
  

Polymers 2018, 10, 367; doi:10.3390/polym10040367  www.mdpi.com/journal/polymers 

Article 

Sorption of Hg(II) and Pb(II) Ions on  

Chitosan-Iron(III) from Aqueous Solutions:  

Single and Binary Systems 

Byron Lapo 1,2,*, Hary Demey 3,4,*, Jessenia Zapata 1, Cristhian Romero 1 and Ana María Sastre 4 

1 School of Chemical Engineering, Universidad Técnica de Machala, UACQS, BIOeng, 070151 Machala, 

Ecuador; jmzapata_est@utmachala.edu.ec (J.Z.); caromeros_est@utmachala.edu.ec (C.R.) 
2 Department of Chemical Engineering, Universitat Politècnica de Catalunya, EPSEVG, Av. Víctor Balaguer, 

s/n, 08800 Vilanova i la Geltrú, Spain 
3 Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/DRT/LITEN/DTBH/LTB, 17 rue des 

Martrys, 38054 Grenoble, France 
4 Department of Chemical Engineering, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 

Barcelona, Spain; ana.maria.sastre@upc.edu 

* Correspondence: blapo@utmachala.edu.ec (B.L.); hary.demey@upc.edu (H.D.);  

Tel.: +59-3987949667 (B.L.); +34-938-937-778 (H.D.) 

Received: 28 February 2018; Accepted: 23 March 2018; Published: 25 March 2018 

Abstract: The present work describes the study of mercury Hg(II) and lead Pb(II) removal in single 

and binary component systems into easily prepared chitosan-iron(III) bio-composite beads. 

Scanning electron microscopy and energy-dispersive X-ray (SEM-EDX) analysis, Fourier transform 

infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and point of zero charge (pHpzc) 

analysis were carried out. The experimental set covered pH study, single and competitive 

equilibrium, kinetics, chloride and sulfate effects as well as sorption–desorption cycles. In single 

systems, the Langmuir nonlinear model fitted the experimental data better than the Freundlich and 

Sips equations. The sorbent material has more affinity to Hg(II) rather than Pb(II) ions, the 

maximum sorption capacities were 1.8 mmol·g−1 and 0.56 mmol·g−1 for Hg(II) and Pb(II), 

respectively. The binary systems data were adjusted with competitive Langmuir isotherm model. 

The presence of sulfate ions in the multicomponent system [Hg(II)-Pb(II)] had a lesser impact on the 

sorption efficiency than did chloride ions, however, the presence of chloride ions improves the 

selectivity towards Hg(II) ions. The bio-based material showed good recovery performance of metal 

ions along three sorption–desorption cycles. 

Keywords: binary; chitosan; desorption; iron; lead; mercury; salt effects; single; sorption 

competition 

 

1. Introduction 

Heavy metals are potentially toxic to humans; mercury and lead are two of the most harmful 

metals present in wastewater [1], some studies label these metals as relevant and very toxic elements 

[2,3]. Even nowadays, the presence of these metals, particularly in water resources is reported [4,5], 

hence it represents a potential risk to our ecosystems. Typical ways of being released into the 

environment are mining, smelters, coal burning, hydropower plants, agriculture system, etc. [6], 

particularly, these contaminants can reach the natural waters degrading its quality. Nevertheless, the 

scientific community is constantly developing removal methods, such as adsorption, membrane 

filtration, electrodialysis, ionic liquids [7,8], towards a suitable solution to this problem. 
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Sorption and particularly biosorption are some of the most promising methods to remove toxic 

metals. Particular focus is given to innovative adsorbents based on biomaterials. One of the major 

potential substances is the chitosan, a well-known biopolymer derived from alkaline N-deacetylation 

of chitin [9], which can surpass its natural limitations in aqueous media throughout targeted 

modifications, driving to enhance its adsorption properties as well as its selectivity for targeted ions 

and mechanical properties. Several chitosan-based materials have been reported to provide excellent 

sorption of Hg(II) and Pb(II) [10–13]. Although, many reported chitosan-composite materials have 

shown excellent performance in terms of sorption capacity, several limitations make the industrial 

scaling-up difficult. Some restraints are: Very low particle size, which can produce blockage in 

hydraulic systems, low mechanical stability that does not enable the use in columns, extended use of 

chemicals for chitosan matrix modification, not to mention in many cases the related toxicity of the 

chemical compounds used is overlooked. 

Iron(III) represents an alternative to making this possible. It presents many advantages such as 

being abundant, cheap and easy to manage. It could also provide better mechanical properties to 

chitosan. However, the major studies are based on magnetic iron, which involves complex 

procedures and high energy consumption to achieve the desired magnetic properties. Nevertheless, 

few researchers have proposed chitosan-iron composite without further process in adsorbing metals 

and metalloids from water. Example of these are: As(III) and As(V) with Fe(III) immobilized on 

chitosan beads [14], and boron from seawater with chitosan iron(III) hydroxide beads [15]. However, 

two of the most toxic and highly relevant heavy metals, Hg(II) and Pb(II) have not been studied with 

this promising bio-based material. 

On the other hand, the major of studies are targeted toward single element studies, neglecting 

the synergic effect of other ions in real water, which is definitively important for assessing industrial 

wastewater treatment. Focusing on developing a potential material with industrial insight, which 

means the convergence between cost, good sorption–desorption performance and being 

environmentally friendly, the present study targets a single, binary component, desorption, salt 

interference on the sorption of Hg(II) and Pb(II) using beads based on chitosan-iron(III) composite. 

