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Abstract: To meet the demand for next-generation flexible optoelectronic devices, it is crucial to
accurately establish the chemical structure-property relationships of new optical polymer films from
a theoretical point of view, prior to production. In the current study, computer-aided simulations
of newly designed poly(ester imide)s (PEsIs) with various side groups (–H, –CH3, and –CF3) and
substituted positions were employed to study substituent-derived steric effects on their optical and
thermal properties. From calculations of the dihedral angle distribution of the model compounds,
it was found that the torsion angle of the C–N imide bonds was effectively constrained by the
judicious introduction of di-, tetra-, and hexa-substituted aromatic diamines with –CF3 groups.
A high degree of fluorination of the PEsI repeating units resulted in weaker intra- and intermolecular
conjugations. Their behavior was consistent with the molecular orbital energies obtained using
density functional theory (DFT). In addition, various potential energy components of the PEsIs were
investigated, and their role in glass-transition behavior was studied. The van der Waals energy (EvdW)
played a crucial role in the segmental chain motion, which had an abrupt change near glass-transition
temperature (Tg). The more effective steric effect caused by –CF3 substituents at the 3-position of the
4-aminophenyl group significantly improved the chain rigidity, and showed high thermal stability
(Tg > 731 K) when compared with the –CH3 substituent at the same position, by highly distorting
(89.7◦) the conformation of the main chain.

Keywords: poly(ester imide); substituent effect; glass-transition temperature; molecular dynamics
simulation; optical property

1. Introduction

In recent years, interest grew in the development of thin, lightweight, and unbreakable new-generation
optoelectronic devices, with transparent flexible plastic substrates for portable devices, and roll-up and
conformable displays [1,2]. At the same time, to meet the market demand for optical devices with high
reliability, high integration, and rapid signal-transmission speeds, the service temperature requirements
of the plastic substrates increased dramatically [3,4]. The flexible plastic substrate must be able to
withstand the high temperatures of the thin-film transistor (TFT)-driven active matrix manufacturing
processes, which can exceed 623 K for liquid crystal display (LCD), or active matrix organic
light-emitting display (AMOLED) devices. Most common optical polymer films, such as poly(ethylene
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terephthalate) (PET, Tg ~351 K), poly(ethylene naphthalate) (PEN, Tg ~396 K), polycarbonate (PC,
Tg ~423 K), and polyethersulfone (PES, Tg ~496 K) have limited service temperatures, and lose their
optical transmittance, or deteriorate mechanically at such high manufacturing temperatures [5,6].
Temperature-resistant optical polymers therefore represent an interesting and promising class of
materials because they are potential alternatives to traditional glass substrates in optoelectronic
applications, with potentially better performance and durability.

Among possible candidates, wholly aromatic polyimides (PIs) have outstanding thermal stability
(Tg > 523 K), are mechanically tough, and exhibit high solvent resistance and good electrical
properties [7–12]. However, they have dark colors (pale yellow to brown) and poor optical transparency
in optoelectronic applications [13,14]. In the aromatic PIs, this coloration and the characteristic
absorption in the visible region originate from intra- and intermolecular charge transfer (CT) between
the electron-accepting dianhydride and the electron-donating diamine moiety [15]. In addition, the
high chain-packing order at the nanometer level of the PI degrades its optical properties due to
Rayleigh scattering. Various approaches were developed to inhibit the CT interactions of conventional
aromatic PIs for optoelectronic device applications, including the use of cycloaliphatic moieties, bulky
pendant groups, electron-rich bridges (such as –O–), electron-withdrawing groups, and asymmetrical
structures in their backbones [16–19]. However, these methods generally result in poor thermal and
mechanical properties. Achieving a compromise between a light color and a high thermal stability is,
therefore, a significant challenge in the development of optoelectronic polymeric substrates.

Recently, Hasegawa et al. reported various methyl- or alkyl-substituted poly(ester imide) (PEsI)
systems to form colorless heat-resistant polymers [20,21]. They discussed the effect of substituents (various
numbers and positions) in the ester-linked tetracarboxylic dianhydrides on the optical and thermal
properties, and suggested appropriate copolymer combinations. Quite recently, we developed new
aromatic PEsIs using an ester-bridged aromatic diamine with dimethyl groups at the ortho-position
of the amino groups [22]. Although this PI has one of the lowest coefficients of thermal expansion
(CTE) among aromatic PIs, by controlling the dihedral torsion angle between the dimethyl-substituted
phenylene ring and the imide ring, it still has coloration. Thus, we continued efforts to develop PIs with
high transparency, as well as high Tg and low CTE values, based on the highly twisted conformations
of the phenylimides.

