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Abstract: Natural products have been believed to be a promising source to obtain ecological dyes and
pigments. Plant polyphenol is a kind of significant natural compound, and tea provides a rich source
of polyphenols. In this study, biocolorant derived from phenolic compounds was generated based on
laccase-catalyzed oxidative polymerization, and eco-dyeing of silk and wool fabrics with pigments
derived from tea was investigated under the influence of pH variation. This work demonstrated
that the dyeing property was better under acidic conditions compared to alkalinity, and fixation rate
was the best when pH value was 3. Furthermore, breaking strength of dyed fabrics sharply reduced
under the condition of pH 11. Eventually, the dyeing method was an eco-friendly process, which was
based on bioconversion, and no mordant was added during the process of dyeing.
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1. Introduction

With the consumer’s enhanced awareness of eco-safety, widespread interest has emerged in
the application of sustainable and eco-friendly materials [1–3]. In the textile industry, a constantly
increasing interest in biomass pigments has been aroused in recent years [4–6], which has been regarded
as an ecological, as well as sustainable dyeing technology to address environmental contamination
issues caused by the application of synthetic dyestuffs [6–10].

With the ever-increasing demand of biomass colorants [11], several methods have been
made to prepare biomass dyestuffs biologically, and to further enhance the content of pigments
over the past few years [12–15]. The most promising is the application of enzyme generated by
microorganism to synthesize biopigment [16–18]. Biosynthesis is green and secure compared to
chemical synthesis [19–22], which could give rise to effective preparation for target product via
biotransformation [12,23].

Considering safety, energy, and water conservation, as well as environmental responsibility,
enzymes are gaining an increasing role in textile wet processing [24], and the textile industry has
become one of the main fields for industrial application of enzymes [25,26]. Moreover, new enzymes
are being introduced to the field of textile processing [27,28].

Laccase is regarded as an ideal biocatalyst to take the place of chemical catalysts, by virtue of
numerous strengths [29,30], such as high catalytic efficiency, mild reaction conditions, as well as
renewability, etc. [31,32]. Accordingly, laccase has been considerably highlighted by many researchers
in recent years. Laccase has strategic significance to address severe environmental pollution issues [33],
and meet the tendency concerning green manufacturing, as well as sustainable development [34].
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In addition, laccase has been employed in biosynthesis of biomass pigments and decolorization of
synthetic dyestuffs in dyeing industry [27,34,35].

Tea polyphenols are the main component in green tea [36], which also is one of typical substrates
for laccase-catalyzed oxidative polymerization [37]. Tea polyphenols would be firstly catalyzed into
quinones [32], which could be transformed into theaflavin, since generated quinones were unstable.
Theaflavin could be converted into theabrownin via non-enzymatic browning reaction through adding
exogenous additive amino acids [38], which could not only further enhance the content of tea pigments,
but also could endow aromatic flavor by dyeing fabrics. Therefore, this technology is able to achieve
the processes of both dyeing and functional finishing [39].

Theaflavin is the major component in black tea (Figure 1a), which is the primary oxidation
product during the process of tea fermentation [40]. Laccase is able to catalyze precursor tea
polyphenols transformed into theaflavin [41], and theaflavin is the mixture. There are four principal
substances in theaflavin (Figure 1b), and the chemical structural formula depends on theaflavin
(TF), theaflavin-3-gallate (TF-3-G), theaflavin-3′-gallate (TF-3′-G), as well as theaflavin-3,3′-gallate
(TF-3,3′-G) [42].
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In this study, biocolorant prepared from phenolic compound was achieved, and dyeing of silk
and wool fabrics with pigment derived from tea polyphenols was investigated under the influence of
pH variation. Accordingly, a novel dyeing method based on pH-induced fixation was established for
protein textiles.

2. Materials and Methods

2.1. Materials

Food-grade colorless tea polyphenols were purchased from Liyuan Food Additives Limited
Company of Guangzhou in Guangdong Province of China, which were treated by decolorization
processing, and the content of effective substance was 99%.

The wool fabric (warp density 86 yarns per inch, weft density 51 yarns per inch; weight 132.0 g/m2)
was purchased from Jiangsu Huaxi Spinning Limited Company (Suzhou, China). The silk fabric (warp
density 325 yarns per inch, weft density 34 yarns per inch; weight 75.0 g/m2) was bought from FING
SILK Limited Company (Hangzhou, China).

Both citric acid and disodium hydrogen phosphate were analytical reagents, and purchased
from Tianjin Comio Chemical Reagent Co., Ltd. (Tianjin, China). Laccase (EC1.10.3.2) Denilite II S
was bought from Novozymes Corporation (Beijing, China), which was prepared from Aspergillus
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through utilizing submerged fermentation, and the standard enzyme activity was 120 LAMU/g
(LAMU= Laccase Units of Modified Aspergillus).

