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Abstract: The aim of this work is the preparation of contact active antimicrobial films by blending 

copolymers with quaternary ammonium salts and polyacrylonitrile as matrix material. A series of 

copolymers based on acrylonitrile and methacrylic monomers with quaternizable groups were 

designed with the purpose of investigating the influence of their chemical and structural 

characteristics on the antimicrobial activity of these surfaces. The biocide activity of these systems 

was studied against different microorganisms, such as the Gram-positive bacteria Staphylococcus 

aureus and the Gram-negative bacteria Pseudomona aeruginosa and the yeast Candida parapsilosis. The 

results confirmed that parameters such as flexibility and polarity of the antimicrobial polymers 

immobilized on the surfaces strongly affect the efficiency against microorganisms. In contrast to the 

behavior of copolymers in water solution, when they are tethered to the surface, the active cationic 

groups are less accessible and then, the mobility of the side chain is critical for a good contact with 

the microorganism. Blend films composed of copolymers with high positive charge density and 

chain mobility present up to a more than 99.999% killing efficiency against the studied 

microorganisms.  

Keywords: cationic polymers; blends; surfaces; antimicrobial 

 

1. Introduction 

Microbial adhesion and proliferation onto surfaces of medical devices or common items often 

leads to the spread of bacterial infections by contact, which is especially critical in hospitalized 

patients. According to the Centers for Disease Control and Prevention (CDC) approximately one of 

every 25 hospitalized patients in the U.S. develops a ‘healthcare-acquired’ infection [1], whereas one 

in 18 patients become infected in Europe, as stated by the European Centre for Disease Prevention 

and Control (ECDC) [2]. The most serious infections are surgical site infections and those associated 

with indwelling devices such as catheter-associated urinary tract infections. Therefore, the 

development of strategies to prevent or eliminate bacterial contamination on material surfaces is 

urgently required and has attained much interest over last years. Impregnating the surfaces with 

antimicrobial agents provides the potential to reduce bacterial contamination and limit the 

transmission of diseases. Self-disinfecting surfaces have been obtained by incorporating of a variety 

of antimicrobial agent including antibiotics, silver and copper compounds, light active species, 

alongside antimicrobial polymers [3,4]. Antimicrobial polymers offer some advantages over the rest 

of the existing biocides and have become increasingly important as a potential alternative. 
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Antimicrobial polymers are in general highly active, with low potential of building up resistance 

and reduced toxicity [5]. Additionally, they have gained importance for the fabrication of contact 

active antimicrobial surfaces, which exert kill actions without releasing biocides and reducing the 

toxicity [6]. The antimicrobial polymers can be physically incorporated onto the surfaces and due to 

their high molecular weight and low diffusion coefficient, their leaching out of the surfaces is limited 

[7,8]. Alternatively, the polymers can be covalently anchored to the surfaces, which in most of the 

cases do not entail losing their biological activity [9,10]. In recent years, a variety of antimicrobial 

polymeric systems have been investigated including quaternary ammonium compounds, polymeric 

quaternary phosphonium salts, guanidine containing polymers and halogen polymers (i.e., 

N-halamines) among others [11,12]. Most of the studied systems are polycations, in particular those 

with quaternary nitrogen atoms [13,14]. Although their mechanism of action is not fully understood, 

these polycationic structures interact electrostatically with the negative charged bacterial membrane, 

causing disruption of the wall and the posterior death of the microorganism. Many investigations 

have been focused on discussing the optimal chemical structure and the factors affecting the 

antimicrobial activity of these cationic polymers such as the hydrophobic/hydrophilic balance, the 

charge density, the length of the alkyl chain as well as molecular weight of the polymers [15,16]. 

However, most of these studies imply analyses in solution rather than on surfaces. When the 

polymer is attached onto a surfaces its mobility can be reduced and the accessibility of the active 

groups limited. 