At the beginning phase in the development of a new optical PI polymer, it is generally necessary to
investigate how numerous functional groups influence the characteristics of the PIs. This type of synthesis
involves long cycles, and limitations imposed by experimental conditions. As a result, it is undesirable
and expensive to attempt the synthesis of all possible PI structures without a suitable methodology of
increasing the potential for success. For this reason, the ability to predict the characteristics of polymer
materials from their chemical constitution is particularly important for the selection and design of new
high-performance materials. Computer-aided modeling consequently became a standard method for
studying complex polymer systems, and has now widely used to predict the physical properties of
polymer materials. The modeling is useful for the suggestion of potential materials with predefined
characteristics. For example, molecular dynamics (MD) simulation is a well-known way of studying
bulk polymers at the molecular level [23,24]. In particular, it allows thermodynamic behavior, such as
the glass-transition temperature (Tg) and the coefficient of thermal expansion (CTE) of a candidate
polymer, to be studied effectively [25–28].

Herein, we described a strategic approach to the design of transparent, high-temperature-resistant
polyimides. The model compounds for the PEsIs were newly designed using different molecular
structures of ester-bridged aromatic diamines, mainly bis-(4-amino-3-trifluoromethyl-phenyl)
terephthalate (BATFMT), bis-(4-amino-3,5-bis-trifluoromethyl-phenyl) terephthalate (BABTFMT), and
bis-(4-amino-2,3,5-tris-trifluoromethyl-phenyl) terephthalate (BATTFMT). Computer simulations were
performed to predict the optical and thermomechanical properties of the PEsI model compounds.
We firstly employed density functional theory (DFT) calculations to interpret the coloration of the
model molecules. Details of the MD simulation were described in order to obtain insight into the
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molecular structure and thermal properties of the PEsIs. We obtained comparative values of the Tg

and CTE of various PEsIs samples, and analyzed the role of various potential energy components in
the glass-transition process. The torsion angle distributions of the PEsI chains at various temperatures
were discussed to explain the chain conformations before and after the glass transition.

2. Methodology

2.1. Molecular Design

The chemical structures of the repeat units and the three-dimensional (3D) molecular structures
of the model compounds for the seven PEsI models used in this study are shown in Figure 1.
The seven PEsIs were synthesized from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) and
corresponding diamines (i.e., bis-(4-amino-phenyl) terephthalate (BAT), bis-(4-amino-3-methyl-
phenyl) terephthalate (BAMT), bis-(4-amino-3,5-dimethyl-phenyl) terephthalate (BADMT),
bis-(4-amino-2,3,5,-trimethyl-phenyl) terephthalate (BATMT), bis-(4-amino-3-trifluoromethyl-phenyl)
terephthalate (BATFMT), bis-(4-amino-3,5-bis-trifluoromethyl-phenyl) terephthalate (BABTFMT),
and bis-(4-amino-2,3,5-tris-trifluoromethyl-phenyl) terephthalate (BATTFMT). For convenience,
the PEsI models are denoted as PEsI–(CH3)1 for BPDA–BAMT, PEsI–(CH3)2 for BPDA–BADMT,
PEsI–(CH3)3 for BPDA–BATMT, PEsI–(CF3)1 for BPDA–BATFMT, PEsI–(CF3)2 for BPDA–BABTFMT,
and PEsI–(CF3)3 for BPDA–BATTFMT. To confirm the substituent effect, a controlled sample was
prepared and labeled as PEsI–H (BPDA–BAT). To illustrate their respective possibilities, a series of
PEsI–(CF)x models, which were not yet synthesized, but have great potential as next-generation
transparent plastic substrates, was included in this study. The PEsI–(CF)x series involves modifications
of the corresponding PEsI–(CH3)x counterparts instead of –CH3 groups per repeat unit. Each substituent
was located at the ortho- and meta-positions of the amino groups.
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2.2. Simulation Protocol

MD simulations were performed with the Materials Studio software. In the simulations,
a COMPASS II force field, including a coupling-effect energy term, was used to consider complex
chain relationships in an amorphous polymer. The total potential energy equation is expressed as
follows [29,30]:

Utotal = ∑
stretch

[
k2(b− b0)

2 + k3(b− b0)
3 + k4(b− b0)

4
]

+ ∑
angle

[
k2(θ − θ0)

2 + k3(θ − θ0)
3 + k4(θ − θ0)