2. Materials and Methods 

2.1. Chemicals 

Chloride(II) nitrate (HgCl2, 99%, (Probus, Barcelona, Spain), lead(II) nitrate (Pb(NO3)2; 98%, 

Panreac, Barcelona, Spain), chitosan (Aber Technologies, Lannilis, France, MW = 125,000 g·mol−1 was 

determined by gel permeation chromatography technique, and the degree of acetylation DA = 0.13 

was obtained by Fourier transform infrared spectroscopy [16,17]), acetic acid (CH3COOH, 99.7%, 

Panreac, Barcelona, Spain), hydrochloric acid (HCl, 37.4%, J.T. Baker, Phillipsburg, NJ, USA), sodium 

hydroxide (NaOH, 97%, Probus, Barcelona, Spain), Sodium Borohydride (NaBH4, ≥96%, Sigma‐

Aldrich, St. Louis, MO, USA), nitric acid (HNO3, 64.9%, Phillipsburg, NJ, USA), sodium sulfate 

(Na2SO4, 99.5%, Prolabo, Fontenay-sous-Bois CEDEX, France), sodium chloride (NaCl, 99.5%, 

Prolabo, Fontenay-sous-Bois CEDEX, France), Iron(III) chloride (FeCl3·6H2O, 99–102%, Fluka, Buchs, 

Switzerland, Thiourea (SC(NH2)2, 99%, Panreac, Barcelona, Spain), Ethylenediaminetetraacetic acid 

disodium salt dihydrate (EDTA, 99% Panreac, Barcelona, Spain) and deionized water type II 

laboratory water were used. 

2.2. Preparation of Composite Beads 

The composite beads were prepared with a slight improvement on our previous sorbent material 

reported by Demey et al. [15]. Neat chitosan was dissolved in acetic acid (1% w/w). Parallelly, a 

previously prepared solution of FeCl3·6H2O (30% w/w) was mixed with chitosan solution. Then, the 

mixture was homogenized for 2 h at 600 rpm. This solution was added drop-by-drop into a solution 

of NaOH 1 M through a thin nozzle (Ø  2.0 mm), assisted by a peristaltic pump. For the beads 

manufacturing, the mixture was first washed with high quantities of type II laboratory water to 
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remove the excess of iron, and dried in a laboratory freeze drier (LyoQuest-55, Telstar equipment, 

São Paulo, Brazil) at 218 K and 0.05 mbar. 

2.3. Characterization 

Infrared spectrum was performed from 450 to 4000 cm−1 in a FTIR Thermo Scientific Nicolet 6700 

(Madison, WI, USA); the samples were crushed and blended with potassium bromide (KBr) (2 mg of 

material in 100 mg of KBr) to make the pellets, prior to FTIR analysis. Thermogravimetric analysis 

was carried out with a TGA/SDTA 851e/LF/1100 thermobalance (Mettler Toledo, Mississauga, ON, 

Canada). Samples with mass of 6 mg were degraded between 30 and 800 °C at a heating rate of 10 

°C·min−1 in N2 atmosphere. The pHpzc was evaluated according to the methodology of Yazdani et al. 

[18] with a Bante 901 Benchtop pH meter instruments (Bante, Shanghai, China). The morphological 

observations, and energy dispersive X-ray (EDX) probe analysis of composite beads was done before 

and after metal sorption, using a Phenom XL SEM-EDX (PhenomWorld, Rotterdam, The 

Netherlands). 

2.4. pH Study 

The optimum pH to perform the sorption experiments was evaluated prior to the equilibrium, 

kinetics, salt effects and desorption studies. In 25 mL of separated solutions of 0.2 mmol·L−1 Hg(II), 

0.2 mmol·L−1 Pb(II), and 0.15 mmol·L−1 of mixed [Hg(II)-Pb(II)] solutions with adjusted pH of 2.0, 3.0, 

3.5,4.0, 4.5, 5.0, 5.5 and 6.0 were added to around 20 mg of adsorbent material. After 48 h of agitation 

(180 rpm), the initial and the final pH values were recorded. Solutions of diluted HNO3 and NaOH 

were used to conveniently adjust the pH. The analysis of Hg(II) was carried out using an atomic 

absorption spectrophotometer (AAS) Shimazdu AA6300 (Shimadzu Corporation, Kyoto, Japan), 

equipped with a hydride vapor generator, and the Pb(II) analysis was carried out in an Agilent 

Technologies 4100 microwave plasma atomic emission spectrometer (MP–AES) (Agilent 

Technologies, Melbourne, Australia). The sorption capacity (qe) versus pH was also reported. 

2.5. Equilibrium Study 

Sorption experiments and data analysis were carried out on single and binary component 

systems separately. For the single system, in 25 mL of individual solutions of Hg(II) and Pb(II) of 0.2 

mmol·L−1 were added 25 mg of ChiFer(III) and agitated for 48 h at 180 rpm in a laboratory orbital 

shaker. The pH of the solution was adjusted to 4.5, before mixing it with the sorbent material. 

The adsorption capacity was calculated by the Equation (1). Furthermore, to investigate the 

better fitting of the equilibrium parameters, Langmuir [19], Freundlich [20] and Sips [21] models were 

evaluated according to non-linear Equations (2)–(4) respectively. 

Sorption capacity equation: 

𝑞e =
𝑉(𝐶o − 𝐶e)

𝑤
 (1) 

Langmuir equation: 

𝑞e =
𝑞max𝑏𝐶𝑒

1 + 𝑏𝐶𝑒

 (2) 

Freundlich equation: 

𝑞e = 𝐾F𝐶e
1/𝑛

 (3) 

Sips equation: 

𝑞e =
𝑞ms𝐾s𝐶e

1/𝑚𝑠

1 + 𝐾s𝐶e
1/𝑚𝑠

 (4) 

where qe is the amount of metal adsorbed in (mmol·g−1), Co and Ce are the initial and equilibrium 

concentrations respectively in (mmol·L−1), qmax is the Langmuir maximum capacity in monolayer 
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expressed in (mmol·g−1), b is the Langmuir constant in (L·mmol−1), KF is the Freundlich constant, n is 

sorption intensity, qms the Sips maximum adsorption capacity (mmol·g−1), Ks is the Sips equilibrium 

constant in (L·mmol−1) and ms is the Sips model exponent. 

