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Abstract: Selenium-containing monomer monophenyl maleimide selenide (MSM) was synthesized
and copolymerized with styrene (St) using reversible addition-fragmentation chain transfer (RAFT)
polymerization. Copolymers with controlled molecular weight and narrow molecular weight
distribution were obtained. The structure of the copolymer was characterized by nuclear magnetic
resonance, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrum,
Fourier transform infrared spectroscopy (FT-IR) and Ultraviolet–visible spectroscopy (UV-vis)
spectroscopy. The copolymer can be oxidized by H2O2 to form carbon-carbon double bonds within the
main chain due to the unique sensitivity of selenide groups in the presence of oxidants. Such structure
changing resulted in an interesting concentration-related photoluminescence emission enhancement.

Keywords: selenium-containing monomer; reversible addition-fragmentation chain transfer (RAFT);
oxidation; carbon-carbon double bond

1. Introduction

The selenium containing group has been widely used as an antioxidant due to low binding
energy of the selenium-carbon bond [1]. Many selenium-containing compounds are promising
multi-responsive materials with unique redox properties [2]. Great efforts in material chemistry
fields have been reported based on the redox property of selelnium-containing compounds [3–5].
Xu et al. reported a novel amphiphilic block copolymer with oxidation responsive selenide moieties
which can undergo a disassembled in a mild oxidative environment and a reversible reduction upon
the addition of Vitamin C [6]. In addition, depending on the redox property of selenium-containing
compounds, some selenium-containing probes for sensitive and selective detection of oxygen species
were reported [7]. For example, Manjare et al. designed a diselenide-based boron dipyrromethene
(BODIPY) probe for detecting superoxide [8]. After oxidation, the ability for the photo-induced electron
transfer from the selenium to the fluorophore was removed and the probe gave a fluorescence response.
In 2017, a dynamic hydrogel containing diselenide moiety was proposed by Pan et al. which showed
redox and temperature responses by selectively oxidation of selenol-terminated chain. Through this
method, such material could lead to the reconstruction of a hyperbranched architecture and a transition
to gel state [9].

In fact, selenium-containing moieties could be eliminated at mild conditions. Yuki et al.
demonstrated that selenide end functionalized polymer could be oxidized to the corresponding
polymer with terminal selenoxide, and they followed this method by elimination to give a polymer

Polymers 2018, 10, 321; doi:10.3390/polym10030321 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-2704-7656
http://dx.doi.org/10.3390/polym10030321
http://www.mdpi.com/journal/polymers


Polymers 2018, 10, 321 2 of 12

containing a double bond at terminal groups [10]. In 2016, Dai et al. obtained highly regioselective
carbonselenation styrene in the presence of H2O2 [11]. This reaction is an efficient method for the
synthesis of target alkenes via selenoxide syn elimination and chiral hydrocarbons that bear an aryl
moiety at the stereogenic carbon atom if a chiral selenium regent is used.

Dithiomaleimide is a new fluorescent small molecule demonstrated by Rachel K. O’Reilly et al.
in 2013 [12]. Additionally, in 2015, the same group presented a library of amino-maleimides
which showed an intense fluorescence emission in cases of maleimide with ankyl primary amines
substitution [13]. Recently, using a stable Ru(II)-catalyst, Mahiuddin Baidya reported a series of
seleno-substituted maleimides with excellent yield (up to 94%) [14]. In 2016, Haddleton et al.
synthesized a dithiomaleimide-containing monomer [15]. It was successfully copolymerized with
poly(triethyene glycol methyl ether acrylate) to endow copolymers with thermos-responsive and
fluorescent properties. Furthermore, polymers with multiple carbonyl (C=O) moieties can demonstrate
strong photoluminescence (PL) emission under proper conditions [16,17]. These polymers showed
poor PL emission in solution. However, in solids or viscous liquids, PL emission could be enhanced [18].
In 2017, Shiao-Wei Kuo et al. reported an interesting monomer, namely, 2-aminobutyl maleimide
isobutyl polyhedral oligomeric silsesquioxane, which had a lack of conventional fluorescent groups [19].
After it copolymerized with maleimide-containing monomer, the copolymer displayed strong light
emission due to the intermolecular hydrogen bonding between the amino and dihydrofuran-2,5-dione
group and clustering of the locked C=O groups.