4
]

+ ∑
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[k1(1− cos φ) + k2(1− 2 cos φ) + k3(1− cos 3φ)] + ∑
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qiqj
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+∑
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s,a

k6(b− b0)(θ − θ0)

+∑
s,b

k6(b− b0)(1− cos φ) + ∑
a,a′

k6(θ − θ0)(θ
′ − θ′0)

(1)

where Utotal is the total potential energy including bond balance, non-bonding, and coupling energy
terms. This equation is widely used to calculate the potential energy of complex structures such as
amorphous polymers. b is the chemical bond length, θ is the angle variation, φ is the bending angle,
χ is the torsion angle, r is the distance between ith and jth atoms, and qi is the quantity of electric
charge of ith atom. k1, k2, k3, k4, k5, and k6 are the force-field constants for the corresponding energy
terms, and they are determined based on the type of interactive atoms. A subscript 0 indicates the
value of the initial state. The cut-off distance for a non-bonding interaction was 1.50 nm.

2.3. Details of MD Calculations

The PEsI chains were modeled as a unit chain (n = 1) to verify the interactions between the
chains. The simulation cells were configured with a periodic boundary of 4.0 nm × 4.0 nm × 4.0 nm,
as shown in Figure 2. The cells were packed with the PEsI unit chains with a density of 1.4 g·cm−3

(the density of BAT). Energy minimization of the cells was performed using a smart algorithm for the
geometric optimization of the chains, and its tolerance was 10−8 kcal·mol−1. The minimized models
were stabilized in isothermal and isobaric conditions (NPT ensemble). The temperature and pressure
were set to room temperature (298 K) and atmospheric pressure (1 atm), respectively. This process
was performed with a time step of 1 fs until the density of the simulation cell satisfied the tolerance of
10−3 g·cm−3. The average time for equilibration was about 1 ns.Polymers 2018, 10, x FOR PEER REVIEW  5 of 13 
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The cooling-down simulations were performed to predict the relationship between the temperature
and density of the simulation cell. The inner temperature of the cells was reduced from 1000 to 300 K in
steps of 50 K. The NPT ensemble was performed for 500 ps at each temperature. The density for each
temperature was calculated to plot the dimension change with respect to temperature. The Tg and
CTE were determined from the slope and the cross point of the data fitting curves [31]. In addition, the
mean-square displacements, potential energies, and torsion angle distributions of the C–N imide bonds
of PEsI models were calculated to explain the influence of the substituents on the thermo-chemical
characteristics of the PEsI system.

3. Results and Discussion

3.1. Molecular Orbital Calculation

In order to gain insight into the coloration of the PEsIs, the software package Gaussian 09 was
used for the DFT calculation [32]. Figure S1 shows a theoretical calculation of the three-dimensional
(3D) molecular structures of the PEsIs, and their molecular orbital (MO) diagrams. Figure 3
provides details of the quantum-chemical calculations, molecular orbital diagrams, and calculated
electronic transitions of the model compounds for the three representative systems—PEsI–(CF3)1,
PEsI–(CF3)2, and PEsI–(CF3)3—at the optimized S0 geometry. The model compounds were composed
of the basic units of the polymers, and their electronic transitions were calculated using the Becke,
three-parameter, Lee-Yang-Parr (B3LYP) level with the 6-31G basis set [32]. Irrespective of the nature
of the tetracarboxylic dianhydride, the calculated dihedral angles of a series of PEsI–(CF3)x between
the –CF3-substituted phenylene ring and the imide ring at round states were in the range of 82.9–89.9◦,
which was significantly larger than the dihedral angles observed in the unsubstituted PEsI–H and
–CH3-substituted PEsI–(CH3)x system. Note that the steric hindrance, caused by the bulky –CF3 groups
directly attached to the aromatic BAT, forced the imide bond to be almost perpendicular, thereby
causing significant conformational distortion of the PEsI backbones. The greater dihedral angle of the
PEsI–(CF3)x model was caused by the steric hindrance of the –CF3 groups, which reduced the close
chain packing, resulting in a more colorless and transparent nature. Furthermore, the more twisted
structure of the PEsI–(CF3)x model resulted in largely isolated electronic states of the molecular orbitals.
The number of –CF3 groups had a greater influence on the optical properties than their positions in
the PEsI backbone. The results showed that the judicious introduction of electron-withdrawing –CF3

groups to the diamine moiety of PEsIs, which had considerable steric hindrance on the backbone, was
quite effective at eliminating or at least reducing the characteristic coloration of the aromatic PEsIs.
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PEsI–(CF3)x model compounds using the Becke, three-parameter, Lee-Yang-Parr (B3LYP) level with the
6-31G basis set (B3LYP/6-31G).