For binary component systems, solutions of 25 mL of mixed Hg(II)-Pb(II) at equimolar 

concentrations of 0.15 mmol·L−1 with 25 mg of sorbent material, under the same operation conditions 

of reaction time and agitation speed (48 h and 180 rpm). In binary component systems, the sorption 

mechanism can be explained using multi-component models [22], based on Langmuir competitive 

isotherm (Equation (5)), and the corresponding Equations (6) and (7) were used: 

𝑞𝑒,𝑖 =
𝐾𝑖𝑞𝑚𝐶𝑒,𝑖

1 + ∑ 𝐾𝑗𝐶𝑒,𝑗
𝑁
𝑗=1

 (5) 

For Hg(II) equation: 

𝑞𝑒,𝐻𝑔(𝐼𝐼) =
𝐾𝐻𝑔(𝐼𝐼)𝑞𝑚𝐶𝑒,𝐻𝑔(𝐼𝐼)

1 + 𝐾𝐻𝑔(𝐼𝐼)𝐶𝑒,𝐻𝑔(𝐼𝐼) + 𝐾𝑃𝑏(𝐼𝐼)𝐶𝑒,𝑃𝑏(𝐼𝐼)

 (6) 

For Pb(II) equation: 

𝑞𝑒,𝑃𝑏(𝐼𝐼) =
𝐾𝑃𝑏(𝐼𝐼)𝑞𝑚𝐶𝑒,𝑃𝑏(𝐼𝐼)

1 +  𝐾𝑃𝑏(𝐼𝐼)𝐶𝑒,𝑃𝑏(𝐼𝐼) + 𝐾𝐻𝑔(𝐼𝐼)𝐶𝑒,𝐻𝑔(𝐼𝐼)

 (7) 

where, K1 and K2 are the constants of the model (mmol·g−1) 

2.6. Kinetics 

The kinetics parameters were evaluated both in single and mixed solutions; 50 mg of ChiFer(III) 

were added to each 500 mL in 0.25 mmol·L−1 of Hg(II) and Pb(II) solutions (for single experiments), 

the agitation velocity was kept constant at 180 rpm. Pseudo-first order (PFORE) and pseudo second 

order (PSORE) models were assessed to fit the experimental data and to obtain the kinetics 

parameters according to Equations (5) and (6): 

Pseudo-first order rate Equation (PFORE): 
d𝑞t

d𝑡
= 𝐾1(𝑞1 − 𝑞t) (5) 

Pseudo-second order rate Equation (PSORE): 
d𝑞t

(𝑞eq − 𝑞t)
2 = 𝐾2d𝑡 (6) 

where qeq is the equilibrium sorption capacity (mmol·g−1), qt is the sorption capacity (mmol·g−1) at any 

time t (h) and K2 is the pseudo-second order rate constant (g·mg−1·min−1). The parameters qeq and K2 

parameters are pseudo-constants. 

2.7. Salt Effects 

The effect on the sorption of Hg(II) and Pb(II) by the presence of sulfate and chloride salts was 

evaluated. The sulfate concentrations were chosen based on real concentrations of sulfate in 

wastewater found around gold mining zones (maximum found 223.68 mg·L−1 [23]). Twenty 

milligrams of sorbent material was added to 100 mL of 0.1 mmol·L−1 of Hg(II) and Pb(II) binary 

solutions previously charged with 0.001, 0.05, 0.1 and 0.2 mmol·L−1 of sodium sulfate and the initial 

pH was set at 4.5. 

Moreover, a huge range of sodium chloride concentrations were evaluated in the sorption of a 

binary solution of Hg(II) and Pb(II); these evaluations resembled sodium chloride concentrations 

normally found in rivers, underground water and seawater. Four different concentrations of NaCl 

(1.0, 10.0, 100.0 and 500.0 mmol·L−1) in 0.1 mmol·L−1 of Hg(II) and Pb(II); 20 mg of sorbent material in 

100 mL of each solution at pH 4.5 were constantly agitated at 180 rpm for 48 h and the remaining 

concentrations of Hg(II) and Pb(II) were measured. In order to avoid metal precipitation in the mix 

solution, a theoretical diagram of chemical species was evaluated; all chemical species diagrams were 

created using Medusa free software (KTH Royal Institute of Technology, Stockholm, Sweden, version 

2013) which are provided in the Supplementary Material (Figures S1–S3). 

2.8. Desorption Cycles 
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To know the possibility of reusing the composite material, sorption–desorption cycles were done 

in two stages; the first stage, to choose a proper eluent, and the second to assess the reusability across 

sorption/desorption cycles. In previous sorption/desorption cycles, seven eluents were assessed in 

one desorption cycle, HNO3 (pH = 3.5), HCl (pH = 3.5), NaOH (pH = 11), NaOH (pH = 13), Thiourea 

0.1 M (pH = 3.5), Thiourea 0.05 M (pH = 3.5) and EDTA 0.05 M (pH = 10). The binary Hg(II)-Pb(II) 

solutions were prepared at 0.15 mmol·L−1, 25 mg of sorbent material were added to 25 mL of solution 

at pH = 4.5 for sorption. Then, three sorption–desorption cycles were performed with the selected 

eluents; the desorption efficiency was calculated according to Equation (7). All tests were made in 

duplicated. 

% desorption =
𝑚A − 𝑚D

𝑚A

× 100 (7) 

where mA and mD are the sorbed and eluted mass of the metals (mg) at each sorption/desorption cycle. 