Seleno-mediated radical polymerization (SeRP) has been widely used as a method applicable to
get selenium-containing polymers [20,21]. However, there have been few reports about the radical
polymerization of vinyl monomers containing selenide moiety. This was probably due to the strong
interaction of selenium stom with free radicals [22,23]. In 1996, Yuki et al. reported a new type of
selenium-containing vinyl monomers (p-methylselenostyrene and p-phenylselenostyrene) which can
polymerize with azodiisobutyronitrile (AIBN) or benzoyl peroxide (BPO) as initiator to afford the
corresponding polymers [24]. In 2017, Pan et al. demonstrated a selenide-containing monomer to the
preparation of dynamic covalent cross-linked polymers [25]. This monomer can simultaneously act as
a comonomer, cross-linker, initiator and mediator.

Based on the literature survey, herein, we prepared a selenium-containing maleimide monomer
monophenyl maleimide selenide (MSM) which could copolymerize with styrene by reversible
addition-fragmentation chain transfer (RAFT) polymerization (Scheme 1a). Copolymers with
controlled molecular weight distribution were successfully obtained. Furthermore, due to the cleaving
of weak selenium-carbon bond, the molecular of copolymer was decreased when treated with H2O2

and then carbon-carbon double bonds were formed in the backbone of oxidized copolymer (Scheme 1b).
This procedure provides a new candidate for preparing cross-linked polymer using the internal
carbon-carbon double bonds as cross-linker. Besides, for the oxidized copolymer, the PL emission
intensity of spectral region at 460nm could be enhanced both in solid state and in solution.
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2. Materials and Characterization

2.1. Materials

Styrene (St, Sinopharm Chemical Reagent, Shanghai, China, 99%) was purified by passing
through a short Al2O3 columns before use. Diphenyl diselenide (DPDS) [26], 2-cyanoprop-2-yl-
1-dithionaphthalate (CPDN) [27,28] and N-butyl-monobromomaleimide [29] were synthesized
according to literature procedures. 2,2-Azobisisobutyronitrile (AIBN, Sinopharm Chemical Reagent,
China, 98%) was purified by recrystallization from ethanol. Other reagents were purchased from
Sinopharm Chemical Reagent Co., Ltd. and were used without further purification.

2.2. Characterization

The number-average molecular weight (Mn) and molecular weight distribution (Đ) of the
polymers were determined by a TOSOH HLC-8320 gel permeation chromatograph (GPC) equipped
with a refractive index and UV detector (Tosoh Bioscience Shanghai Co. Ltd., Shanghai, China),
using two TSK gel super 20 Multipore HZ-N (4.6 × 150 mm, 3 µm beads size) with measurable
molecular weights ranging from 500 to 1.9 × 105 g/moL. Tetrahydrofuran (THF) was used as
the eluent at a flow rate of 0.35 mL/min at 40 ◦C. Data acquisition was performed using EcoSEC
software (Tosoh Bioscience Shanghai Co. Ltd., Shanghai, China). The 1H NMR and 13C NMR spectra
were recorded on a Bruker 300 MHz nuclear magnetic resonance instrument (Bruker Daltonics Inc.,
Billerica, MA, USA) using CDCl3 as the solvent and tetramethylsilane (TMS) as the internal standard.
The 77Se NMR was recorded on a Bruker 600 MHz nuclear magnetic resonance (Bruker Daltonics Inc.,
Billerica, MA, USA) instrument using CDCl3 as the solvent and tetramethylsilane (TMS) as the internal
standard. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectroscopy
were acquired on an UltrafleXtreme MALDI TOF mass spectrometer (Bruker Daltonics Inc., Billerica,
MA, USA) equipped with a 150 kHz smart beam-II laser. FT-IR spectra were obtained on a
BrukerTENSOR-27 FT-IR spectrometer (Bruker Daltonics Inc., Billerica, MA, USA) by mixing
the polymer with KBr as tablets. The UV-vis spectra were recorded on a Shimadzu UV-3150
spectrophotometer at room temperature (Shimadzu China, Shanghai, China). The photoluminescence
(PL) spectra of the samples were determined with a Hitachi F-4600 fluorescence spectrophotometer
(Hitachi (China) Ltd., Shanghai, China) using a monochromated Xe lamp as an excitation source
with a scanning rate of 1200 nm min−1. The excitation and emission slits were both set at 5 nm.
Differential scanning calorimetry (DSC) was performed with heating and cooling rates of 10 ◦C/min
on a PerkinElmer Diamond DSC instrument (PerkinElmer, Billerica, MA, USA) equipped with a
cooling system under continuous nitrogen flow. Thermogravimetric analysis (TGA) was performed on
a 2960 SDT TA instruments with a heating rate of 10 ◦C/min from room temperature to 800 ◦C under
a nitrogen atmosphere.