2.2. Preparation of Biopigment with Laccase

Tea polyphenols (5 g) were added to a buffer solution containing both 0.1 M citric acid and 0.2 M
disodium hydrogen phosphate, and the pH value was adjusted to 4.5. Then, 1.0 g (120 LAMU) laccase
was placed in that, and volume adjusted to 500 mL. Eventually, all shake flasks were cultivated in an
incubator shaker (Shanghai Zhicheng Analytical Instrument Limited Company, Shanghai, China) at
60 ◦C and 180 rpm.

2.3. Dyeing Procedure

Dyeing of Protein Fabric under Different pH

The pH value of theaflavin, based on laccase-catalyzed oxidative polymerization for tea
polyphenols, was adjusted to 3, 5, 7, 9, as well as 11, respectively, and then silk and wool fabrics were
placed in dyeing tanks according to liquor ratio 1:50. Dyeing experiment was carried out in an infrared
dyeing equipment (Data color corporation, State of New jersey, USA). The dyeing temperature was
100 ◦C and soaking time was 60 min, which started from indoor temperature 30 ◦C with a heating rate
of 3 ◦C/min. At the end of dyeing process, dyed fabrics were washed under running water, and also,
were carried out via employing 2 g/L neutral soap flakes at 80 ◦C for 10 min to wash away residual
uncombined pigment from fabrics. After soaping, fabrics were washed with water at 80 ◦C twice,
and washed under running water, followed by drying in a drying oven.

2.4. Measurements

2.4.1. Color Characteristics

The CIE L*, a*, b*, C*, h, and Integ values, were measured by employing Data color
600 spectrophotometer (Data color corporation, NJ, USA) under photosource D65, 10◦ visual angle.
The measured results were an averaged value from four different locations. The Integ value could be
calculated according to the following Equation (1):

Integ = F(X) + F(Y) + F(Z) (1)

where F(X), F(Y) as well as F(Z) are pseudo tristimulus values.

2.4.2. Color Fastness

The rubbing, soaping, as well as light fastness of dyed fabrics were measured on the basis of ISO
105-C01, ISO 105-X12, as well as ISO 105-B02, respectively.

2.4.3. Breaking Strength

The breaking strength of dyed protein fabrics was measured by the YG065 electronic fabric
strength tester (Changzhou No. 1 Textile Equipment Co. Limited, Changzhou, China) according to
GB/T 3923.1-2013: Textiles-Tensile properties of fabrics—Part1. The length and width were 100 mm
and 25 mm, respectively, and the tensile velocity was 100 mm/min.

3. Results and Discussion

3.1. Bioconversion of Tea Polyphenols into Dyestuffs

The biotransformation process between tea polyphenols and tea pigment was shown in
Figure 2a. The content of tea polyphenols declined with reaction time both enzymatic oxidation
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and non-enzymatic oxidation on the whole. The content of tea polyphenols reduced to a great degree
from 12 to 24 h, and the reduction rate of tea polyphenols by non-enzymatic oxidation was 46.30%,
and the reduction rate with laccase was 77.99%, and enhanced 41.69% compared to non-enzymatic
oxidation during the first 24 h. It could be declared that enzyme activity of laccase reached the
maximum, and precursor tea polyphenols could be transformed into theaflavin. The concentration of
both tea polyphenols and theaflavin tended to conformity, with the conversion process between the
two sides.

The content of theaflavin increased with reaction time as a whole both enzymatic oxidation and
non-enzymatic oxidation (Figure 2b). The content of theaflavin increased obviously from 0 to 24 h,
and the increasing rate of theaflavin was 74.75% with non-enzymatic oxidation, and it was 94.22%
with laccase, during the first 24 h. It could be made clear that tea polyphenols were converted to
theaflavin via laccase-catalyzed oxidative polymerization. Theaflavin could be involved in subsequent
reactions, and could regenerate into catechin [41,43]. Therefore, the content of theaflavin declined
sharply 24 h later. However, the content of theaflavin based on non-enzymatic oxidation increased
constantly with reaction time. Accordingly, the process of enzymatic oxidation played a leading role
during the whole process.
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Figure 2. (a) Relationship between concentration of tea polyphenols and time; (b) Relationship between
concentration of theaflavin and time.

Catechin is the major component in tea polyphenols, which could be firstly catalyzed into
active free radicals, and then transformed into quinone intermediates promptly, since free radicals
are considerably unstable [29]. Quinone intermediates could carry out subsequent polymerization
reactions by means of high reaction activity (Figure 3) [38,40], and catechin monomer connected
mutually in the form of ether bonds in the structure of reaction product, polycatechin [32].