Herein, we systematically study the influence of polymer chemical structure on the 

antimicrobial activity of polymeric films. For this purpose, we prepared films of blends, consisting of 

a series of cationic copolymers physically blended with polyacrylonitrile (PAN). Polyacrylonitrile 

was selected as model material with excellent properties such as thermal and UV stability, chemical 

resistance, high strength and modulus of elasticity, that make it a desired material for a variety of 

biomedical uses, such as protein filtration and hemodialysis membranes [17]. As antimicrobial 

copolymer incorporated to PAN, we employ a series of methacrylic copolymers bearing two cationic 

groups per monomeric units previously designed and synthesized by our group [18]. These 

structures are based on monomeric units with 1,3-thiazolium and 1,2,3-triazolium side-chain groups 

(MTA#), which demonstrated broad spectrum of antimicrobial activity in solution against 

Gram-negative and Gram-positive bacteria and fungi. In this series of copolymers, it was varied 

several structural and chemical parameters with the aim of investigating their influence on the 

antimicrobial activity when there are on a surface. In particular, these copolymers were obtained by 

copolymerization of MTA# units and acrylonitrile monomer, varying the final chemical 

composition, that is, the hydrophobic/hydrophilic balance. In addition, several MTA# monomers 

were employed in the copolymerization, in which positive charge density, the length of the side 

chain, its flexibility and polarity were also varied. 

2. Experimental Part 

2.1. Materials 

Several P(ANx-co-MTA#y-Bu) statistical copolymers quaternized with butyl iodide were 

synthesized as previously reported by our group (see Figure 1) [18,19]. Polyacrylonitrile (PAN, Mn = 

150 kDa) was supplied by Sigma Aldrich (Saint-Quentin-Fallavier, France) and was used without 

previous purification. N,N-dimethylformamide (DMF, 99.8%) provided by Alfa-Aesar (Karlsrue, 

Germany) and ethanol (EtOH, 99.9%) from Scharlau Chemie (Munich, Germany) were used as 

received. Sodium chloride (NaCl, 0.9%, BioXtra, suitable for cell cultures, Saint-Quentin-Fallavier, 

France), saline phosphate buffered saline (PBS, pH 7.4) and formalin (10%, neutral buffer) were 

purchased from Aldrich (Saint-Quentin-Fallavier, France) and used directly. 

For the microbiological assays: Sheep blood (5%) Columbia Agar plates were purchased from 

bioMérieux (Madrid, Spain) and BBLTM Mueller Hinton broth was purchased from Becton, Dickinson 

and Company (Madrid, Spain) and was used as a microbial growth media. American Type Culture 

Collection (ATCC): Gram-negative Pseudomonas aeruginosa (P. aeruginosa, ATCC 27853) and 
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Gram-positive Staphylococcus aureus (S. aureus, ATCC 29213) bacteria and Candida parapsilosis (C. 

parapsilosis, ATCC 22019) yeast were obtained from OxoidTM (Madrid, Spain). Microorganisms were 

incubated for 24 h for bacteria and 48 h for yeast at 37 °C in a Jouan IQ050 (Winchester, VA, USA) 

incubator. The optical density of the microorganism suspensions was measured in McFarland units 

proportional to microorganism concentration by a DensiCHEK™ Plus (VITEK, bioMérieux, Madrid, 

Spain). 

 

Figure 1. Quaternized copolymers of acrylonitrile and MTA# monomers. 

2.2. Antimicrobial Films Preparation and Characterization 

The films were prepared by casting process from polymer blend solutions in DMF at a final 

polymer concentration of 10 wt %. These solutions were prepared by dissolving PAN and the 

corresponding quaternized copolymer P(ANx-co-MTA#y-Bu) in a PAN/copolymer ratio of 70/30 by 

weight. Each solution was filtered through a fiberglass filter (Symta, Madrid, Spain) with a pore 

diameter of 3.1 μm and then, spread in a flat Petri dish. The solvent was first eliminated at room 

temperature, followed by a heating treatment at 50 °C for 18 h in an oven and finally dried under 

vacuum until constant weight.  

The obtained films were characterized by contact angle measurements performed in a KSV 

Theta goniometer. The volume of the droplets was controlled to be 3.0 μL and the images of the 

water droplets were capture with a charge coupled device camera for the determination of the 

contact angle values. The morphology of the surfaces was analyzed by scanning electron microscopy 

(SEM) in Philips XL30 microscope (Eindhoven, The Netherlands) with an acceleration voltage of 25 

kV. The samples were pre-coated with gold-palladium (80/20). 