2.3. Synthesis of Monoselenomaleimide (MSM)

To a solution of DPDS (1.56 g, 5 mmol) in 50mL C2H5OH-DMF (3:2) was added NaBH4

(0.15 g, 4 mmol) under nitrogen atmosphere at room temperature. After 30 min of stirring,
N-butyl-monobromomaleimide (1.16 g, 5 mmol) was added at 0 ◦C. The solution was stirred for
30 min. The reaction mixture was extracted with dichloromethane (3 × 40 mL) and washed with water.
The organic layer was dried over anhydrous magnesium sulfate and concentrated. The residue was
subjected to column chromatographic separation (Silica gel, [Hexane]/[Ethyl acetate] = 20/1, v/v) to
give 0.81g (66% yield) of monophenyl maleimide selenide (MSM). 1H NMR (300 MHz, CDCl3, δ, ppm)
(Figure S1): 7.66–7.64 (m, 1H), 7.63–7.61 (m, 1H), 7.50–7.38 (m, 3H), 5.86 (s, 1H), 3.51 (t, J = 7.2 Hz, 2H),
1.63–1.50 (m, 2H), 1.31 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H). 13C NMR (75 MHz, CDCl3, δ, ppm) (Figure S2):
δ = 169.76 (1C), 169.01 (1C), 150.22 (1C), 135.88 (2C), 130.26 (2C), 130.04 (1C), 125.48 (1C), 123.90 (1C),
38.01 (1C), 30.63 (1C), 19.96 (1C), 13.55 (1C). 77Se NMR (600 MHz, CDCl3, δ, ppm) (Figure S3):
δ = 387.51 (1Se).
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2.4. General Procedures for Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization of
Styrene and MSM

The polymerization was carried out in a baked Schlenk tube under argon protection. As for
the molar ratio with [St]0/[MSM]0/[CPDN]0/[AIBN]0 = 200/200/2/1, MSM (2.67 g, 8.62 mmol),
St (1.0 mL, 8.63 mmol), CPDN (23.3 mg, 0.086 mmol) and AIBN (7.1 mg, 0.043 mmol) were added
into the tube. Toluene (50 µL) was added and used as internal standard for 1H NMR calculation.
A small portion of the mixture was collected for the determination of the initial monomer ratio by
1H NMR. The solution was degassed through a freeze-pump-thaw three times. Then, the reaction
tube was bathed in an oil bath preset at 70 ◦C. Monomer conversion was determined by 1H NMR
spectroscopy. After the predetermined time, a portion of the polymerization mixture was directly
dissolved in CDCl3 for 1H NMR analysis to determine the respective monomer conversion. In the
whole process of polymerization, the contents of toluene did not change, so the integral of toluene in
the 1H NMR could be easily used as an internal standard for evaluating the conversion of monomers
by comparing the integral value of double bonds with that of toluene. The typical spectrum is shown
in Figure S4. The residual mixture was dissolved in THF and precipitated in an excess of methanol.
After filtration, the copolymer was dried in vacuum at 30 ◦C for 24 h.

2.5. Oxidation of Copolymer Using H2O2 as Oxidizing Agent

The oxidation was carried out in a 2 mL ampoule with copolymer (35 mg, sample in Table 1
Entry 4) in THF (1 mL) and oxidized with H2O2 (45 µL, 30% v/v) at room temperature for 3 h.
Subsequently, the solution was precipitated in methanol. After filtration, the copolymer was dried in
vacuum at 30 ◦C for 24 h.

Table 1. Reversible addition-fragmentation chain transfer (RAFT) polymerization of St and
monoselenomaleimide (MSM) under different molar ratios a.