Tea polyphenols possessed weak-acid properties, since phenolic hydroxyl groups could ionize
hydrogen ions in aqueous solution. The pH value of reaction solution presented increase at the early
stage, and then decreased both in enzymatic oxidation and non-enzymatic oxidation (Figure 4a).
The pH value of reaction liquid achieved the maximum at 24 h, based on laccase-catalyzed oxidative
polymerization, and then reduced over the next few hours. The possible reason was that theaflavin
could be regenerated into catechin by both enzymatic oxidation and non-enzymatic oxidation.

The conductivity of reaction solution presented a decrease at first, and then increased in both
enzymatic oxidation and non-enzymatic oxidation (Figure 4b). The phenolic hydroxyl groups in
tea polyphenols could ionize hydrogen ion sin aqueous solution, and could firstly be formed into
active free radicals, and then transformed into quinone intermediates promptly, because free radicals
were considerably unstable. Therefore, the conductivity of reaction solution would be firstly reduced.
Quinones would be converted to theaflavin firstly, and then further transformed into thearubigins
and even theabrownin via oxidative polymerization during subsequent reactions [38]. Accordingly,
the conductivity of reaction solution would be increased steadily over the upcoming few hours.
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3.2. Dyeing of Protein Fabric with Tea Biomass Pigments

The apparent color and color parameters of dyed silk fabrics were shown in Tables 1 and 2.
The Integ value was the maximum under the condition of pH 3, and all of the values Integ, a*, b*,
and C* were positive, and decreased with the increase of pH value. It could be explained that the
colored lights both red and yellow, as well as saturability of dyed fabrics, were reduced.

The Integ value of dyed silk fabrics decreased with the increase of pH value in reaction solution
from acidity to alkalinity, in both enzymatic oxidation and non-enzymatic oxidation, and the Integ value
with laccase was greater compared to the control (Figure 5). In addition, the Integ value of dyed silk
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fabrics was the maximum when dye bath pH was 3. It was declared that theaflavin was relatively steady
under acidic conditions, and could be converted to macromolecular thearubigins and even theabrownin
through oxidative polymerization under the condition of alkalinity. Micromolecular theaflavin could
diffuse into silk fabric, while macromolecular thearubigins and even theabrownin could not penetrate
into that, since the structure of silk was relatively tight compared to wool fabric.
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Table 2. The color parameters of dyed silk fabrics based on laccase-catalyzed oxidative polymerization
for tea polyphenols.
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The breaking strength of dyed silk fabrics reduced dramatically when dye bath pH was 11,
and tensile breaking force dyed by TP + laccase was greater compared to the control (Figure 6). It could
be explained that silk did not have alkali-resistance properties, and would hydrolyze to amino acids
under alkaline conditions. Therefore, the binding forces between the molecules would be destroyed.
Additionally, the van der Waals force of TP + laccase was bigger than the counterpart, possibly since
the molecular weight of tea pigments was relatively large.
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Figure 6. Effect of pH value on breaking strength of dyed silk fabrics.

It was obvious that the color strength of dyed wool fabrics was the maximum when pH value
was 3 according to Tables 3 and 4, and the L* value of dyed fabrics was increased with the increase of
pH value. Moreover, the hue angle h value of dyed wool was less than 90 degrees, and the color of
dyed fabrics presented yellowish-brown, accordingly. On another level, the effect of pH value on color
was related to the optimal pH of laccase.

The Integ value of dyed wool fabrics with non-enzymatic oxidation was greater compared to their
counterpart under acidic conditions. However, experimental results indicated that conclusion was
contrary compared to acidic conditions (Figure 7). The major component of tea pigments in reaction
solution was micromolecular theaflavin under acidic conditions. Therefore, theaflavin could easily
diffuse into wool fabric under relatively high temperature conditions, and the content of theaflavin in
dye liquor with non-enzymatic oxidation was even higher than that. Additionally, theaflavin could be
transformed into macromolecular thearubigins, and even theabrownin, under neutral and alkaline
conditions (Figure 8) [39], under which it was hard to penetrate into wool fabric. Hence, the Integ
value of dyed wool fabrics was lower compared to acidic conditions.

Table 3. The color parameters of dyed wool fabrics with tea polyphenols.

Dye Liquor pH Undyed Wool 3 5 7 9 11

Apparent color

Polymers 2018, 10, 196  7 of 13 

 

The breaking strength of dyed silk fabrics reduced dramatically when dye bath pH was 11, and 
tensile breaking force dyed by TP + laccase was greater compared to the control (Figure 6). It could 
be explained that silk did not have alkali-resistance properties, and would hydrolyze to amino acids 
under alkaline conditions. Therefore, the binding forces between the molecules would be destroyed. 
Additionally, the van der Waals force of TP + laccase was bigger than the counterpart, possibly since 
the molecular weight of tea pigments was relatively large. 

