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A. Methodology to obtain the real-valued spherical harmonics expansion of the single-

link distribution function  

Upon using for a general shearfree elongational flow 
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in Eq. (C4) of Ref. [1] and performing the necessary integrations we obtain  
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Note that already in the 2nd line of Eq. (A1) we have specified our treatment to the case of 

a general shearfree elongational flow, i.e.     1 1
2 2

diag 1+ , 1 ,1 WiT b b    κ κ  where 
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Wi= . Now, by taking cases separately we find that    00 0,b t  


  and 

    0,  even, ,npb t n p 


 . For the rest,  
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where 
nl   is the Kronecker symbol (if n=l, 1nl  , otherwise 0nl  ) and the shorthand 

notation     
2

01 1jK j j        is used. By following the methodology employed 

in Refs. [1,2] we obtain the following expression for the time-dependent single-link 

distribution function: 
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where 

 
 

 
 1 2

1 2

6sin
, exp

odd

g t K t
K





 






.                               (A5) 

Note that for t→0 the single-link distribution function becomes, as should, equal to the 

equilibrium one whereas, as t   the single-link distribution function becomes identical 

to the one given below in Eq. (A6), up to first order terms. The single-link distribution 

function presented here generalizes the one presented in Ref. [3] which was only specified 

for uniaxial elongation (b=0).  In the case of a stationary state, we are interested to have 

the solution up to third order in the dimensionless elongation rate. By solving the stationary 

limit of Eq. (A3) we obtain  
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where 
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Note that    1 1 ,0g g   , where  1 ,g t  is the corresponding expression employed in 

Eq. (A5).   

 

B. Results of the BD simulations when a constant link tension coefficient is employed  

Fig. S1 shows the reduced steady-state first [Fig. S1] and second [Fig. S2] viscosities in 

the case of planar extension, made dimensionless with G , as a function of the 

dimensionless elongation rate, Wi. In the case of a constant link tension coefficient, the 

expansion of the two elongational viscosities in the case of planar elongation up to second 

order in Wi is obtained by setting b=1 in Eqs. (6) of the manuscript:   
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with numerical prefactors j  given by Eq. (8) of the manuscript. When 0   
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These predictions are provided in Figs. S1 and S2. All curves, irrespective of the value of 

0
 , reach the same value of the first viscosity at large elongation rates. This value is simply 

given by: 
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FIG. S1: 1 G   as a function of Wi for various values of the parameters 0   and  . Note 

that in part (b) and in all insets the vertical axis is in linear scale. The thick lines give the 

predictions of Eqs. (B1) or (B2) for the case of 0 0    . 
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FIG. S2: Same as FIG. S1 but for 2 G  .  

 

FIG. S3: Predictions for the transient 1 G 
 as a function of time for N=100 and various 

values of the parameter   and dimensionless elongation rate Wi for (a) 0 =0, (b) 0 = 0.1, 

c) 0 = 0.5, and (d) 0 = 0.9. The thick lines give the predictions of Eq. (14).  
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FIG. S4: Same as FIG. S3 but for 2 G 
.  

 

Note that Eq. (B3) differs from Eq. (26) only when the first viscosity is made dimensionless 

with the zero-rate viscosity which, when the link tension coefficient is taken as a constant, 

is given as   
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We next show the transient first (Fig. S3) and second (Fig. S4) viscosity as a function of 

the dimensionless time (t/ ) for various dimensionless elongation rates along with the 

linear viscoelastic prediction (see Eq. (15) with b=1). 
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