2.3. Evaluation of Antimicrobial Activity of the Films 

Antimicrobial activity of blend films was determined following the E2149-01 standard method 

of the American Society for Testing and Materials (ASTM) [20] against P. aeruginosa, S. aureus and C. 

parapsilosis. Initially, the microbial strains were grown on 5% sheep blood Columbia agar plates, 

dispersed, and adjusted to a turbidity equivalent to 0.5 McFarland standards (~108 colony-forming 

units per mL, CFU/mL) with sterile saline solution. Subsequently, the working bacterial suspension 

(~5 × 105 CFU/mL) was obtained by 200-fold dilution with phosphate buffered saline. Films were 

previously sterilized by washing with ethanol and exposure to UV radiation during 30 min. Then, 

each sample was introduced in a sterile falcon tube and 10 mL of inoculum with ~5 × 105 CFU/mL 

were added. Falcon tubes with only the inoculum and PAN film without the copolymers were also 

prepared as control experiments. All samples were shaken at ambient temperature at 150 rpm for 24 

h. Bacterial concentrations at time 0 and after 24 h were calculated by the plate count method 

performing 1:10 serial dilutions, followed by the drop plate technique. Three films of each sample 
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were evaluated and plated them by duplicate. The percentage reduction was estimated from the 

average of the results. 

2.4. Characterization of Microorganisms after Exposure to the Antimicrobial Surface by SEM  

Microbial strains (P. aeruginosa, S. aureus and C. parapsilosis) were cultured in a similar protocol 

as antimicrobial measurements. The microorganism suspensions, ~5 × 105 CFU mL−1, were treated 

with the films blend and incubated for 24 h (48 h for C. parapsilosis). After incubation, the microbes 

were fixed on amorphous carbon-coated copper grids with 10% formalin solution for 60 min at 

room temperature. Subsequently, the grids were washed twice with PBS and water, and finally 

dried for 10 min with ethanol/water mixtures increasing sequentially the ethanol content from 30 to 

50, 70 and 100%. The dehydrated samples were dried at room temperature, and imaged with field 

emission scanning electron microscopy (FE-SEM) Hitachi SU 8000 from Hitachi High-Technologies 

(Tokyo, Japan) at 30 kV.  

The adherent microorganisms (S. aureus bacteria) were also visualized by FE-SEM. Films were 

incubated with bacterial suspension (~5 × 105 CFU mL−1) for 2 h, then the surfaces were carefully 

rinsed several times with PBS, and the bacteria were fixed using the previous protocol described. 

The micrographs of the films were recorded by FE-SEM with a Hitachi SU 8000 at 30 kV. 

3. Results and Discussion 

3.1. Antimicrobial Copolymer Design and Film Preparation 

Several statistical copolymer systems were investigated as antimicrobial agents to modify 

polymeric surfaces (Figure 1). The copolymers consist of acrylonitrile (AN) units statistically 

copolymerized until complete conversion by radical copolymerization with different methacrylic 

monomers containing 1,3-thiazole pendant groups, MTA#, in which the final copolymer 

composition was varied, with mole fractions of AN in the copolymer, fAN: 0.2, 0.4, 0.6 and 0.8. The 

copolymers presented molecular weights between 21,000 to 135,000 g/mol as determined by size 

exclusion chromatography (SEC) [18]. 

Several antimicrobial monomer structures (MTA#) were designed and selected in order to 

study the influence of different structural parameters on the antimicrobial activity, on one hand the 

length and flexibility of the side chain, secondly its polarity and, on the three hand, the 

incorporation of additional antimicrobial functionality in further quaternization reaction, 

1,3-thiazole and 1,2,3-triazole moieties. The positive charge and the hydrophobic/hydrophilic 

balance are fundamental aspects affecting the antimicrobial activity of polymers in solution. In the 

particular case of antimicrobial films, the behavior of the antimicrobial polymer might vary 

significantly as the chains are attached onto the surface and the mobility might be partially 

impeded. Then, in addition to the positive charge, the structure of the side chain, in terms of 

polarity and mobility, is expected to be crucial. Regarding the positive charge, the MTA1 and MTA2 

units only bear thiazole functionality whereas MTA3, MTA4, MTA5 and MTA6 contain also a 

triazole group, thus two groups per monomer susceptible of quaternization. Also, it was studied 

