Structural Changes of Bagasse during the Homogeneous Esterification with Maleic Anhydride in Ionic Liquid 1-Allyl-3-methylimidazolium Chloride

Huihui Wang ¹, Wei Chen ¹, Xueqin Zhang ¹, Yi Wei ¹, Aiping Zhang ², Shijie Liu ^{1,3,*}, Xiaoying Wang ¹ and Chuanfu Liu ^{1,*}

- ¹ State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China; wang.huihui@mail.scut.edu.cn (H.W.); geogeo_chen@163.com (W.C.); xueqin0228@gmail.com (X.Z); fewvergil@mail.scut.edu.cn (Y.W.); sliu@esf.edu (S.L.); xyw@scut.edu.cn (X.W.); chfliu@scut.edu.cn (C.L.);
- ² College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; aiping@scau.edu.cn
- ³ Department of Paper and Bioprocess Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA; sliu@esf.edu (S.L.)
- * Correspondence: sliu@esf.edu (S.L.); chfliu@scut.edu.cn (C.L.); Tel.: +86-20-87113912 (C.L.)

Instrumental Parameters

The detailed collecting and processing parameters for ¹H NMR analysis were listed as follows: number of scans, 16; receiver gain, 31; acquisition time, 2.7263 s; relaxation delay, 1.0 s; pulse width, 11.0 s; spectrometer frequency, 600.17 MHz; and spectral width, 12019.2 Hz. The detailed collecting and processing parameters for ¹H-¹H COSY NMR analysis were listed as follows: number of scans, 16; receiver gain, 14; acquisition time, 2.0090 s; relaxation delay, 12.40 s; pulse width, 0.1188 s; spectrometer frequency, 600.17/600.17 MHz; and spectral width, 8620.7/8620.7 Hz. The detailed collecting and processing parameters for ¹³C NMR analysis were listed as follows: number of scans, 1452; receiver gain, 187; acquisition time, 0.9088 s; relaxation delay, 2.0 s; pulse width, 12.0 s; spectrometer frequency, 150.91 MHz; and spectral width, 36057.7 Hz. The detailed collecting and processing parameters for ¹H-¹³C HSQC analysis were listed as follows: number of scans, 32; receiver gain, 187; relaxation delay, 1.5 s; pulse width, 11.0 s; acquisition time, 0.1420 s; spectrometer frequency, 600.17/150.91MHz; and spectral width 7211.5/24875.6 Hz. The detailed collecting and processing parameters for ¹H-¹³C HMBC NMR analysis were listed as follows: number of scans, 134; receiver gain, 187; acquisition time, 1.5123 s; relaxation delay, 12.40 s; pulse width, 0.1188 s; spectrometer frequency, 600.17/150.91 MHz; and spectral width, 8620.7/33557.0 Hz. The detailed XPS parameters were listed as follows: total acquisition time, 68.0 s; number of scans, 1; pass energy, 100.0 eV; energy step size, 1.000 eV; number of energy steps, 1361; and spot size, 650 μm.

Lable	δc/δh(ppm) ^a	δc/δн(ppm) ^b	Assignments
Αα	72.43/4.84	72.35/4.86	C_{α}/H_{α} in β -O-4' substructures
$\mathbf{A}_{\mathbf{Y}}$	60.35/3.48	63.57/4.31	C_{γ}/H_{γ} in β -O-4' substructures
A - G/H_{β}	84.16/4.35	84.03/4.34	C_{β}/H_{β} in β -O-4' linked to G/H
$A-S_{\beta}$	86.69/4.09	86.56/4.10	C_{β}/H_{β} in β -O-4' linked to S
Βα	87.67/5.43		C_{α}/H_{α} in phenylcoumaran (B)
\mathbf{B}_{eta}		55.36/3.70	C_{β}/H_{β} in phenylcoumaran (B)
B_{γ}	63.50/4.21	63.57/4.07	C_{γ}/H_{γ} in phenylcoumaran (B)
Cα	83.59/4.92	83.05/4.88	C_{α}/H_{α} in β - β' (resinol) (C)
Cβ	53.73/3.45		C_{β}/H_{β} in β - β' (resinol) (C)
C_{γ}	71.86/4.74	72.15/4.84	C_{γ}/H_{γ} in β - β' (resinol) (C)
$X1_{\gamma}$	63.70/4.30	63.57/4.31	C_{γ}/H_{γ} in cinnamyl alcohol end-group (X1)
S _{2,6}	104.68/6.72	104.61/6.68	C _{2,6} /H _{2,6} in syringyl units (S)
S'2,6	107.15/7.34	106.94/7.31	C _{2,6} /H _{2,6} in oxidized S units (S')
G ₂	111.69/7.00	111.78/6.99	C ₂ /H ₂ in guaiacyl units (G)
G′2	111.84/7.35	111.62/7.32	C ₂ /H ₂ in oxidized G units (G')
G ₅	115.33/6.71	115.15/6.68	C5/H5 in guaiacyl units (G)
G ₆	119.75/6.80	119.68/6.81	C ₆ /H ₆ in guaiacyl units (G)
H2,6	118.66/7.20	118.59/7.20	C _{2,6} /H _{2,6} in p-hydroxyphenyl (H)
PCA2,6	130.98/7.47	130.65/7.46	C2,6/H2,6 in p-hydrobenzonic acid (PCA)
PCA3,5	116.38/6.77	116.16/6.76	C3,5/H3,5 in p-coumaric acid (PCA)
PCA7	145.32/7.41	145.41/7.41	C7/H7 in p-coumaric acid (PCA)
PCA ₈	114.48/6.27	114.41/6.25	C ₈ /H ₈ in p-coumaric acid (PCA)
PB2,6	133.19/7.62	133.13/7.60	C _{2,6} /H _{2,6} in p-hydrobenzonic acid (PB)
FA ₂	111.84/7.34	111.62/7.33	C _{2.6} /H _{2.6} in ferulate (FA)
FA ₅	115.64/6.93	115.58/6.88	C _{2.6} /H _{2.6} in ferulate (FA)
FA7	145.32/7.40	145.41/7.41	C _{2,6} /H _{2,6} in ferulate (FA)

Table S1. Assignment of ¹³C/¹H cross-peaks in the ¹H-¹³C HSQC spectra of lignin samples

.

^{*a*}The chemical shifts of unmodified lignin. ^{*b*}The chemical shifts of maleated lignin.

Figure S1. The ¹H and ¹³C NMR spectra of unmodified (a,c) and maleated (b,d) cellulose.

Figure S2. The ¹H-¹³C HSQC spectrum of unmodified hemicelluloses.

Figure S3. The hemicellulosic region in the ¹H-¹³C HSQC spectrum of the maleated bagasse.

Figure S4. The ³¹P NMR spectra of unmodified (a) and maleated lignin (b).

Figure S5. The ¹H and ¹³C NMR spectra of unmodified (a,c) and maleated lignin (b,d).