3. Results and Discussion 

3.1. Characterization 

3.1.1. SEM-EDX Analysis 

Figure 1 shows the morphology and elemental analysis of the composite material before and 

after contact with Hg(II) and Pb(II). In Figure 1a the sphericity and roughness of the material is clearly 

observed. 

 

Figure 1. SEM-EDX images. (a) ChiFer(III) bead, (b) segmented/cross sectional view and EDX of 

ChiFer(III) bead, (c) segmented view and EDX of ChiFer(III) bead after sorption of Hg(II) and Pb(II). 

In Figure 1b a longitudinal slit shows images of the inner porosity, with holes of around 50–100 

µm, which can be compared with glutaraldehyde-cross-linked-chitosan-spheres reported by [24] in 

terms of porosity and size. In addition, in the same Figure 1b EDX analysis shows the presence of 

iron(III) in its structure. Furthermore, the addition of iron(III) does not affect the inner morphology 

of the beads. The beads are observed after sorption of Hg(II) and Pb(II) in Figure 1c. The porosity 

b) 

a) 

c) 
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inside the composite did not change. The EDX analysis confirmed the presence of Hg(II) and Pb(II) 

as a result of the sorption process. 

3.1.2. FTIR and TGA Analysis 

Figure 2 shows the FTIR spectra (Figure 2a) and TGA analysis (Figure 2b) of neat chitosan (neat 

CS) and chitosan-iron(III) composite ChiFer(III). In FTIR both samples show a broad band at 3400–

3600 cm−1 (hydroxyl groups) for neat CS and stretching vibrations and Fe-OH for ChiFer(III), C-H 

stretching vibration at 2925 cm−1 and O-H group of polysaccharides in 1639 cm−1 in neat CS [25,26], 

and slight change at 1644 cm−1 for ChiFer(III). As Sipos et al. [27] reports, well know bands of FeOOH 

are 1620 cm−1, 1500 cm−1 and 1340 cm−1, the first two peaks are overlapped in the ChiFer(III) specter, 

while the latter peak at 1384 cm−1 is well noted. The more notable difference in both spectra is the 

peak at 796 cm−1 in ChiFer(III), which is attributed to iron species reported by Ruan et al. [28]. The 

major iron species are overlapped in the main characteristic bands of neat chitosan, which could 

indicate the good cohesion of the composite. Also, FTIR analysis were performed before and after 

sorption (provided in supplementary materials Figure S4). In ChiFer(III) material the mean peak of 

amino and hydroxyl groups (3400 cm−1) are overlapped by the presence of iron. Besides, after Hg(II) 

and Pb(II) sorption, the FTIR specter present the same behavior, it is to say that the metals were 

mainly bound by remaining amine groups, particularly at stretching vibrations of 3400 cm−1, 1631 

cm−1 (C = N bond), 1376 cm−1 and 1073 cm−1 peaks correspond to stretching vibration of C-OH. 

Moreover, in this study was not evidenced the typical peaks of 580 cm−1 and 759 cm−1 of Fe-O complex 

(indicative of metal-metal complexes). 

 

Figure 2. (a) FTIR and (b) TGA curves of neat CS and ChiFer(III). 

Additionally, TGA analysis of neat CS and ChiFer(III) were conducted. The results of both 

samples are showed in Figure 2b; a first weight loss at 90 °C is produced due to the volatilization of 

low-molecular weight compounds, such as water [29]. The drop of the curves between 250–300 °C is 

related to the oxidation and degradation of chitosan, this is in concordance with Yu et al. [30]. Above 

300 °C is observed a significant difference of loss weight for CS and ChiFer(III), it can be attributed 

to the thermal degradation of the polysaccharides chains of chitosan. According to Hong et al. [29], 

the kinetic decomposition follows the Ozawa–Flynn–Wall method [31]. 

It is noteworthy that the amount of iron into the composite corresponds to 33% (dried weight, 

d.w.), so the 67% is neat chitosan; evidently, for 6 mg samples ChiFer(III) material has less chitosan 

content than pure CS samples. Between 300–600 °C the weight loss of chitosan is higher than 

ChiFer(III), as expected (i.e., the weight loss for chitosan is 64% and for ChiFer(III) is 52%); it means 

that the incorporation of iron into the chitosan matrix provides high thermal stability to the resulting 

material (at temperatures between 300–600 °C). However, at 600 °C occurs a steep decomposition of 

ChiFer(III) which is attributed by Ziegler et al. [32] to the conversion of the inorganic core of iron(III). 

The iron species can be converted to magnetite, maghemite or wüstite Fe1-xO, consequently a weight 

loss is produced, which is accompanied with the evaporation of volatiles sub-products. This complex 
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phenomenon depends on the structure and binding species in the composite. However, in sorption 

applications, such temperatures are not reached, moreover, TGA analysis in this study enhances the 

knowledge of the thermal stability of the materials. 

3.2. pH Study 

The pH plays a transcendental role when it is used in chitosan-based composites in metal 

sorption procedures [35]. Sorption experiments at different pHs were evaluated from pH = 2.0 to pH 

= 7.0 in single and binary solutions. It is noteworthy that at pH < 3.0 the ChiFer(III) composite is less 

stable (due to the chitosan hydrolysis and the consequent dissolution of the organic and inorganic 

content in the beads), while pH > 6 insoluble hydroxide precipitates would be formed (the images of 

the material stability at different pHs are provided in supplementary material (Figure S5)). All these 

considerations were taken into account when performing the experiments and to avoid the 

precipitation phenomenon. 

Figure 3 shows the adsorption capacity at various pHs. The best pH observed was between 4.5 

and 5.0. This accords with other researchers [36–38] who tested chitosan-based composites. It is 

remarkable that Hg(II) sorption is greater than Pb(II) sorption in both single and binary component 

systems. In binary system, it is clearly shown the variations in pH, which do not surpass pH 7 (due 

to the buffer effect of chitosan). 

