Supplementary Materials

High Performance Soluble Polyimides from Ladder-Type Fluorinated Dianhydride with Polymorphism

Fu Li ¹, Jikang Liu ¹, Xiangfu Liu ¹, Yao Wang ¹, Xiang Gao ², Xianggao Meng ^{3,*} and Guoli Tu ^{1,*}

- ¹ Wuhan National Research Center for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; lifu@hust.edu.cn (F.L.); liujikang@hust.edu.cn (J.L.); xfliu@hust.edu.cn (X.L.); m201772826@hust.edu.cn (Y.W.)
- ² School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 403052, China; gaoxiang@hust.edu.cn
- ³ Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
- * Correspondence: xianggao_meng@126.com (X.M.); tgl@hust.edu.cn (G.T.)

Figure S1. The ¹H NMR spectrum of compound 2.

Figure S3. The ¹³C NMR spectrum of compound 2.

Figure S5. The ¹⁹F NMR spectrum of compound 3.

Figure S7. The ¹H NMR spectrum of compound 4.

Figure S8. The ¹⁹F NMR spectrum of compound 4.

Figure S9. The ¹³C NMR spectrum of compound 4.

Figure S11. The ¹⁹F NMR spectrum of compound 5.

Figure S13. The ¹H NMR spectrum of compound 6 (8FDA).

Figure S14. The ¹⁹F NMR spectrum of compound 6 (8FDA).

Figure S15. The ¹³C NMR spectrum of compound 6 (8FDA).

Figure S16. (a) FT-IR spectra of compound **2**. (b) FT-IR spectra of compound **3**. (c) FT-IR spectra of compound **4**. (d) FT-IR spectra of compound **5**. (e) FT-IR spectra of **6** (8FDA).

Mechanism analysis

The changing of geometric configuration happened in Step 3 [1]. The possible mechanism was described in Scheme S1. Two hydroxyl groups in compound 2 will react with two molecules of DAST to form the intermediate 1. Intermediate 1 was decomposed into a carbenium-containing intermediate 2 and intermediate 3. Then the intermediate 3 will further decomposed into fluorine anions (F-). Then the obtained F- will attack the carbenium ion (position C1) from the less sterically hindered side to form intermediate 4. The sulfur-containing group on the intermediate 4 decomposed into another C+ containing intermediate 5. Then F- attacked C+ (position C2) from less steric obstructed side of C1. Finally, two trifluoromethyl groups appeared on the same side of the benzene ring plane [2,3].

Scheme S1. Suggested mechanism for formation of 8FDA.

Figure S17. (a)The pictures of PI films. (b) The FT-IR spectra of PIs.

	2	3	4	6a	6b	6с
Empirical formula	C26 H34 F6 O2 Si2	C20 H18 F6 O2	C20 H15 F8	C ₂₀ H ₄ F ₈ O ₆	C20 H4 F8 O6	C34 H20 F8 O6
CCDC number	1830504	1830505	1830506	1830507	1830508	1830509
Formula weight	548.71	404.34	407.32	492.23	492.23	676.5
Temperature	100(2) K	295(2) K	295(2) K	297(2) K	297(2) K	100(2) K
Wavelength	1.54178 Å	1.54178 Å	1.54178 Å	0.71073 Å	1.54178 Å	1.54184 Å
Crystal system	Triclinic	Tetragonal	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	<i>P</i> -1	I41/a	P2/c	P21/c	P21/c	P21/c
Unit cell dimensions (Å)	a = 8.8778(1)	a = 17.5981(4)	a = 7.6688(5)	a = 13.671(5)	a = 9.3165(1)	a = 16.1012(3)
	b = 8.9459(1)	b = 17.5981(4)	b = 8.6511(5) Å	b = 14.842(6)	b = 10.4994(1)	b = 10.5322(2)
	c = 10.1723(1)	c = 11.7161(4)	c = 27.2240(16)	c = 17.277(6)	c = 19.6924(2)	c = 18.1230(4)
Volume (Å ³)	720.378(15)	3628.40(17)	1803.26(19)	3500(2)	1775.03(3)	2855.56(10)
Z	1	8	4	8	4	4
Density						
calculated	1.265	1.480	1.500	1.869	1.842	1.574
(Mg/m^3)						
Absorption						
coefficient (mm-	1.651	1.192	1.285	0.192	1.715	1.244
1)						
F(000)	288	1664	828	1952	976	1376

Table S1. The crystal dates of compound 2, 3, 4, 6a, 6b, 6c.