3.2. Determination of the Tg and CTE

One of the most important parameters for the fabrication of the optical device is the Tg. The temperature
dependence of the dimension change of the PEsI models is shown in Figure 4. Dimension change
means the linear change of cell length in the MD simulation. The dimension change exhibited a
linear relationship with temperature at temperatures lower (αglass, glassy region) or higher (αrubber,
rubbery region) than the Tg. Therefore, the Tg was determined by the point of intersection of the
slopes corresponding to the heating and cooling processes. The Tgs of the seven PEsIs were confirmed
from the plots of dimension changes, obtained from the NPT dynamics versus temperature, for
temperatures ranging below and above Tg. The Tg values of the PEsI–(CH3)x series ranged from
702 to 737 K, and the PEsI–(CF3)x series ranged from 697 to 731 K, much higher than that of the
PEsI–H’s (677 K). It was found that the Tg values of the PEsIs were related to the structural effects
of the aromatic diamines. The PEsIs having a –CH3 substituent exhibited a higher Tg in the order of
PEsI–(CH3)3 > PEsI–(CH3)2 > PEsI–(CH3)1. The results showed that the incorporation of –CH3 groups
at the ortho- and meta-positions of the amino groups effectively increased Tg values, by increasing the
chain rigidity of the PEsI; that is, the –CH3 groups significantly constrained bond rotation around the
C–N imide bonds. The PEsI model was quite effective at increasing the Tg when the –CF3 substitution
was introduced at the 3-position of the 4-aminophenyl moiety. This was supported by the fact that
the highly twisted dihedral angles of the C–N imide bonds in the optimized geometry (Figure 1) of
the models were 89.7◦, 89.9◦, and 82.9◦ for PEsI–(CF3)1, PEsI–(CF3)2, and PEsI–(CF3)3, respectively.
The bulkier –CF3 substitution stiffened the polymer main chain more effectively than the –CH3 unit
by introducing a barrier to segmental rotation. Despite the significant increase in Tg in PEsI–(CF3)1

when compared with its analogous counterpart (PEsI–(CH3)1), the Tg values in PEsI–(CF3)2 and
PEsI–(CF3)3 were found to be slightly reduced. This could be explained by the disturbed inter-chain
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interactions from the high free volume present in PEsI–(CF3)x, owing to their bulky –CF3 moieties and
non-coplanar structure.Polymers 2018, 10, x FOR PEER REVIEW  8 of 13 
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The CTE was determined to be the proper parameter for the estimation of the agreement
between the theoretical results and experimental data because accurately determining Tg using MD
simulations is rather complicated. The CTE was established using the relationship of temperature
change and deformation. The dimension change with respect to temperature was obtained during the
abovementioned cooling-down simulations. The CTE (α) was expressed as follows:

α =
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where α is the linear thermal expansion coefficient, L and V are the length and volume of the simulation
cell, respectively, ∆T is temperature change, and subscript 0 indicates the initial state. S is a scale factor
(=10−6) to convert the units of CTE to ppm. The CTE was calculated from the slope of the curve of
dimension change versus temperature, and the initial simulation-cell length.

Table 1 shows the calculated CTEs for the PEsIs in the glassy and rubbery states compared with
the experimental values available from our previous work. It can be seen that the computed values
for the CTEs of the PEsI–H and PEsI–(CH3)2 were in very good agreement with the experimental
data (Figure S2). All of the pseudo rigid-rod-like structures of the BPDA-based PEsI model molecules
had low CTE values of less than 14 ppm·K−1 in the MD calculations. Considering that the CTE of
current glass substrates is 5–9 ppm·K−1 [33], the CTE values of the PEsIs were within the effective
range for applications as a plastic substrate. Interestingly, despite the bulky –CF3 groups interfering
with chain packing, the PEsI–(CF3)x series showed a low level of CTEs similar to the PEsI–(CH3)x

series. This suggested that the considerably distorted conformations in the PEsI systems effectively
constrained the degree of rotational freedom at the C–N imide bonds, leading to the strong chain
stiffness of the macromolecules. The steric effect was more noticeable for the PEsI–(CF3)3 because
they had two different types of steric hindrance: between the imide ring and the benzene ring, and
between the two benzene rings of the diamine along the ester-linkage axis. Therefore, the consecutive
rigid rings along the main chains in the PEsI–(CF3)3 had significantly distorted conformations. These
results provided valuable information about the thermal properties of the newly designed polymers,
which were previously limited to empirical measurements.
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Table 1. Glass-transition temperature (Tg) and thermal expansion coefficients (α) of the seven poly(ester
imide) (PEsI) models.