Entry [St]0/[MSM]0/[CPDN]0/[AIBN]0 Time (h) Conv.St
b (%) Conv.MSM

b (%) Mn
c (g/mol) Đ c

1 200/6/2/1 2.0 20 100 2000 1.28
2 200/20/2/1 2.5 51 100 2600 1.35
3 200/60/2/1 10 27 25 2500 1.43
4 200/200/2/1 9.0 34 27 3100 1.62
5 0/200/2/1 24.0 N.A. - - -

Polymerization conditions: a VSt = 1.0 mL, Vtoluene = 50 µL, under argon protection, 70 ◦C; b Calculated from
1H NMR of the raw experimental samples by comparing the integration of one vinyl protons of remaining monomer
to the integration of initial monomer with toluene as internal standard; c Determined by GPC with polystyrene
as standards.

3. Results and Discussion

3.1. Copolymerization of St and MSM

Maleimide is a well-known electron deficient monomer, which has showed poor
homopolymerization ability and has favored copolymerization with an electron-rich monomer. Herein,
the selenide substituted maleimide, MSM, was copolymerized with styrene. RAFT polymerization
was used for the aim of synthesis polymers with controlled molecular weight along with narrow
molecular weight distribution. The polymerization results under different molar ratios of St to MSM
were summarized in Table 1. As shown in Table 1, copolymerization of St and MSM could be carried
out under RAFT polymerization using CPDN as the RAFT agent and AIBN as the initiator at 70 ◦C.
Polymers with narrow molecular weight distribution could be obtained. However, the molecular
weight distribution (Đ) of the final copolymer increased with the decreasing of [St]0/[MSM]0 molar
ratio, which may due to the reactivity of selenide with radical [30]. Furthermore, in case of no
comonomer St (Table 1 Entry 5), no polymer was obtained even after 24 h of polymerization time,
indicating that MSM is difficult to homopolymerize.
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To deeply understand the RAFT copolymerization behavior of St and MSM, the polymerization
kinetics with different molar ratios were investigated. The results were showed in Figure 1. The results
showed that all the polymerization kinetics conveyed linear plots. Such results indicated that the
propagation radical concentration remained approximately constant during the polymerization period.
The “living”/controlled feature can also be manifested by other results. Figure S5 (number-average
molecular weight and molecular weight distribution (Đ) vary with the overall monomer conversion)
showed good linear relationships between molecular weight and overall monomer conversion.
The GPC curves of the obtained polymers at different feeding ratios (Figure S6) exhibited unimodal
profiles in all cases, confirming that the resulting polymers are generated by the copolymerization of
MSM and St, rather than being a mixture of two homopolymers. It could be observed that, in general,
the consumption rate of MSM increased with the increase of [St]0/[MSM]0 molar ratio.
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Figure 1. Kinetic plots of reversible addition-fragmentation chain transfer (RAFT) copolymerization 
of St and MSM with different molar ratios, (a) [St]0/[MSM]0 = 200/6; (b) [St]0/[MSM]0 = 200/20;  
(c) [St]0/[MSM]0 = 200/60; (d) [St]0/[MSM]0 = 200/200, VSt = 1.0 mL, Vtoluene = 50 μL, temperature 70 °C. 
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Figure 1. Kinetic plots of reversible addition-fragmentation chain transfer (RAFT) copolymerization
of St and MSM with different molar ratios, (a) [St]0/[MSM]0 = 200/6; (b) [St]0/[MSM]0 = 200/20;
(c) [St]0/[MSM]0 = 200/60; (d) [St]0/[MSM]0 = 200/200, VSt = 1.0 mL, Vtoluene = 50 µL, temperature
70 ◦C.