 

Figure 3. Adsorption capacity at different pHs. (T: 20 °C; sorbent dosage: 1 g·L−1; agitation speed: 180 

rpm; contact time: 48 h; C0(single): 0.2 mmol·L−1; C0(binary): 0.1 mmol·L−1). 

However, the pH where the majority of surface sites are neutral, and the net charge on the 

surface is zero, is known as the point of zero charge (pHpzc) [39], this value was evaluated and is 

presented in Figure 4. Zero net surface charge density does not imply the absence of any charges, but 

rather the presence of equal amounts of positive and negative charge [40]. In general, ligand exchange 

is favored at pH levels less than the pHpzc [41], as below pHpzc more sites are able to be protonated or, 

failing that, be able to be occupied by cations, depending on the predomination of electrostatic forces 

or chelating bonding [37]. The pHpzc of ChiFer(III) was recorded at 7.40 which is depicted in Figure 

4, this is in agreement with findings in the literature [42]. The pHpzc of neat chitosan was reported as 

7.1 and pHpzc of Fe(OH)3 was 6.9 [40]. Consequently, the pHpzc value of ChiFer(III) corresponds 

somewhere between neat chitosan and its ferric form. 
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Figure 4. pHpzc of ChiFer(III). (T: 20 °C; sorbent dosage: 1 g·L−1; agitation speed: 180 rpm; contact time: 

24 h; 0.01 M NaCl solution). 

The optimal pH for Hg(II) and Pb(II) sorption, match with the pH values under pHpzc. These 

accords with several authors who reported behaviour below pHpzc for Hg(II) [43] and Pb(II). 

Moreover, the main variations in pH were observed between pH > 3.0 < pHpzc, due to the protonation 

of the amino groups into the ChiFer(III) material. This means that in this pH range a competition 

between metals and protons for the active sites in the sorbent could be produced; which is confirmed 

by the “buffering effect” at pH 4–6 (Figure 4). Consequently, the sorbate/sorbent interactions to these 

systems are mainly based on chelation bonding of metals with nitrogen atoms and hydroxides iron 

species, and to a lesser extent on electrostatic interactions. The optimum operational pH was found 

as pH 4.5. Henceforth, the experiments were performed at this initial pH. 

3.3. Equilibrium 

The correlation of data by theoretical Equations is fundamental for the engineering design and 

scaling-up of sorption systems. Several models are proposed in the literature for fitting the 

experimental data, it includes Langmuir, Freundlich and Sips Equations. This fitting does not mean 

that the principles of the models are verified, but it could improve the interpretation of the sorption 

mechanisms [44]. The impact of metal concentration on sorption uptake is demonstrated by a 

progressive increase until a saturation plateau is reached. Figures 5 and 6 show the equilibrium data 

for Hg(II) and Pb(II) for single and binary component systems respectively, from aqueous solutions 

at initial pH of 4.5 and 20 °C. The obtained parameters of the models for single component are 

summarized in Table 1. 

 

Figure 5. Single component sorption isotherms. (T: 20 °C; sorbent dosage: 1 g·L−1; agitation speed: 180 

rpm; contact time: 48 h). 
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In single component, Sips model shows the best fitting in terms of r2, however it presents a large 

standard error in the Ks parameter. Likewise, the Langmuir model gets good r2 > 0.98, but much less 

standard (Std.) error values than the Sips model. Therefore, Langmuir model is taken as reference for 

the interface analysis. Nonetheless, the characteristic asymptotic shape of the isotherm is consistent 

with the Langmuir Equation. The maximum sorption capacity (qmax) of Hg(II) and Pb(II) were 1.80 

and 0.56 mmol·g−1, respectively. Thus, the sorption capacity for mercury ions is three times higher 

than that for lead ions. 

Table 1. Single and binary component isotherm constants of ChiFer(III) material. 

Single Component System 

   Hg(II) Pb(II) 

 Parameter Unit Value Error Value Error 

Langmuir 

qexp (mmol·g−1) 1.61  0.52  

qmax (mmol·g−1) 1.80 0.06 0.56 0.007 

b (L·mmol−1) 10.17 1.31 38.8 2.49 

r2  0.988  0.996  

qmax x b (L·g−1) 18.3  21.44  

Freundlich 

KF (mmol1−1/n·g−1·L1/n) 1.97 0.07 0.69 0.05 

n  2.63 0.19 3.66 0.54 

r2  0.982  0.91  

Sips 

qmax (mmol·g−1) 2.3 0.26 0.55 0.01 

Ks (L·mmol−1) 3.14 1.18 52.41 15.04 

ns  1.4 0.15 0.93 0.05 

r2  0.995  0.998  

Binary Component System 

   Value Error   

Langmuir 

competitive 

model 

Km (mmol·g−1) 2.87 0.57   

K1 (mmol·g−1) 5.68 1.60   

K2 (mmol·g−1) 2.24 0.63   

r2  0.96    

In terms of sorption capacity performance, ChiFer(III) is competitive compared with other 

chitosan composites; e.g., Dhanapal et al. [45] tested acryloylated chitosan, 2-acrylamido-2-methyl-1-

propansulfonic acid, 2-(diethylamino) ethylmethacrylate and N,N′-methylene bisacrylamide as a 

crosslinker (ACAD), obtaining a sorption removal of 2.26 mmolHg(II)·g−1. Similarly, Zhang et al. [46] 

manufactured the cobalt ferrite/chitosan grafted with graphene composite (MCGS) material and the 

sorption capacity obtained was 0.67 mmolHg(II)·g−1. 