Sample code Tg
exp (K) Tg (K) αexp (ppm·K−1) αglassy (ppm·K−1) αrubbery (ppm·K−1)

PEsI–(CH3)1 – 701.5 NA 11.2 21.4
PEsI–(CH3)2 >623 720.8 11.3 11.3 21.7
PEsI–(CH3)3 – 737.4 – 12.6 20.8
PEsI–(CF3)1 – 730.9 – 12.8 22.3
PEsI–(CF3)2 – 714.9 – 13.4 22.3
PEsI–(CF3)3 – 696.9 – 9.5 21.3

PEsI–H >623 676.9 8.2 9.7 19.5

The data of experimental Tg (PEsI–Me2 and PEsI–H) cited in this table were investigated using dynamic mechanical
thermal analysis (DMA) at a heating rate of 3 ◦C·min−1 with a load frequency of 1 Hz in air, and were reproduced
from Reference [22] with permission from ELSEVIER, Copyright 2017.

3.3. Mean-Square Displacement

Tg was well correlated with the rigidity of the polymer, specifically the segmental motion in the
polymer chain. To observe the mobility of the PEsI chains during the glassy to rubbery phase transition,
the mean-square displacements (MSDs) of the PEsI molecular systems were calculated [31]. The MSD
of N atoms is expressed as follows:

MSD =
1

3N

N−1

∑
i=0

〈∣∣∣∣→R i(t)−
→
R i(0)

∣∣∣∣2
〉

, (3)

where Ri(t) indicates the position vector of the ith atom at time t [34]. The MSD curves for each
temperature were obtained from the values of the initial 50 ps of each NPT ensemble. The relative
dispersion of polymer chains was estimated from the variation in the MSD curve with temperature.
When the temperature of the simulation cell reached Tg, its relative dispersion suddenly increased.
Thus, the temperature ranges between the points where the MSD curves suddenly increased were
candidates for the glass-transition region. The glassy and rubbery regions were classified using these
temperature ranges, and each region had independent characteristics. Therefore, by investigating the
interval between each MSD curve, an approximate candidate range for the Tg was estimated within
50 K.

As shown in Figure S3, the motion of the chain segment of the PEsI systems increased consistently
with the increasing temperature. As an example, using PEsI–(CH3)1 and PEsI–(CF3)1, the MSD plots
for the two PEsI systems at 400 and 850 K are illustrated in Figure 5a. It shows that the MSD variation
between 400 and 800 K for the PEsI–(CF3)1 system was lower than that for the PEsI–(CH3)1 system’s
all-time range. The bulky –CF3 groups were generally believed to form a loosely packed PI structure,
but their bulky structure effectively induced a highly twisted form in phenylimide due to the structural
steric effect of the substituents. This caused the ortho –CF3 substituent of PEsI–(CF3)1 to stiffen the
polymer main chain more effectively, by providing a barrier to segmental rotation. Hence, it needed
more time to produce the segmental motion of PEsI–(CH3)1 than its counterparts. The slope of the MSD
above the Tg value was much higher than that below Tg, indicating that each of the PEsI chains had
higher mobility above the glass-transition region. This abrupt change between the two temperature
zones, based on the Tg, can be seen more clearly in Figure 5b, where the MSD is plotted as a function
of temperature at 50-ps time periods. The Tg of the PEsIs was also identified through the slope change
of the MSD curve of the chain segments versus the temperature [35]. It can be seen that the Tgs of all
PEsI systems (Figure S4) were above 400 K, and consistent with the results described in Section 3.2.
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3.4. Role of the Energy Components

Various interaction-energy components were also used to investigate the glass transition occurring
in the PEsIs [36–38]. The calculated results of bond stretching energy (Ebond), angle variation energy
(Eangle), dihedral torsional energy (Etorsion), and van der Waals energy (EvdW) versus the temperature
are plotted in Figure 6. In the EvdW versus temperature plot, it can be seen that there was a break
indicating where the glass transition occurred. In the regions both below Tg and above Tg, EvdW
had a linear relationship with temperature, with a break at Tg. However, the other potential energy
components continued to increase linearly with increasing temperature without any break. These
results indicated that the EvdW played a crucial role in the glass-transition process of the PEsI systems.
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3.5. Torsion Angle Distribution