The structure of the polymer ([St]0/[MSM]0/[CPDN]0/[AIBN]0 = 200/200/2/1, precipitated
in methanol, Mn = 4600 g/mol, Ð = 1.47) was characterized by 1H NMR, 13C NMR, MALDI-TOF
mass and FT-IR. From the Figure 2, the signals at about δ = 2.50–3.40 ppm could be ascribed to the
protons adjacent to the nitrogen atom, protons from the fiveämembered ring, and protons from styrene
monomeric unites adjacent to maleimide monomeric unites. The copolymer showed the signals at
about 7.77–7.85 ppm (2H, integration = I7.77–7.85 = 2.0), which were ascribed to the protons at the chain
end derived from CPDN. The signals at about 6.50–7.75 ppm (10H, integration = I6.50–7.75 = 216.0)
were ascribed to the protons of benzyl from styrene monomeric unites and protons of phenyl-selenide
groups. Based on the Figure 1d, the monomer ratio was 1:1 and the monomer conversion rates were
close to each other. It can be assumed that the repeat units of St and MSM monomer are the same in the
copolymer. Thus, the molecular weight (Mn,NMR) can be calculated to be 4731 g/mol by the equation
Mn,NMR = (104 + 309) × (I6.50–7.75/10) + 271 = (104 + 309) × [(216.0/2)/10] + 271, which was close to
the value obtained by GPC (Mn,GPC = 4600 g/mol). In 13C NMR of the copolymer (Figure 6a), signals
at 173.2 ppm represented the C=O groups in maleimide units. Figure 3 showed the MALDI-TOF mass
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spectrum of polymer ([St]0/[MSM]0/[CPDN]0/[AIBN]0 = 200/200/2/1, precipitated in methanol,
Mn = 4600 g/mol, Ð = 1.47). There were two kinds of peak serials with repeat units of 104.3 Da
and 153.9 Da, which could be ascribed to the MW of St and MSM respectively. The determined
value of 1082.4 Da was matched the theoretical value of 1083.4 Da, which was corresponded to the
polymer structure containing 4 St units and 3 MSM units after the elimination of CPDN fragment at the
chain end of copolymer during MALDI-TOF mass testing. Loss of the selenium-containing fragment
was attributed to a weak selenium-carbon bond cleavage and removal from the copolymer during
MALDI-TOF mass testing [31]. In addition, the copolymer was analyzed by FT-IR spectrum (Figure S7)
which showed characteristic adsorption peaks according to carbon-oxygen double bond at 1690 cm−1.
The UV-vis spectrum of copolymer ([St]0/[MSM]0/[CPDN]0/[AIBN]0 = 200/200/2/1, precipitated in
methanol, Mn = 4600 g/mol, Ð = 1.47) before oxidation showed weak adsorption peak at around 310
nm, which can be attributed the adsorption of selenide moiety (Figure S8a). Such an adsorption peak
disappeared in the UV-vis spectrum of copolymer after the oxidation (Mn = 2300 g/mol, Ð = 1.43)
(Figure S8b) verified the elimination of selenium phenyl groups. Therefore, the above data confirmed
that the selenium-containing monomer MSM was successfully copolymerized with St and got a
controlled copolymer.
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3.2. Oxidization of Copolymer

The oxidative elimination of selenide moieties is one of the well-known reactions for
selenium-containing compounds [32,33]. Herein, the obtained copolymer ([St]0/[MSM]0/[CPDN]0/
[AIBN]0 = 200/200/2/1, precipitated in methanol, Mn = 4600 g/mol, Ð = 1.47) was treated with
hydrogen peroxide (H2O2, 30%). The possible reaction was showed as Scheme 1. The structure
of copolymer before and after the oxidization was characterized by GPC (Figure 4). It showed
that the molecular weight of copolymer was decreased from 4600 to 2300 g/mol after oxidization.
Such a molecular weight decrease of the copolymer could be ascribed to the cleavage of the weak
selenium-carbon bond. The structure of the oxidized copolymer was investigated by 1H NMR
spectrum as showed in Figure 5. In Figure 5, the oxidized copolymer showed the signals at about
4.80–5.80 ppm, which were ascribed to the protons from C=C double bonds. The signals at about
7.77–7.85 ppm (2H, integration = I7.77–7.85 = 2.0), which were ascribed to the protons at the chain
end derived from CPDN, the signals at about 6.20–7.75 ppm (integration = I6.20–7.75 = 164.0) were
ascribed to the protons of benzyl from repeat unites. Thus, combined with the 1H NMR of copolymer
before oxidization, the oxidization yield can be calculated to be 48% by the equation oxidization
yield = [(216.0/2 − 164.0/2))/5]/[(216.0/2)/10]. Such structure evolution also can be illustrated from
the 13C NMR in Figure 6b. The signals for the C=O groups in the maleimide repeat unit shifted from
173.2 to 168.6 ppm due to the formation of electron rich carbon-carbon double bond adjacent to C=O
after oxidation. However, the reaction efficiency of such a reaction in the current case was lower
than those found in the literature [33,34]. However, the current results clearly demonstrated that the
phenylselenide substitution could be partial oxidative cleavage from maleimide by 30% H2O2, which
resulted in the introducing of carbon-carbon double bonds in the backbone of copolymer.
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3.3. Thermal Properties of Selenium-Containing Copolymer and Oxidized Copolymer