In the case of Pb(II), chitosan/magnetite [47], and thiolated chitosan [12] materials were tested, 

and the sorption uptake was in the order of 0.30–0.53 mmolPb(II)·g−1. Table 2 shows additional studies 

regarding to chitosan-based composites for single sorption of Hg(II) and Pb(II). It is noteworthy that 

the ChiFer(III) material is configured in the form of beads, and this could contribute to the scale-up 

for future industrial manufacturing. 

Regarding to the sorption affinity, it is clearly seen that Hg(II) ions are more sorbed onto 

ChiFer(III) material than Pb(II) ions: Hg(II) > Pb(II). This could be explained by the ionic radii 

differences between Hg(II) and Pb(II), which is 1.02 and 1.19 respectively. Therefore, Hg(II) ions can 

enter into the material pores easier than Pb(II) ions. However, more than one mechanism is presented 

to explicate in deep how the metals are bonded onto the material. This affinity accords with that 

reported by Zhu et al. [50], who carried out sorption experiments with Hg(II) and Pb(II) onto chitosan 

with thiourea groups where the sorbent had more affinity towards Hg(II) than to Pb(II) ions. Several 

experiments with the raw chitosan particles were carried out in single system (with 0.2 mmol·L−1 

solutions of Hg(II) and Pb(II)) for comparing the sorption efficiency of ChiFer(III) beads. Figure S6 

shows that the sorption capacity for Hg(II) is almost similar for both materials (i.e., 1.02 mmol·g−1 for 

chitosan and 0.90 mmol·g−1 for ChiFer(III)); the performance of chitosan particles is slightly higher 
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than ChiFer(III); this can be attributed to the small particle size of chitosan (<0.5 mm), which in 

comparison with ChiFer(III) beads (2 mm), has a greater impact on the resistance to the film diffusion; 

making the active sites of chitosan easier accessible for mercury ions. In addition, ChiFer(III) material 

is more efficient for lead removal than chitosan at the same operation conditions (i.e., 0.2 mmol·g−1 

for chitosan and 0.45 mmol·g−1 for ChiFer(III)); it means that the introduction of hydroxyl groups of 

iron(III) hydroxide improves the sorption uptake of metal ions and could improve the stability of the 

resulting beads [17]. 

Table 2. Adsorption capacity of Hg(II) and Pb(II) with different chitosan-based materials. 

Modification Metal pH T (°C) qmax (mmol·M+·g−1) Isotherm fitting Ref. 

Microspheres chitosan grafted with 

chlorosulfonic acid (CSSULF) or 

ethylenimine (CSPEI) 

Hg(II) 6 - 0.32 
Langmuir/Freundl

ich 
[37] 

Cross-linked aminated chitosan beads Hg(II) 7  2.23 Langmuir [35] 

Chitosan/Graphene oxide imprinted Pb2+ Pb(II) 5 30 0.38 Langmuir [48] 

Polyaniline grafted cross-linked chitosan 

beads 
Pb(II)  45 0.55 Langmuir [49] 

Present study: ChiFer(III) 
Hg(II) 

Pb(II) 
4.5 Room 

1.80 

0.56 
Langmuir  

 

Figure 6. (a) Binary component sorption isotherms, (b) 3D surface for Hg(II) sorption capacity 

response vs. Hg(II) and Pb(II) interactions, and (c) 3D surface for Pb(II) sorption capacity response vs. 

Hg(II) and Pb(II) interactions. (T: 20 °C; sorbent dosage: 1 g·L−1; agitation speed: 180 rpm; contact time: 

48 h, pHo = 4.5, Co = 0.15 mmol·L−1). 

Many published results in the literature are based in single systems, however the evaluations of 

the binary components had more interest for future applications in real effluents [51]. In this present 

study, the equilibrium analysis was done under the concept that one binding site was only available 

for one sorbate, supported by the competitive Langmuir isotherm model, according to Equation (5) 

and combination of Equations (6) and (7), which were simultaneously solved using Origin 9.0 

software (OriginLab Inc., Northampton, MA, USA, 2012). Many authors have taken into account the 

simple models and have omitted the competitive effect on secondary species. Thus, recent 

publications reported the use of the competitive equilibrium Equations [52–54]. 
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The constant values of the bi-component model were KHg(II) = 5.68, KPb(II) = 2.24 and qm = 2.87 as 

shown in Table 1. Furthermore, the determination coefficient was acceptably fitted at r2=0.95. Figure 

6 illustrates the isotherms related to the competition of Hg(II) and Pb(II) at pHo = 4.5 and the same 

initial concentrations of 0.15 mmol·L−1. It is noted that the material has the same trend as in single 

systems. In other words, the affinity stays stronger in Hg(II) ions rather than in Pb(II) ions. To better 

illustrate of the two metal ions on the sorption capacity of each metal ion, 3D surfaces (as seen in 

Figure 6b), which shows a more marked decrease as the concentration of Pb(II) ions increase. 

According to Mohan et al. [51], the effect of ionic interactions on sorption may be represented 

by the ratio of the sorption capacity for one metal ion in the presence of another metal ion (Qmix), to 

the sorption capacity for the same metal when it is present (Q0). Although this relation was used with 

Q0 = qmax (for this nomenclature) and calculated by models. In this work we used the same relation 

for an equilibrium concentration at a single point in the isotherm qe instead of qmax, as it is not possible 

to reach the isotherm plateau due to the imminent precipitation at concentrations over 0.15 mmol·L−1 

at pH = 5.5. It is also possible to note the ratio differences at different equilibrium concentrations. 