The mobility of the C–N imide bonds, provided by the substituent patterns, exerted a significant
influence on the glass-transition process. The investigated torsion (ΦCONCO-Ph) along the chemical
backbone of the substituted PEsIs was set from –180◦ to +180◦, and is defined in Figure 7. The PEsIs
had a different peak position and relative proportion for ΦCONCO-Ph (the torsion angle between the
imide and phenyl rings) depending on their molecular structures. PEsI–H (Figure S5) and PEsI–(CH3)1

had many peaks over the range of ±15◦ to ±165◦, but there were only two major peaks located in the
±90◦ range in other PEsI systems. These were attributable to the ortho- and/or meta-substitution in
the aromatic diamine compounds, which induced significant steric hindrance around the C–N imide
bonds. Notably, the steric hindrance between adjacent groups, derived from the 3-trifluoromethyl
moiety, greatly restricted the torsional bond rotation of the C–N imide bonds. Actually, the probability
distribution of the torsion angle at ΦCONCO-Ph with temperature was narrower in the PEsI–(CF3)x series.
This result was consistent with the torsion angles obtained in the molecular structures of the stabilized
model compounds (Figure 1). To investigate the effect of temperature on torsion-angle distribution,
the torsion-angle distributions of the PEsI series were obtained at 400 and 850 K. These distribution
functions showed peaks at the same position for the two temperatures, and had a wider distribution at
higher temperatures; however, they showed a slight difference in probability densities. Regardless
of the glassy or rubbery state, the torsion angle of the PEsIs, excluding PEsI–H and PEsI–(CH3)1,
remained at approximately ±90◦. This proved that the Etorsion was not abruptly changed by the
glass-transition process, due to the limited torsion discussed in Section 3.3. In conclusion, Tg was
found to correlate with the rotation-barrier height of the imide bond.
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Figure 7. Torsion angle distributions of the PEsI systems obtained from the MD simulations at 400
and 850 K. (a) PEsI–(CH3)1; (b) PEsI–(CH3)2; (c) PEsI–(CH3)3; (d) PEsI–(CF3)1; (e) PEsI–(CF3)2; and
(f) PEsI–(CF3)3.

Table S1 shows a final comparison of the Tg and CTE values of PEsI–(CF3)1 with fluorinated
PIs, taken from previous work in the literature. From these data, it became clear that the current
methodology of formation of the highly distorted conformation at the C–N imide bonds resulted in
high-temperature-resistant (Tg > 731 K) and highly transparent optical polymers. We also believed that
the introduction of a small number of –CF3 groups at only the ortho-positions of the amino groups could
potentially reduce the production cost of fluorinated PIs, for applications in the optoelectronic field.
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4. Conclusions

In this study, we designed seven polymer models that have the potential of being future optical
polymer films, and computed their thermomechanical and optical properties. The thermal behavior
of the PEsIs was investigated using various MD calculations. The Tg of polymeric materials was
mainly determined by the chain rigidity (time scale) and the strength of the inter-chain interactions
(space scale). The theoretically found Tgs of the PEsI systems consistently reproduced the chemical
structure-property relationships in polymer backbone chain rigidity, and the substituent effects on the
glass-transition process. Potential energy components, such as EvdW and Etorsion, played significant
roles in the glass-transition behavior of the PEsIs, as shown by the plots of the energy components
against temperatures ranging from below Tg to above Tg. The –CF3 substituent in the PEsI backbone
structure reduced the intra- and intermolecular charge-transfer complexes, keeping their rigid-rod-like
backbones intact. It is very inspiring that, by applying MD simulations and DFT calculations, we found
a new polymer model (PEsI–(CF3)1) that satisfied both high optical and thermomechanical properties.
This work provides a useful approach to the design of transparent, highly temperature-resistant
molecular systems for advanced optical applications, when compared with the present fluorine
chemistry of PIs.
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time for the PEsI systems, (a) PEI–(CH3)1, (b) PEI–(CH3)2, (c) PEI–(CH3)3, (d) PEI–(CF3)1, (e) PEI–(CF3)2, and (f)
PEI–(CF3)3; Figure S4: MSD curves as a function of temperature at 50-ps time intervals for the unit cells of PEsI
systems; Figure S5: Torsion angle distributions of the PEsI–H systems derived from NVT MD simulations at 400
and 850 K; and Table S1: Thermal properties of fluorinated PIs.
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