the influence of the MTA# comonomer composition on the antimicrobial activity, that is the 

hydrophilic/hydrophobic balances. Thereby, several compositions were prepared for each system, 

varying the fAN. As above mentioned, in addition to the charge density and the 

hydrophobic/hydrophilic balance, the flexibility of the side chain, the length of the side chain was 

varied; MTA2 with a long side chain of ethyl succinate, showed higher flexibility than MTA1 

leading polymers with lower glass transition temperature (Tg) [21]. The flexibility of the side chain 

was also varied in polymers bearing both functional groups, MTA3, MTA4, MTA5 and MTA6 in 

which the length of the lateral chain was also systematically changed. In the copolymers MTA3, 

MTA4 and MTA5 the side chain incorporates alkyl group, methyl, butyl and nonyl, respectively; 

whereas the MTA6 contains a succinate group, which is a more polar group. Finally, all the 

copolymers were quaternized with butyl iodide to obtain the polycationic and antimicrobial 

systems. Table 1 summarizes the Tg of all the copolymers studied in this work.  
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Table 1. Chemical composition of the antimicrobial copolymers used in the blends with PAN, their 

glass transition temperatures (Tg), and the static water contact angles (θ). 

Copolymer in the Blend fAN Tg (°C) a θ (°) 

P(ANx-co-MTA1y-Bu) 

0.2 48 69 ± 3 

0.4 52 67 ± 2 

0.6 60 67 ± 2 

0.8 69 65 ± 1 

P(ANx-co-MTA2y-Bu) 

0.2 10 66 ± 3 

0.4 12 64 ± 3 

0.6 22 65 ± 2 

0.8 32 61 ± 2 

P(ANx-co-MTA3y-Bu) 

0.2 61 64 ± 2 

0.4 63 63 ± 2 

0.6 71 70 ± 4 

0.8 74 62 ± 3 

P(ANx-co-MTA4y-Bu) 

0.2 25 79 ± 3 

0.4 29 75 ± 3 

0.6 44 72 ± 3 

0.8 55 70 ± 3 

P(ANx-co-MTA5y-Bu) 

0.2 -7 73 ± 2 

0.4 0 70 ± 3 

0.6 8 78 ± 3 

0.8 25 75 ± 3 

P(ANx-co-MTA6y-Bu) 

0.2 20 60 ± 2 

0.4 23 69 ± 3 

0.6 32 65 ± 2 

0.8 45 65 ± 2 
a Data obtained from reference [21].  

From all these statistical copolymers, blend films were prepared by a casting process by 

dissolving PAN and the corresponding quaternized copolymer P(ANx-co-MTA#y-Bu) in DMF at a 

final concentration of 10 wt %. The ratio between PAN and copolymers was fixed to 70/30 by weight. 

Once the solvent was evaporated at room temperature, the films were further dried at 50 °C and the 

complete solvent removal was checked on each film by ATR-FTIR spectroscopy.  

All the obtained films were optically transparent and their homogeneity were further analyzed 

by SEM. Figure 2 shows as examples, the SEM images of films containing P(AN0.6-co-MTA10.4-Bu), 

P(AN0.6-co-MTA40.4-Bu) and P(AN0.6-co-MTA60.4-Bu) copolymers. It is clearly observed that the 

surfaces are homogeneous and smooth with only few irregularities such as some pores, which 

demonstrated that the incorporation of the copolymers did not alter the topography of the PAN. 

 

Figure 2. SEM images of the films containing the copolymers: (a) P(AN0.6-co-MTA10.4-Bu),  

(b) P(AN0.6-co-MTA40.4-Bu) and (c) P(AN0.6-co-MTA60.4-Bu). 

a) b) c)
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The surface wettability can give information of the surface functionality of the obtained films. 

Water contact angle values of the films are also collected in Table 1, while the contact angle for the 

PAN film was found to be 79 ± 3, close to those reported in the literature [22]. The θ values of the 

blends containing the copolymers slightly decrease as a result of the incorporation of the cationic 

copolymers. Remarkably, higher contact angles are found for the blends containing the copolymers 

P(ANx-co-MTA4y-Bu) and P(ANx-co-MTA5y-Bu), which is expected as these copolymers bear long 

alkyl side chains, butyl and nonyl, respectively. When chemical composition of the copolymer is 

varied for each series, only small differences were appreciated, with a reduction of the contact angle 

as the content of MTA# diminished in the copolymers, that is higher fAN values.  