 
Figure 6. Effect of pH value on breaking strength of dyed silk fabrics. 

It was obvious that the color strength of dyed wool fabrics was the maximum when pH value 
was 3 according to Tables 3 and 4, and the L* value of dyed fabrics was increased with the increase 
of pH value. Moreover, the hue angle h value of dyed wool was less than 90 degrees, and the color 
of dyed fabrics presented yellowish-brown, accordingly. On another level, the effect of pH value on 
color was related to the optimal pH of laccase. 

The Integ value of dyed wool fabrics with non-enzymatic oxidation was greater compared to 
their counterpart under acidic conditions. However, experimental results indicated that conclusion 
was contrary compared to acidic conditions (Figure 7). The major component of tea pigments in 
reaction solution was micromolecular theaflavin under acidic conditions. Therefore, theaflavin could 
easily diffuse into wool fabric under relatively high temperature conditions, and the content of 
theaflavin in dye liquor with non-enzymatic oxidation was even higher than that. Additionally, 
theaflavin could be transformed into macromolecular thearubigins, and even theabrownin, under 
neutral and alkaline conditions (Figure 8) [39], under which it was hard to penetrate into wool fabric. 
Hence, the Integ value of dyed wool fabrics was lower compared to acidic conditions. 

Table 3. The color parameters of dyed wool fabrics with tea polyphenols. 

Dye Liquor pH Undyed Wool 3 5 7 9 11 

Apparent color 
  

Integ value 0.35 11.73 4.24 2.67 2.52 2.17 
L* 87.85 48.03 62.98 68.15 69.35 70.75 
a* 0.40 10.46 7.79 6.57 6.19 5.78
b* 13.02 27.01 24.39 22.69 21.89 20.61 
C* 13.03 28.96 25.60 23.54 23.18 22.65 
h 91.76 68.84 72.30 73.80 74.74 75.21 

0

20

40

60

80

100

120

140

119753Undyed 

Te
ns

ile
 b

re
ak

in
g 

st
re

ng
th

 (N
) 

pH

 TP
 TP+Laccase

Polymers 2018, 10, 196  7 of 13 

 

The breaking strength of dyed silk fabrics reduced dramatically when dye bath pH was 11, and 
tensile breaking force dyed by TP + laccase was greater compared to the control (Figure 6). It could 
be explained that silk did not have alkali-resistance properties, and would hydrolyze to amino acids 
under alkaline conditions. Therefore, the binding forces between the molecules would be destroyed. 
Additionally, the van der Waals force of TP + laccase was bigger than the counterpart, possibly since 
the molecular weight of tea pigments was relatively large. 

 
Figure 6. Effect of pH value on breaking strength of dyed silk fabrics. 

It was obvious that the color strength of dyed wool fabrics was the maximum when pH value 
was 3 according to Tables 3 and 4, and the L* value of dyed fabrics was increased with the increase 
of pH value. Moreover, the hue angle h value of dyed wool was less than 90 degrees, and the color 
of dyed fabrics presented yellowish-brown, accordingly. On another level, the effect of pH value on 
color was related to the optimal pH of laccase. 

The Integ value of dyed wool fabrics with non-enzymatic oxidation was greater compared to 
their counterpart under acidic conditions. However, experimental results indicated that conclusion 
was contrary compared to acidic conditions (Figure 7). The major component of tea pigments in 
reaction solution was micromolecular theaflavin under acidic conditions. Therefore, theaflavin could 
easily diffuse into wool fabric under relatively high temperature conditions, and the content of 
theaflavin in dye liquor with non-enzymatic oxidation was even higher than that. Additionally, 
theaflavin could be transformed into macromolecular thearubigins, and even theabrownin, under 
neutral and alkaline conditions (Figure 8) [39], under which it was hard to penetrate into wool fabric. 
Hence, the Integ value of dyed wool fabrics was lower compared to acidic conditions. 

Table 3. The color parameters of dyed wool fabrics with tea polyphenols. 