Thus, the effect of ionic interactions by each metal is calculated by the sorption capacity ratio (scr), 

scr = qemix,i/qe,i; so, for Hg(II) the scrHg(II) = qemix,Hg/qe,Hg and scrPb(II)0 = qemix,Pb/qe,Pb. Figure 7 show the scr 

behaviour in both metals at different Ce concentrations. It is noted that difference between the ratio 

is not marked in Hg(II) ions as scr changes, which means that although Pb(II) ions are in the solution, 

these ions do not suppress the sorption of Hg(II) ions. On the other hand, Pb(II) ions capacity 

decreases as long as the Ce increases, which means that there is a suppression of Pb(II) ions is achieved 

towards the isotherm plateau is achieved. It also indicates preference for Hg(II) ions in this Hg(II)-

Pb(II) system. 

 

Figure 7. Sorption capacity ratio (scr) changes. (T: 20 °C; sorbent dosage: 1 g·L−1; agitation speed: 180 

rpm; contact time: 48 h, pHo = 4.5, Co = 0.03–0.1 mmol·L−1). 

3.4. Kinetics Studies 

The sorption kinetics studies are important for determining the required contact time of the 

sorbate/sorbent systems. In industrial applications the time for achieving the maximum saturation 

plateau is a very relevant parameter for design of reactors [55]. Figure 8a,b show the kinetic profiles 

for lead and mercury from aqueous solutions. It is noteworthy that the kinetic uptakes are controlled 

by different mechanisms including: (i) bulk diffusion; (ii) external diffusion (so-called film diffusion); 

(iii) intraparticle diffusion; and (iv) reaction rate. Demey et al. [17] reported that maintaining a 

continuous agitation speed of 150–200 rpm (and a sorbent dosage of 1 g·L−1) is enough to avoid the 

settling of the sorbent and neglecting the contribution to the bulk diffusion. 
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The kinetics studies of mercury (Figure 8) were performed with two types of drying beads 

configurations (i.e., freeze-dried beads, which is the standard material synthesized in this work, and 

the air dried beads). A comparison of the drying method was performed to evaluate the accessibility 

of the metal species into the porous network of the sorbent. Both curves shown in Figure 8 are 

overlapped, confirming not significant influence of the drying techniques on the metal uptake. These 

surprising results are in contradiction with those obtained recently by Demey et al. [17], in which 

ChiFer(III) material for neodymium recovery from aqueous solutions, and the accessibility of the 

metal into the active sites was affected according to the drying method and, as a consequence, the 

equilibrium time was impacted. 

In this work, important differences between the drying techniques were not found, probably 

due to several causes: (i) the structure of the polymeric matrix remained relatively open after air 

drying and it did not affect the accessibility into the pores (this was not completely evidenced in the 

SEM images of the composite); (ii) the covalent radius of neodymium is bigger than that of the 

mercury ions, and these latter ions had not difficulties in transporting into the entrance of the pores 

(i.e., the covalent radius of mercury is 132 pm and the covalent radius of neodymium is 201 pm). 

Rorrer et al. [56] concluded that a pore blockage may occur at low metal concentrations. The 

migration of sorbed species is low, which in conjunction with the larger size of the neodymium ions, 

results in an accumulation at the entrance of the pore. Therefore, the low-cost air drying technique 

does not have strong influence in the sorption of mercury. This opens the door to manufacturing the 

materials on a higher scale so as to conduct future evaluations with real industrial effluents. 

Regardless of the metal, (mercury or lead), the curves in Figure 8a,b are characterized by three 

progressive pseudo-steps: (i) an initial step that takes around 50–60 min; (ii) a second step that takes 

around 4–5 h, and (iii) a third step that takes around 60 min. The differences of each step are related 

to the gradient mass that is progressively reduced as a function of the contact time. Table 3 reports 

the comparison of the experimental sorption capacities at equilibrium with calculated values for both 

pseudo-first order (PFORE) and the pseudo-second order rate equations (PSORE). The correlations 

confirm much better fitting with PSORE. 

 

Figure 8. Kinetics profiles: (a) Hg(II), (b) Pb(II). (T: 20 °C; sorbent dosage: 1 g·L−1; agitation speed: 180 

rpm; contact time: 48 h; C0: 0.2 mmol·L–1; dashed line: fitting with pseudo-second order rate equation). 

Table 3. Kinetic parameters of sorbent materials. 

Experimental PFORE PSORE 

Metal Sorbent 
qexp 

(mmol·g–1) 

K1 

(h–1) 

q1 

(mmol·g−1) 
r2 

K2 

(g∙mmol–1∙h−1) 

q2 

(mmol·g–1) 
r2 

Hg(II) 
Air dried beads (AD) 1.71 1.44 1.57 0.983 1.18 1.69 0.991 

Freeze dried beads (FD) 1.70 1.36 1.53 0.977 1.12 1.65 0.995 

Pb(II) Freeze dried beads (FD) 0.64 2.09 0.63 0.930 4.94 0.679 0.945 

3.5. Salt Effects 

Figure 9a,b show the sorption behaviour when sodium sulfate and sodium chloride are added 

in binary Hg(II)-Pb(II) systems. In the case of sulfate ions, the material sorption capacity slightly 
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decreases as the sulfate concentration increases. This effect is more pronounced in Hg(II) than in 

Pb(II) ions. However, it is more noticeable that even at high sulfate concentration (0.2 mmol·L–1), the 

sorption capacity decreases at around 35% and 15% for Hg(II) and Pb(II) respectively. This means 

that the material sorption capacity was lightly affected by the sulfate ions, which in turn is beneficial 

for the treatment of wastewater. 

 

Figure 9. Salt effects: (a) Sulfate effect, (b) Chloride effect. (T: 20 °C; sorbent dosage: 0.2 g·L–1; agitation 

speed: 180 rpm; contact time: 48 h; C0: 0.1 mmol·L–1). 