3.2. Evaluation of the Antimicrobial Activity of the Blend Films 

Next, the antimicrobial activity of the prepared films containing the different series of 

antimicrobial copolymers was tested against Gram-negative P. aeruginosa, Gram-positive S. aureus 

bacteria and C. parapsilosis yeast after 24 and 48 h of incubation, respectively. It has to be mentioned 

that the copolymers were not directly water soluble, and then any possible leaching out of the film 

is avoided. Figure 3 summarizes the cell-killing percentage for each microorganisms expressed with 

respect to control experiments in which the bacterial reduction was null (experiments done on films 

prepared from exclusively PAN, and without any films).  

It is worthy to remark that the films containing the P(ANx-co-MTA#y-Bu) copolymers 

practically did not present activity against Gram-negative bacteria. Previous investigations of these 

copolymers in aqueous-DMSO media reveal, in general, high activity against both Gram-positive and 

Gram-negative bacteria and against C. parapsilosis, showing broad spectrum activity [18]. In contrast, 

when the copolymers are immobilized on the films the activity against Gram-negative bacteria is 

significantly reduced, meaning that a stronger and closer interaction between the polymer chain and 

the bacterial membrane is necessary to kill Gram-negative bacteria with a double membrane. 

Therefore, it seems that the mobility of the copolymers is crucial for the bactericidal behavior of these 

series of copolymers. However, the films show acceptable activity against Gram-positive S. aureus 

bacterium and C. parapsilosis yeast, with the exception of samples containing P(ANx-co-MTA1y-Bu), 

P(ANx-co-MTA2y-Bu) and P(ANx-co-MTA3y-Bu) copolymers that exhibit low activity against S. aureus 

bacteria. The P(ANx-co-MTA1y-Bu) and P(ANx-co-MTA2y-Bu) copolymers contain monomeric units 

with only thiazolium moieties, thereby with lower cationic charge density in comparison with the rest 

of the structures that contains an addition triazolium group. Therefore, in principle, an apparently 

high charge density is required to achieve good antibacterial activity in such polymer films with 

relatively low content of antimicrobial copolymer related to the PAN homopolymer, 30/70. However, 

the copolymer P(ANx-co-MTA3y-Bu) bears thiazolium and triazolium groups in its structures, thus 

high charge density but still showed low activity.  

Contrary, in solution all these copolymers demonstrated considerable efficacy against all the 

microorganisms, suggesting that when the copolymer is embed in the films the active thiazolium 

and/or triazolium groups might be less accessible. Then, although the charge density should be 

important, the cationic groups have to be available to contact with the microorganisms. Therefore, 

the flexibility and the polarity of the side chain are expected to be decisive parameters in the 

antimicrobial activity. In effect, as the length of the alkyl chain augments, with butyl and nonyl as 

alkyl group spacer, for the P(ANx-co-MTA4y-Bu) and P(ANx-co-MTA5y-Bu) copolymers, respectively, 

the cell-killing percentage remarkably increases, up to more than 99.999% killing efficiency in some 

cases. However, no significant differences can be observed when comparing both systems, with 

butyl and nonyl. This can be explained by the fact that as the alkyl group is longer and more 

flexible, the hydrophobicity of the chains is also higher, which can provoke the constriction of the 

chain and disfavor its accessibility. Indeed, the copolymer P(ANx-co-MTA6y-Bu) with a long side 

chain of succinate, a more polar group, exhibits excellent antimicrobial activity against S. aureus 

bacteria and C. parapsilosis yeast for all the copolymer compositions, and relatively acceptable 

against Gram-negative P. aeruginosa bacteria. This copolymer may present a good balance between 

flexibility and polarity, thus their active cationic groups are available for killing contact.  