Dye Liquor pH Undyed Wool 3 5 7 9 11 

Apparent color 
  

Integ value 0.35 11.73 4.24 2.67 2.52 2.17 
L* 87.85 48.03 62.98 68.15 69.35 70.75 
a* 0.40 10.46 7.79 6.57 6.19 5.78
b* 13.02 27.01 24.39 22.69 21.89 20.61 
C* 13.03 28.96 25.60 23.54 23.18 22.65 
h 91.76 68.84 72.30 73.80 74.74 75.21 

0

20

40

60

80

100

120

140

119753Undyed 

Te
ns

ile
 b

re
ak

in
g 

st
re

ng
th

 (N
) 

pH

 TP
 TP+Laccase

Polymers 2018, 10, 196  7 of 13 

 

The breaking strength of dyed silk fabrics reduced dramatically when dye bath pH was 11, and 
tensile breaking force dyed by TP + laccase was greater compared to the control (Figure 6). It could 
be explained that silk did not have alkali-resistance properties, and would hydrolyze to amino acids 
under alkaline conditions. Therefore, the binding forces between the molecules would be destroyed. 
Additionally, the van der Waals force of TP + laccase was bigger than the counterpart, possibly since 
the molecular weight of tea pigments was relatively large. 

 
Figure 6. Effect of pH value on breaking strength of dyed silk fabrics. 

It was obvious that the color strength of dyed wool fabrics was the maximum when pH value 
was 3 according to Tables 3 and 4, and the L* value of dyed fabrics was increased with the increase 
of pH value. Moreover, the hue angle h value of dyed wool was less than 90 degrees, and the color 
of dyed fabrics presented yellowish-brown, accordingly. On another level, the effect of pH value on 
color was related to the optimal pH of laccase. 

The Integ value of dyed wool fabrics with non-enzymatic oxidation was greater compared to 
their counterpart under acidic conditions. However, experimental results indicated that conclusion 
was contrary compared to acidic conditions (Figure 7). The major component of tea pigments in 
reaction solution was micromolecular theaflavin under acidic conditions. Therefore, theaflavin could 
easily diffuse into wool fabric under relatively high temperature conditions, and the content of 
theaflavin in dye liquor with non-enzymatic oxidation was even higher than that. Additionally, 
theaflavin could be transformed into macromolecular thearubigins, and even theabrownin, under 
neutral and alkaline conditions (Figure 8) [39], under which it was hard to penetrate into wool fabric. 
Hence, the Integ value of dyed wool fabrics was lower compared to acidic conditions. 

Table 3. The color parameters of dyed wool fabrics with tea polyphenols. 

Dye Liquor pH Undyed Wool 3 5 7 9 11 

Apparent color 
  

Integ value 0.35 11.73 4.24 2.67 2.52 2.17 
L* 87.85 48.03 62.98 68.15 69.35 70.75 
a* 0.40 10.46 7.79 6.57 6.19 5.78
b* 13.02 27.01 24.39 22.69 21.89 20.61 
C* 13.03 28.96 25.60 23.54 23.18 22.65 
h 91.76 68.84 72.30 73.80 74.74 75.21 

0

20

40

60

80

100

120

140

119753Undyed 

Te
ns

ile
 b

re
ak

in
g 

st
re

ng
th

 (N
) 

pH

 TP
 TP+Laccase

Polymers 2018, 10, 196  7 of 13 

 

The breaking strength of dyed silk fabrics reduced dramatically when dye bath pH was 11, and 
tensile breaking force dyed by TP + laccase was greater compared to the control (Figure 6). It could 
be explained that silk did not have alkali-resistance properties, and would hydrolyze to amino acids 
under alkaline conditions. Therefore, the binding forces between the molecules would be destroyed. 
Additionally, the van der Waals force of TP + laccase was bigger than the counterpart, possibly since 
the molecular weight of tea pigments was relatively large. 

 
Figure 6. Effect of pH value on breaking strength of dyed silk fabrics. 

It was obvious that the color strength of dyed wool fabrics was the maximum when pH value 
was 3 according to Tables 3 and 4, and the L* value of dyed fabrics was increased with the increase 
of pH value. Moreover, the hue angle h value of dyed wool was less than 90 degrees, and the color 
of dyed fabrics presented yellowish-brown, accordingly. On another level, the effect of pH value on 
color was related to the optimal pH of laccase. 

The Integ value of dyed wool fabrics with non-enzymatic oxidation was greater compared to 
their counterpart under acidic conditions. However, experimental results indicated that conclusion 
was contrary compared to acidic conditions (Figure 7). The major component of tea pigments in 
reaction solution was micromolecular theaflavin under acidic conditions. Therefore, theaflavin could 
easily diffuse into wool fabric under relatively high temperature conditions, and the content of 
theaflavin in dye liquor with non-enzymatic oxidation was even higher than that. Additionally, 
theaflavin could be transformed into macromolecular thearubigins, and even theabrownin, under 
neutral and alkaline conditions (Figure 8) [39], under which it was hard to penetrate into wool fabric. 
Hence, the Integ value of dyed wool fabrics was lower compared to acidic conditions. 

Table 3. The color parameters of dyed wool fabrics with tea polyphenols. 