To determine the decomposition temperature of the copolymer before and after oxidization,
TGA was tested under N2 atmosphere. The results were summarized in Figure 7. The degradation
temperature of copolymer before oxidization ([St]0/[MSM]0/[CPDN]0/[AIBN]0 = 200/200/2/1,
precipitated in methanol, Mn = 4600 g/mol, Ð = 1.47) was found to be 208 ◦C, causing the elimination
of phenyl-selenide groups. For oxidized copolymer, the first degradation step was found at around
130 ◦C, and its maximum weight loss occurred at 215 ◦C with a 5% total weight loss which could
be assigned to the elimination of phenyl-selenide groups. This was expected because the copolymer
without oxidization possesses thermal stability higher than its oxidized copolymer which has been
reported to initiate even at room temperature and increase rapidly with temperature [35]. We employed
DSC under N2 to examine the glass transition temperature (Tg) of copolymer before and after the
oxidation. The results were showed in Figure 8. It indicated that the Tg of oxidized copolymer
(82 ◦C) was lower than that of copolymer before oxidization (142 ◦C), which is presumably due to the
introduction of a flexible double bond in the main chain after elimination of selenium phenyl groups.
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3.4. Photoluminescence Investigation

It was demonstrated in the literature that maleimide with difference substitution showed
interesting photoluminescence (PL) behavior. Thus, the photoluminescence behavior of copolymer
([St]0/[MSM]0/[CPDN]0/[AIBN]0 = 200/200/2/1, precipitated in methanol, Mn = 4600 g/mol,
Ð = 1.47) and its oxidized product (Mn = 2300 g/mol, Ð = 1.43) was investigated in solution and
solid state. In THF, the copolymers before and after oxidization had excitation maxima at 410 nm and
370 nm respectively, see Figure S9. Figure 9 showed PL spectra of copolymer before and after oxidation
in THF with different concentration. It showed that the PL behavior of copolymer in solution could be
changed before and after the oxidation. The polymer before oxidation showed PL emission maximum
at 510 nm with exciting wavelength of 410 nm. The PL emission maximum shifted to 460 nm after
oxidation with exciting wavelength of 370 nm due to the elimination of phenyl selenide. Furthermore,
the PL emission enhancement with concentration was found in both of copolymers before and after
the oxidation, which may be due to the aggregation of carbonyl groups in maleimide repeat units [36].
It was clear that such enhancement with concentration was more sensitive in case of copolymer after
oxidation, both with or without the internal heavy atom effects of selenium atoms [37,38]. Such an
effect was more noticeable at solid state. In Figure 10, with excitation at 370 nm, the spectrum of
oxidized copolymer at solid state featured strong emission peaks at 460 nm. In contrast, the spectrum
of copolymer without oxidization at solid state featured hardly any signal because of the impact
from selenium.
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4. Conclusions 

The novel selenium-containing maleimide monomer MSM was successfully copolymerized with 
St through RAFT copolymerization at 70 °C using CPDN as the chain transfer agent and AIBN as the 
initiator. The feature of the controlled copolymerization was proven by the linear kinetic plots, 
controlled molecular weight and narrow molecular weight distribution of the copolymer. The structure 
of the obtained copolymer could be modified by eliminating phenylselenide under oxidative condition. 
This strategy provides a new method to prepare copolymers with selenide functional groups 
available for carbon-carbon double bonds formation in the backbone of a copolymer. By such 
structural modification, the thermal stability and PL emission property could be adjusted, e.g., 
improved thermal stability and enhanced PL emission intensity with concentration. 
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The novel selenium-containing maleimide monomer MSM was successfully copolymerized with
St through RAFT copolymerization at 70 ◦C using CPDN as the chain transfer agent and AIBN as
the initiator. The feature of the controlled copolymerization was proven by the linear kinetic plots,
controlled molecular weight and narrow molecular weight distribution of the copolymer. The structure
of the obtained copolymer could be modified by eliminating phenylselenide under oxidative condition.
This strategy provides a new method to prepare copolymers with selenide functional groups available
for carbon-carbon double bonds formation in the backbone of a copolymer. By such structural
modification, the thermal stability and PL emission property could be adjusted, e.g., improved thermal
stability and enhanced PL emission intensity with concentration.
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