Crystal size	0.120 × 0.100 ×	0.05 × 0.03 ×	$0.080 \times 0.040 \times$	0.200 × 0.200 ×	0.20 × 0.10 ×	0.150 × 0.120 ×
(mm ³)	0.100	0.02	0.030	0.150	0.10	0.100
Theta range for data collection	4.872 to 73.75°.	4.53 to 47.28°.	3.252 to 65.00°.	1.492 to 24.95°.	4.866 to 73.92°.	4.953 to 74.03°.
	−11<=h<=10,	-16<=h<=16,	-8<=h<=7,	−16<=h<=15,	−11<=h<=11,	−20<=h<=19,
Index ranges	−11<=k<=8,	−16<=k<=16,	−10<=k<=10,	−16<=k<=17,	−11<=k<=13,	-6<=k<=12,
	-10<=l<=12	-11<=l<=11	-31<=l<=31	-20<=l<=20	-24<=l<=21	-22<=1<=22
Reflections collected	6449	21041	19854	23371	18616	31532
Independent	2785 [<i>R</i> _{int} =	820 [<i>R</i> _{int} =	2998 [Rint =	6067 [<i>R</i> _{int} =	3569 [<i>R</i> _{int} =	5713 [<i>R</i> _{int} =
reflections	0.012]	0.023]	0.062]	0.045]	0.029]	0.102]
Completeness	99.10%	99.50%	97.80%	98.90%	100.00%	100.00%
Data / restraints / parameters	2785 / 0 / 169	820 / 1 / 133	2998 / 0 / 258	6067 / 0 / 613	3569 / 0 / 308	5713 / 0 / 435
Goodness-of-fit on F ²	1.081	1.06	1.159	1.027	1.039	1.051
Final R indices	R1 = 0.0361,	R1 = 0.0279,	R1 = 0.0791,	R1 = 0.0431,	R1 = 0.0322,	R1 = 0.0471,
[I>2σ(I)]	wR2 = 0.1010	wR2 = 0.0713	wR2 = 0.2242	wR2 = 0.1075	wR2 = 0.0898	wR2 = 0.1296
R indices (all	R1 = 0.0372,	R1 = 0.0286,	R1 = 0.1029,	R1 = 0.0718,	R1 = 0.0361,	R1 = 0.0565,
data)	wR2 = 0.1021	wR2 = 0.0719	wR2 = 0.2627	wR2 = 0.1295	wR2 = 0.0931	wR2 = 0.1401
Extinction coefficient	0.034(2)	0.00020(5)	0.0036(7)	n/a	0.00118(17)	n/a
Largest diff. peak and hole (e.Å ⁻³)	0.201 and -0.232	0.126 and -0.139	0.261 and -0.329	0.291 and -0.303	0.228 and -0.187	0.295 and -0.261

Code	Dianhydride	Diamine	CTE(ppm K ⁻¹)	Reference
PI-1	8FDA	TFDB	14.5	-
PI-2	8FDA	TFODA	18.3	-
CPI-1	NTDA	APAB	3.0	[4]
CPI-2	NTDA	6ABO-4AB	12.9	[5]
CPI-3	PMDA	APAB	2.0	[6]
CPI-4	PMDA	ODA	4.25	[7]

Table S2. CTE values comparison of PI-1 and PI-2 with the reported PIs.

Figure S18. (a) The ORTEP molecular structures of compound **2**. (b) The ORTEP molecular structures of compound **3**. (c) The ORTEP molecular structures of compound **4**. (d) The ORTEP molecular structures of compound **6a**. (e) The ORTEP molecular structures of compound **6b**. (f) The ORTEP molecular structures of compound **6c**.

Figure S19. Part of the molecular packing in the nonsolvated 100(2) K Compound 2 crystals, with C–H... π interactions and C–F...H interactions shown as green dotted lines.

Figure S20. Part of the molecular packing in the nonsolvated 295(2) K Compound **3** crystals, with F...F and C–F... π interactions shown as green dotted lines.

Figure S21. Part of the molecular packing in the nonsolvated 295(2) K Compound 4 crystals, with C–H...F interactions shown as green dotted lines.

Figure S22. Part of the molecular packing in the nonsolvated 297(2) K Compound 6 crystals, with F...F, C–F... π and C–H...O interactions shown as green dotted lines.

References

- Wang, Z.; Guo, L.; Han, S.; Qi, H.; Cheng, Y.; Liu, F. Polyimides from an asymmetric hydroxylcontaining aliphatic-aromatic diamine synthesized via henry reaction. *J. Polym. Sci. Part A Polym. Chem.* 2017, 55, 3413–3423.
- Kim, H.S.; Kim, Y.H.; Ahn, S.K.; Kwon, S.K. Synthesis and characterization of highly soluble and oxygen permeable new polyimides bearing a noncoplanar twisted biphenyl unit containing *tert*butylphenyl or trimethylsilyl phenyl groups. *Macromolecules* 2003, *36*, 2327–2332.
- 3. Li, J.; Zhang, H.; Liu, F.; Lai, J.; Qi, H.; You, X. A new series of fluorinated alicyclic-functionalized polyimides derivated from natural-(D)-camphor: Synthesis, structure–properties relationships and dynamic dielectric analyses. *Polymer* **2013**, *54*, 5673–5683.

- 4. Ebisawa, S.; Ishii, J.; Sato, M.; Vladimirov, L.; Hasegawa, M. Spontaneous molecular orientation of polyimides induced by thermal imidization (5). Effect of ordered structure formation in polyimide precursors on cte. *Eur. Polym.* **2010**, *46*, 283–297.
- 5. Hasegawa, M.; Hoshino, Y.; Katsura, N.; Ishii, J. Superheat-resistant polymers with low coefficients of thermal expansion. *Polymer* **2017**, *111*, 91–102.
- 6. Kotov, B.V.; Gordina, T.A.; Voishchev, V.S.; Kolninov, O.V.; Pravednikov, A.N. Aromatic polyimides as charge transfer complexes. *Polymer Science U.S.S.R.* **1977**, *19*, 711–716.
- 7. Bronnikow, S.V.; Sukhanova, T.E.; Goikhman, M.Y. Evolution of statistical ensemble of mierodomains on the surface of films of rigid-chain polymide during thermal imidezation. *Russion Journal of Applied Chemistry* **2003**, *76*, 967–971.