Dye Liquor pH Undyed Wool 3 5 7 9 11 

Apparent color 
  

Integ value 0.35 11.73 4.24 2.67 2.52 2.17 
L* 87.85 48.03 62.98 68.15 69.35 70.75 
a* 0.40 10.46 7.79 6.57 6.19 5.78
b* 13.02 27.01 24.39 22.69 21.89 20.61 
C* 13.03 28.96 25.60 23.54 23.18 22.65 
h 91.76 68.84 72.30 73.80 74.74 75.21 

0

20

40

60

80

100

120

140

119753Undyed 

Te
ns

ile
 b

re
ak

in
g 

st
re

ng
th

 (N
) 

pH

 TP
 TP+Laccase

Polymers 2018, 10, 196  7 of 13 

 

The breaking strength of dyed silk fabrics reduced dramatically when dye bath pH was 11, and 
tensile breaking force dyed by TP + laccase was greater compared to the control (Figure 6). It could 
be explained that silk did not have alkali-resistance properties, and would hydrolyze to amino acids 
under alkaline conditions. Therefore, the binding forces between the molecules would be destroyed. 
Additionally, the van der Waals force of TP + laccase was bigger than the counterpart, possibly since 
the molecular weight of tea pigments was relatively large. 

 
Figure 6. Effect of pH value on breaking strength of dyed silk fabrics. 

It was obvious that the color strength of dyed wool fabrics was the maximum when pH value 
was 3 according to Tables 3 and 4, and the L* value of dyed fabrics was increased with the increase 
of pH value. Moreover, the hue angle h value of dyed wool was less than 90 degrees, and the color 
of dyed fabrics presented yellowish-brown, accordingly. On another level, the effect of pH value on 
color was related to the optimal pH of laccase. 

The Integ value of dyed wool fabrics with non-enzymatic oxidation was greater compared to 
their counterpart under acidic conditions. However, experimental results indicated that conclusion 
was contrary compared to acidic conditions (Figure 7). The major component of tea pigments in 
reaction solution was micromolecular theaflavin under acidic conditions. Therefore, theaflavin could 
easily diffuse into wool fabric under relatively high temperature conditions, and the content of 
theaflavin in dye liquor with non-enzymatic oxidation was even higher than that. Additionally, 
theaflavin could be transformed into macromolecular thearubigins, and even theabrownin, under 
neutral and alkaline conditions (Figure 8) [39], under which it was hard to penetrate into wool fabric. 
Hence, the Integ value of dyed wool fabrics was lower compared to acidic conditions. 

Table 3. The color parameters of dyed wool fabrics with tea polyphenols. 

Dye Liquor pH Undyed Wool 3 5 7 9 11 

Apparent color 
  

Integ value 0.35 11.73 4.24 2.67 2.52 2.17 
L* 87.85 48.03 62.98 68.15 69.35 70.75 
a* 0.40 10.46 7.79 6.57 6.19 5.78
b* 13.02 27.01 24.39 22.69 21.89 20.61 
C* 13.03 28.96 25.60 23.54 23.18 22.65 
h 91.76 68.84 72.30 73.80 74.74 75.21 

0

20

40

60

80

100

120

140

119753Undyed 

Te
ns

ile
 b

re
ak

in
g 

st
re

ng
th

 (N
) 

pH

 TP
 TP+Laccase

Polymers 2018, 10, 196  7 of 13 

 

The breaking strength of dyed silk fabrics reduced dramatically when dye bath pH was 11, and 
tensile breaking force dyed by TP + laccase was greater compared to the control (Figure 6). It could 
be explained that silk did not have alkali-resistance properties, and would hydrolyze to amino acids 
under alkaline conditions. Therefore, the binding forces between the molecules would be destroyed. 
Additionally, the van der Waals force of TP + laccase was bigger than the counterpart, possibly since 
the molecular weight of tea pigments was relatively large. 

 
Figure 6. Effect of pH value on breaking strength of dyed silk fabrics. 

It was obvious that the color strength of dyed wool fabrics was the maximum when pH value 
was 3 according to Tables 3 and 4, and the L* value of dyed fabrics was increased with the increase 
of pH value. Moreover, the hue angle h value of dyed wool was less than 90 degrees, and the color 
of dyed fabrics presented yellowish-brown, accordingly. On another level, the effect of pH value on 
color was related to the optimal pH of laccase. 

The Integ value of dyed wool fabrics with non-enzymatic oxidation was greater compared to 
their counterpart under acidic conditions. However, experimental results indicated that conclusion 
was contrary compared to acidic conditions (Figure 7). The major component of tea pigments in 
reaction solution was micromolecular theaflavin under acidic conditions. Therefore, theaflavin could 
easily diffuse into wool fabric under relatively high temperature conditions, and the content of 
theaflavin in dye liquor with non-enzymatic oxidation was even higher than that. Additionally, 
theaflavin could be transformed into macromolecular thearubigins, and even theabrownin, under 
neutral and alkaline conditions (Figure 8) [39], under which it was hard to penetrate into wool fabric. 
Hence, the Integ value of dyed wool fabrics was lower compared to acidic conditions. 

