw) and polydispersity index (PDI = Mw/Mn) of the products were determined by gel permeation
chromatography (GPC) analysis using the SHIMADZU LC-5A pump (SHIMADZU, Kyoto, Japan)
and JAI R1-3H RI detector (Japan Analytical Industry Co., Ltd., Tokyo, Japan) with GPC column GPC
K-806L (Shodex, Tokyo, Japan, 8.0 mm × 300 mm, flow rate 0.8 mL/min), using polystyrene as a
standard and CHCl3 as an eluent. LAsoft CDS-Lite software (LAsoft, Ltd., Chiba, Japan) was used for
the molecular weight calculations.

The topology of the polymer product being cyclic rather than linear was confirmed
by 1H NMR and matrix assisted laser desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF-MS) (Supplementary Materials, Figures S1 and S2). The mass spectra were
recorded using ultrafleXtreme mass spectrometry (MALDI-TOF-MS, Bruker Japan, Yokohama,
Japan). For MALDI-TOF-MS measurements, the cPLA was dissolved in CHCl3. Trans-2-[3-(4-tert-
butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) was used as the matrix and silver
trifluoroacetate was added as a cation source.

In order to hydrolyze the polymer materials, an aqueous solution of NaOH (1 M, 10 mL) was
added to the polymer. After 4 h under reflux conditions, the mixture was cooled down to the ambient
temperature and an aqueous solution of HCl (2 M, 5.5 mL) was added. The resulting lactic acid
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was analyzed by chiral HPLC. The HPLC analysis was conducted under the following conditions:
SUMICHIRAL OA5000 column (Sumika Chemical Analysis Service, Ltd., 4.6 mm × 150 mm, flow rate
1.0 mL/min) with 2 mM CuSO4 aq/2-propanol = 95:5; UV detection at 254 nm (L-lactide: retention
time = 8.5 min; D-lactide: retention time = 10.3 min) (Supplementary Materials, Figure S3).

Differential scanning calorimetry (DSC) analysis was performed using SHIMADZU DSC-60
(SHIMADZU, Kyoto, Japan). For DSC measurements, a 5-mg sample was heated from 25 to 250 ◦C at
10 ◦C/min rate under an argon flow (50 mL/min). The data collection interval was 1.0 s.

3. Results and Discussion

The synthesis of cPLA via an organocatalytic ROP was examined according to previous findings
on the synthesis of stereochemically pure linear PLA (Table 1) [32]. Notably, 1H NMR analysis of the
polymerization reaction mixture showed that the remaining unreacted monomers were less than 5%
in any of the polymerization reactions. The monomer conversion rate and weight of the recovered
polymer were both higher than 95%. In the conventional solution polymerization method, the reaction
was slow and resulted in the formation of amorphous cPLLA with low stereochemical purity, which
was determined by HPLC analysis after hydrolysis of cPLLA to lactic acid (Table 1, entry 1). In contrast,
the reaction proceeded smoothly in scCO2 and crystalline cPLLA was obtained in a high enantiomeric
excess (ee) of 90.5% (Table 1, entry 2). The success of the polymerization reaction under scCO2

conditions was attributed to the high concentration conditions similar to those in bulk polymerization
and uniform conditions similar to those in solution polymerization. We refer to this process as a CO2

plasticizing polymerization (CPP) method [32]. Under CPP conditions, epimerization was suppressed
since the reactive zwitterionic intermediate (3) was less likely to be solvated by scCO2 (dielectric
constant (εr) = 1.15 at 10 MPa, 60 ◦C) as this has a lower εr than pentane (εr = 1.84) and hexane (εr

= 1.89) [34,35]. Thus, this allows for the ROP to be preferred over the epimerization, which would
form the meso-lactide 1 (Scheme 3). It was assumed that the stereochemical purity of cPLLA could be
improved by increasing the polymerization consumption rate of the monomer. Thus, the additives
that selectively activated the carbonyl group of L-lactide were investigated (Figure 1). In particular,
1-(3,5-bis(trifluoromethyl)phenyl)-3-cyclohexylthiourea accelerated the ROP reaction and improved
the stereochemical purity, giving an ee of 93.5% (Table 1, entry 3). Given the success of the reaction
using L-lactide, the same reaction conditions were applied to the ROP of D-lactide, with cPDLA being
obtained in high stereoselectivity (entries 4 and 5). The PDI of the cPLA formed herein was 1.20–1.60,
which was comparable to that obtained via the previously reported NHC catalytic method (1.3–1.4) [19].