Polymers 2018, 10, 241 7 of 11 

 

 

Figure 3. Cell-killing percentage of the contact active films for P. aeruginosa, S. aureus and C. 

parapsilosis microorganisms. 
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The composition of the copolymer is another parameter that might influence the antimicrobial 

activity of the copolymer. In principle, copolymer with large content of antimicrobial copolymer, 

low fAN, would exhibit better antimicrobial activity as the content of cationic group is higher and 

their Tg lower. However, it can be observed from the data that intermediate compositions showed 

better performances, which demonstrates that the hydrophobic/hydrophilic balance of the 

copolymer is also important in the interaction with the bacterial membrane as previously reported in 

many studies [15,23,24].  

In summary, for antimicrobial polymers immobilized on surfaces the flexibility and polarity of 

the side chain are crucial parameters for enhancing the accessibility of the active cationic groups. In 

addition, an intermediate copolymer composition with adequate hydrophobic/hydrophilic balance 

is desired for a good antimicrobial activity of the copolymer attached onto surfaces.  

3.3. Evaluation of the Morphological Changes of Microbes 

The morphological changes of microorganisms, S. aureus, P. aeruginosa and C. parapsilosis, after 

incubation with the antimicrobial films during 24 h (48 h for C. parapsilosis) were observed by Field 

Emission Scanning Electron Microscopy (FE-SEM) as shown in Figure 4. In particular, the 

micrographs show the results with the films containing the copolymer P(AN0.6-co-MTA40.4-Bu). 

Control experiments were also carried out, in which the microbes were incubated onto films 

obtained from exclusively PAN solutions. It is clearly observed that the morphology of the cells 

incubated with the antimicrobial films significantly changed with respect to the cells incubated onto 

control PAN films as observed in other studies [25]. The shape of all studied microorganisms 

becomes more expanded and irregular. The microbes tend to be stuck together and in some cases, 

especially in Gram-positive S. aureus bacteria (Figure 4d), membrane-fusion events took place. The 

cell membranes of the C. parapsilosis yeast (Figure 4f) also present damaged structure in which the 

intracellular material leaked out from the cells. In the case of the Gram-negative P. aeruginosa 

bacteria, although the damage seems less accused, the bacterial cell membrane was also distorted 

(Figure 4e).  

 

Figure 4. FE-SEM images of: (a,d) S. aureus; (b,e) P. aeruginosa; and (c,f) C. parapsilosis after incubation 

for 24 h (48 h for C. parapsilosis) on control films of PAN (a–c) and on films of the blend 

PAN/P(AN0.6-co-MTA40.4-Bu) (d–f).  
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Therefore, these results demonstrated that the mechanism of action of these antimicrobial 

surfaces is by cell membrane disrupting due to hydrophobic interactions and electrostatic interactions 

between the negatively charged cell walls and the positively charged copolymers [26–29]. 

Figure 5 shows low magnification FE-SEM micrographs of the film surfaces obtained from PAN 

and from the blend of PAN and P(AN0.6-co-MTA40.4-Bu) after incubation with S. aureus bacteria 

during 2 h. It is clearly observed a significant reduction in the bacterial population in comparison 

with the control film, made from PAN without antimicrobial copolymer. 

 

(a) (b) 

Figure 5. FE-SEM images of S. aureus on PAN films (a) in the absence and (b) in the presence of the 

antimicrobial copolymer P(AN0.6-co-MTA40.4-Bu) after 2 h of contact.  

4. Conclusions 

In this work, contact active antimicrobial films were prepared by simple blending process 

incorporating cationic copolymers into polyacrylonitrile matrix, a polymeric material extensively 

used in biomedical applications. A series of cationic copolymers with high charge density was 

selected to investigate systematically the influence of the macromolecular structure on the biocidal 

efficiency, when the cationic polymers are tethered on a surface rather than in solution. The results 

showed that the films presented low activity against Gram-negative P. aeruginosa bacteria, in 

contrast to the data obtained in solution in which the cationic polymers were highly efficient. 

Besides, it was demonstrated that the macromolecular structure of the cationic polymers strongly 

affects the biocidal activity of the blend films, in addition to the influence of chemical composition 

and positive charge density. Remarkably, films composed of copolymers with high chain mobility 

exhibit better cell killing efficiency, more than 99.999%. Thus, we can conclude that when cationic 

polymers are enclosed on surface, parameters such as the length, flexibility and polarity of the side 

chain are crucial to enhance the accessibility of the active groups for killing the microorganisms by 

surface contact.  
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