Table 3. The color parameters of dyed wool fabrics with tea polyphenols. 

Dye Liquor pH Undyed Wool 3 5 7 9 11 

Apparent color 
  

Integ value 0.35 11.73 4.24 2.67 2.52 2.17 
L* 87.85 48.03 62.98 68.15 69.35 70.75 
a* 0.40 10.46 7.79 6.57 6.19 5.78
b* 13.02 27.01 24.39 22.69 21.89 20.61 
C* 13.03 28.96 25.60 23.54 23.18 22.65 
h 91.76 68.84 72.30 73.80 74.74 75.21 

0

20

40

60

80

100

120

140

119753Undyed 

Te
ns

ile
 b

re
ak

in
g 

st
re

ng
th

 (N
) 

pH

 TP
 TP+Laccase

Integ value 0.35 11.73 4.24 2.67 2.52 2.17
L* 87.85 48.03 62.98 68.15 69.35 70.75
a* 0.40 10.46 7.79 6.57 6.19 5.78
b* 13.02 27.01 24.39 22.69 21.89 20.61
C* 13.03 28.96 25.60 23.54 23.18 22.65
h 91.76 68.84 72.30 73.80 74.74 75.21



Polymers 2018, 10, 196 8 of 14

Table 4. The color parameters of dyed wool fabrics based on laccase-catalyzed oxidative polymerization
for tea polyphenols.

Dye Liquor pH Undyed Wool 3 5 7 9 11

Apparent color
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The breaking strength of dyed wool fabrics reduced sharply when dye bath pH was 11, and tensile
breaking force dyed by TP + laccase was greater compared to the control (Figure 9). It could be
accounted for that wool did not have alkali-resistance properties, and would hydrolyze to amino acids
under alkaline conditions. Therefore, the binding forces between the molecules would be destroyed.
Furthermore, wool possesses scale layer structure, and is heavier compared to silk fabric. Accordingly,
the mechanical properties were better than silk.
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Figure 9. Effect of pH value on breaking strength of dyed wool fabrics.

The adsorption mechanism between tea pigments and protein fabric could meet the adsorption
isotherm of Langmuir model below the isoelectric point [44]. However, it conformed to the adsorption
isotherm of Freundlich model above the isoelectric point, and the diffusion model accorded with pore
diffusion model, since both silk and wool fabrics were hydrophilic fibers. The combination mode
between tea pigments and wool fabric was mainly ionic bonds below the isoelectric point, but the
Integ value of wool fabrics was greater compared to dyed silk fabric. The possible reason was that the
content of amino was almost equal to the content of carboxyl in wool fiber, while the quantity of amino
was less than carboxyl in silk fiber. On another level, wool is a porous material with capillary effect;
hydrotropic substances were easily adsorbed into fiber gaps or surfaces, accordingly. In addition,
tea pigments prepared from tea polyphenols were water-soluble, and the quantity as well as variety
of hydrophilic groups much more compared to silk. Additionally, tea polyphenols could possess
negative charges under conditions of acidity, and protein fiber could have positive charges below
the isoelectric point. Accordingly, the combination mode between tea polyphenols and wool fabric,
including intermolecular force as well as electrostatic force, and the dyeing property of wool fabric
was the greatest among all dyed fabrics.

3.3. Fixation under Different Acid and Base Conditions

Color fastness (rubbing, washing, as well as light fastness) of dyed silk under the different
condition of acidity and alkalinity are shown in Tables 5 and 6. The fastness, both rubbing and
washing, were measured according to five level standard, while light fastness was tested in the light of
eight level standard. Accordingly, the rubbing and washing fastness were considerably admirable,
and could meet application requirements.

Color fastness (rubbing, washing, as well as light fastness) of dyed wool, under the different
conditions of acidity and alkalinity, is shown in Tables 7 and 8. The phenolic hydroxyl group
in theaflavin and tea polyphenols would ionize hydrogen ions, and could have negative oxygen
ions under the conditions of acidity. Additionally, protein fiber could ionize ammonium ion below
the isoelectric point, and the combination mode between fiber and colorant was electrostatic force.
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Therefore, the fixation rate of dyed fabrics was better compared to alkalinity, since the binding force
was intermolecular force under alkaline conditions.

Table 5. The color fastness of dyed silk fabrics under the conditions of different acidity and alkalinity.