The chloride effect in sorption efficiency of the material was then assessed, covering weak and 

strong chloride concentrations (0.001 M similar to (s.t.) potable water, 0.05 M s.t. river water, 0.2 M 

s.t. underground water and 0.5 M s.t. seawater). In all cases, sodium chloride suppresses the sorption 

capacity, even at low chloride concentrations. The sorption of Pb(II) was affected more strongly than 

the Hg(II) ones, around 97–98% and 40–83% for Pb(II) and Hg(II) respectively. This can be explained 

as follows: the formation of complexes with chloride ions is easier than sulfate ions [57]; i.e., chloride 

may form complexes with Pb(II) and Hg(II). According to Kinniburgh et al. [58] who studied the 

adsorption of Hg(II) on Fe gel, found that in the presence of chloride the adsorption of Hg(II) is 

considerably reduced. However, the biggest suppressing affect was on the Pb(II) sorption, which 

could indicate that the chloride-complex is more easily formed with Pb(II) rather than Hg(II). On the 

other hand, this factor could impact on the selectivity of the material, which in the presence of 

chloride, the Hg(II) is successfully adsorbed but the Pb(II) sorption has been substantially reduced 

(Figure 9b). 

Comparing the effects of sulfates and chlorides on the sorption of Hg(II) and Pb(II), it is noted 

that chlorides suppress the adsorption much more than sulfates. This is in agreement with Mitani et 

al. [59] who found that sulfates were adsorbed in greater quantities than chlorides when this act as 

counter ions with metals over chitosan-based gel. That is to say that sulfates have less effect on 

sorption than chlorides with chitosan. In this work we found the affinity over our iron/chitosan 

composite as: Hg(II) > Pb(II).The possibility of regeneration, as well as the recover 

3.6. Desorption 

The possibility of regeneration, as well as the recovery of metals from the loaded sorbent, is an 

important parameter for evaluating the feasibility of the sorption processes. In the first stage, seven 

eluents in one sorption/desorption cycle were tested, the results of which are illustrated in Figure 10a. 

The eluents were: HNO3 (pH = 3.5), HCl (pH = 3.5), NaOH (pH = 11), NaOH (pH = 13), Thiourea 0.1 

M (pH = 3.5), Thiourea 0.05 M (pH = 3.5) and EDTA 0.05 M (pH = 10). Eluents HNO3, HCl, NaOH 

and thiourea 0.05 M shows recoveries below 60% and 50% for Hg(II) ions and Pb(II) ions respectively. 

HCl at pH = 3.5 represent a good eluent, this is in concordance with the section 3.5 of this article, 

which describes the salt effects, the impact of protons was verified, as a result of a higher 

concentration of H+, a strong competition for the active sites is produced, and this effect is taken in 

advantage for desorption procedures. Moreover, thiourea 0.1 M present 80% of recovery for Hg(II), 

but 32% of elution recovery for Pb(II) ions in the first sorption/desorption cycle, but after this, 
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thiourea directly impacts on the stability of the sorbent and the beads become mechanically fragile; 

thus, their original brown color turns to green. It means that thiourea acts as a reducing agent and 

consequently iron(III) is reduced to iron(II); it is in agreement with the findings of Zhu, 1992 [60] who 

reported that the redox interactions of ferric ions and thiourea follows a first order reaction. 

 

Figure 10. Desorption: (a) Eluent selection, (b) Cycles with the selected eluent: EDTA solution pH 10. 

(T: 20 °C; sorbent dosage: 1 g·L–1; agitation speed: 180 rpm; contact time: 24 h; C0: 0.15 mmol·L–1). 

Nevertheless, EDTA 0.05 M set at pH 10 achieved recoveries of 98% for Hg(II) and 91% for Pb(II), 

so, in order to assess the performance of reusability three sorption/desorption cycles were carried out 

with EDTA 0.05 M, which is illustrated in Figure 10b. 

Along three sorption/desorption cycles, alkaline EDTA shows excellent recovery for both metals, 

with average elution efficiencies of 81.43% for (Hg(II)) and 81.43% for (Pb(II)), it was up to 87% for 

the first two cycles, followed a lightly drop in the third cycle with recoveries of 62.54% and 71.23% 

for Hg(II) and Pb(II) respectively. Mass of the sorbed and eluted metals of the three 

sorption/desorption cycles are provided in Figure S7 of supplementary materials section. The 

stability of the beads after the third cycle was good, mainly due to the alkaline media, in which the 

hydrogel is more stable. Desorption studies reported by [61–63], who used EDTA for desorption of 

heavy metals showed comparable results with the obtained in this study, EDTA at alkaline medium 
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is deprotonated, which in conjunction with its chelating properties, represents an excellent desorbent 

for heavy metals strongly bonded onto the sorbent matrix. 

4. Conclusions 

ChiFer(III) bio-based sorbent showed good sorption capacity towards the removal of Hg(II) and 

Pb(II) ions in single and binary systems. There was remarkable affinity for Hg(II) even in strong 

chloride conditions. Besides, the stability and the performance of the material was maintained during 

all three sorption–desorption cycles. Langmuir and competitive Langmuir models fitted the 

equilibrium in single and binary component systems, respectively. The maximum sorption capacities 

were 1.8 mmol·g–1 and 0.56 mmol·g−1 for Hg(II) and Pb(II), respectively. Pseudo second order rate 

equation adjusted accurately to kinetics data. The main advantage of using this material is the very 

simple manufacturing procedure and cheap cost, added to the high sorption capacity compared with 

existing similar bio-materials. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4360/10/4/367/s1, Figure 

S1: Species diagram system of Hg(II), Figure S2: Species diagram system SO42−, Hg(II), Pb(II), Figure S3: Species 

diagram system Cl−, Hg(II), Pb(II), Figure S4. FTIR spectres before and after metals sorption, Figure S5: Stability 

of sorbent material at different pHs, Figure S6: Metal species removal by neat chitosan and ChiFer(III) as sorbents 

and Figure S7: Sorbent and eluted mass in sorption/desorption cycles. 
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