Table 1. Organocatalytic cPLA synthesis in supercritical carbon dioxide (scCO2).
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Figure 1. Activation of L-lactide monomer by a thiourea additive.

In the cPLA synthesis, since a cyclic structure was formed via an intramolecular cyclization,
the PDI could not be improved unless the linear intermediate of the same molecular weight is
selectively cyclized.

Similar to PLA, cPLA has been known to form a stereocomplex of cPLA (sc-cPLA) [19,36,37]. In this
work, cPDLA was synthesized according to the same procedure as that of cPLLA, while differential
scanning calorimetry (DSC) was applied to create sc-cPLA (Figure 2). Interestingly, although the
molecular weight was lower than the one reported in the literature (Table 2, entries 1 and 2 vs. 3), the
measured melting point was higher than the previously reported value [19], which indicates stronger
intermolecular forces. The melting point of sc-cPLA with the highest stereochemical purity was 212 ◦C.
As the stereochemical purity decreased, the melting point decreased to 207 ◦C (Table 2, entries 1 vs. 2).
Therefore, we can conclude that the higher stereochemical purity of the D- and L-forms led to stronger
intermolecular interactions between the two forms in the stereocomplex and hence, a higher melting
point (Figure 3). In addition, similar to the case of the stereocomplex of cPLA, the melting point of
cPLA itself also depended on the stereochemical purity.

Table 2. DSC measurements of the stereocomplex of cPLA.

Entry cPLA Mn PDI Ee (%) Tm (◦C) Tm (sc-cPLA) (◦C)

1
cPDLA 6800 1.20 97.0 152

212cPLLA 11,000 1.60 93.5 149

2
cPDLA 6000 1.31 91.0 143

207cPLLA 5500 1.40 90.5 145

3 (a) cPDLA 26,000 1.40 (0.81) (b) 132
179cPLLA 30,000 1.30 (0.83) (b) 135

(a) Data reported in reference 19. (b) Fraction of isotactic tetrads.
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formation.

Subsequently, the effect of the ring size on the thermal stability was investigated (Table 3 and
Figure 4). Three stereocomplex samples with different number-average molecular weights were
prepared using cPLLA and cPDLA, which are shown in Table 2, entry 2. These were obtained and
purified by a preparative GPC. Sample 1, which had very different molecular weights of cPLLA and
cPDLA, had a melting point of 190 ◦C (Table 3, entry 1). In Sample 2, a more moderate difference in
the molecular weight distribution led to an increase in the melting point to 200 ◦C (Table 3, entry 2).
Finally, the smallest difference in the molecular weights in sample 3 gave the highest melting point
(Table 3, entry 3). These results suggested that the degree of formation of the stereocomplex depended
not only on the stereochemical purity, but also on the ring size (and similarities thereof) because the
overlapping portion between cPLLA and cPDLA was limited due to a different radius of the curvature.

Table 3. Stereocomplex of PLA with different ring sizes.

Entry cPLA Mn PDI Tm (sc-cPLA)

1
cPDLA 7900 1.18

190cPLLA 2600 1.20

2
cPDLA 5100 1.23

200cPLLA 7400 1.23

3
cPDLA 6000 1.31

207cPLLA 5500 1.40
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4. Conclusions

In this study, highly stereochemically pure cPLA was synthesized in the absence of a metal
catalyst or organic solvent, which required high consumption of the residual monomer. The synthesis
was conducted in scCO2 under CO2 plasticizing polymerization conditions in the presence of an
organocatalyst and thiourea additives. In this approach, the epimerization of the obtained cPLA
was suppressed and the stereochemical purity was higher than those obtained from conventional
methods, although the control of stereochemical purity in conventional cPLA synthesis has not yet been
achieved. In comparison to stereocomplexes synthesized through the conventional methods, cPLA
from L-lactide (cPLLA) and cPLA from D-lactide (cPDLA) stereocomplexes were synthesized with
higher stereochemical purity and improved thermal stability. Based on these results, we concluded that
the method presented herein could meet the increasing demands of medical and material applications
in terms of safety and high functionality in the large-scale industrial manufacturing of cPLA and in
academic research.
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