Dye Liquor pH
Rubbing Fastness Washing Fastness

Light Fastness
Dry Wet CC SC SW

3 5 4–5 5 5 5 4–5
5 5 4–5 4–5 5 5 4–5
7 4–5 4–5 4–5 4–5 4–5 4
9 4–5 4 4 4 4 4
11 4–5 4 4 4 4 4

Color change (CC), staining on cotton fabric (SC), staining on wool fabric (SW).

Table 6. The color fastness of dyed silk fabrics based on catalytic oxidation with laccase.

Dye Liquor pH
Rubbing Fastness Washing Fastness

Light Fastness
Dry Wet CC SC SW

3 5 5 5 5 5 5
5 5 5 5 5 5 5
7 5 4–5 5 5 5 4–5
9 4–5 4 4–5 4–5 4–5 4–5
11 4–5 4 4–5 4–5 4–5 4–5

Color change (CC), staining on cotton fabric (SC), staining on wool fabric (SW).

Micromolecular theaflavin and tea polyphenols would be absorbed on the surface of fabric
under acidic conditions, and then could diffuse into fiber with the constant rise of temperature.
Micromolecular substances would be oxidized to macromolecular thearubigins and even theabrownin
under the conditions of both oxygen and high temperature during the process of dyeing. Therefore,
color fastness among rubbing, washing, and light fastness were better under the conditions of acidity
compared to alkalinity.

Table 7. The color fastness of dyed wool fabrics under different acid and base conditions.

Dye Liquor pH
Rubbing Fastness Washing Fastness

Light Fastness
Dry Wet CC SC SW

3 5 4–5 4–5 4–5 4–5 4–5
5 5 4–5 4–5 4–5 4–5 4–5
7 5 4 4–5 4–5 4–5 4
9 4–5 4 4 4 4 4
11 4–5 4 4 4 4 4

Color change (CC), staining on cotton fabric (SC), staining on wool fabric (SW).

Table 8. The color fastness of dyed wool fabrics based on catalytic oxidation with laccase.

Dye Liquor pH
Rubbing Fastness Washing Fastness

Light Fastness
Dry Wet CC SC SW

3 5 5 5 5 5 5
5 5 5 5 5 5 5
7 5 4–5 4–5 5 5 4–5
9 4–5 4–5 4–5 4–5 4–5 4–5
11 4–5 4–5 4–5 4–5 4–5 4–5

Color change (CC), staining on cotton fabric (SC), staining on wool fabric (SW).
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Theaflavin prepared from tea polyphenols was able to carry out reversible response color change
under different acid and base conditions. Theaflavin was stable under acidic conditions, while it would
be transformed into thearubigins and even theabrownin under the conditions of either alkalinity or
high temperature. Theaflavin is a micromolecular substance, which would be firstly absorbed on the
surface of fabric, then could diffuse into fibers and be oxidized into macromolecular tea pigments
via oxidation polymerization. Accordingly, the degree of fixation was better under acidic conditions
compared to alkalinity.

Compared with synthetic dyestuffs, biocolorant was not admirable to combine with fiber [45].
Accordingly, both exhaustion rate and color fastness were low during the process of dyeing with
biocolorant, generally. Mordants were applied in traditional technologies, concerning dyeing with
natural pigments to improve dyeing properties [46,47]. However, most mordants were poisonous and
forbidden in eco-textiles. In this research, the dyeing of biocolorant derived from tea polyphenols was
achieved, and no mordant was employed to enhance the fixation. Therefore, the dyed fabrics are able
to reach the standard of ecological textile.

4. Conclusions

The reduction rate of tea polyphenols with non-enzymatic oxidation was 46.30%, and the
increasing rate of theaflavin was 84.75% during the first 24 h. Additionally, the reduction rate of
tea polyphenols with laccase was 77.99%, and the increasing rate of theaflavin was 94.22% during the
first 24 h. Accordingly, the reduction rate of tea polyphenols and the increasing rate of theaflavin were
enhanced 41.69% and 19.47%, respectively, compared to non-enzymatic oxidation.

The preparation of theaflavin from tea polyphenols with laccase was carried out, and dyeing
of protein fabric was achieved from acidity to alkalinity, in this investigation. Experimental results
demonstrated dyeing properties were better under acidic conditions compared to alkalinity, and both
dyeing property and fixation rate were the best when pH value was 3. In addition, the dyeing property
of wool fabric was better than silk when dyed by identical dye liquor.

Nowadays, natural products especially derived from plants, are gaining popularity around the
globe for their application in textiles, by virtue of abundant availability, biocompatibility, low toxicity,
compatibility with green approaches, and eco-friendly nature. Tea is the predominant plant resource in
China, and large amounts of tea stem and other waste will be produced during the processing period,
which provides rich raw material for the extraction of natural functional substances.
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