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Abstract: Three new cadmium coordination polymers, namely [Cd(NO3)2(DPNDI)(CH3OH)]·CH3OH (1),
[Cd(SCN)2(DPNDI)] (2), and [Cd(DPNDI)2(DMF)2]·2ClO4 (3) (DPNDI = N,N-di(4-pyridyl)-1,4,5,8-
naphthalene diimide, DMF = N,N-dimethylformamide) have been synthesized by reactions of
DPNDI with Cd(NO3)2, Cd(SCN)2, and Cd(ClO4)2, respectively. Compound 1 is a one-dimensional
coordination polymer with strong lone pair-π interactions between the coordinated NO3

− anions and
the imide ring of DPNDI; while 2 is a two-dimensional network with a (4, 4) net topology. In the case
of 3, due to the presence of uncoordinated perchlorate counter ions, it exhibits a non-interpenetrated
square-grid coordination polymer containing one-dimensional rhomboid channels. The structural
diversity in these compounds is attributed to different coordination abilities and geometries of
counter anions. Due to the presence of electron-deficient NDI moiety, the photochromic behavior
of these compounds was studied. Interestingly, only compounds 1 and 3 exhibit color changes
under light irradiation. The influence of the anions on the photochromism process of the NDI-based
materials has been discussed.
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1. Introduction

Due to the versatility of coordination polymers in crystal structures and chemical compositions,
they have developed into an important class of materials and enable a wide range of applied properties,
such as catalysis, guest/ion-exchange, fluorescence, adsorption, and separation [1–8]. So far, although
a large number of coordination networks have been reported, synthesis of coordination polymers
with desired topology still remains a long-term challenge to chemists because many factors, such as
pH value, solvents, temperature, and counter ions affect the final structures of the coordination
polymers [9–14]. As we know, anions play important roles in the formation of coordination polymers.
For example, some anions, such as X−, NO3

−, and CH3COO− with strong coordination ability can
coordinate to metal ions or bridge metal centers to generate multi-nuclear units or high-dimensional
frameworks [15–18], but some other anions, such as PF6

−, ClO4
−, BF4

−, and CF3SO3
− possess

very weak coordination ability and usually act as counterions and templates in the formation of
the products [19–21]. Although many studies on anion-controlled formation of coordination polymers
have been reported, very few examples of anion effect on the photochromic properties of coordination
polymers have been involved so far because it is usually difficult to create appropriate coordination
polymers with photochemical activity, but also containing different anions [22–24].

Naphthalene diimide (NDI) possess π-conjugated planes, high redox activity, and strong
π-acidity, which are excellent candidates of organic ligands for the construction of photochromic
coordination polymers due to the controllability of the substituent groups on the diimide
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nitrogens and the reversibility of the electron transfer [25–27]. Many groups have been used
as NDI derivatives as catalysts through anion-π catalysis, and as organic ligands to construct
coordination polymers [26,28–33]. In order to investigate the detailed effect of different anions
on the structures and photochromic properties, and as coordination polymers constructed by
the neutral ligands have close relationship with the counter anions [34], we chose a neutral
ligand N,N-di(4-pyridyl)-1,4,5,8-naphthalene diimide (DPNDI) as an organic ligand. The counter
anions can greatly influence the resultant supramolecular architectures because they can either
coordinate to the metal center or accommodate in the frameworks for charge-balance requirements.
As expected, three Cd(II) coordination polymers, namely [Cd(NO3)2(DPNDI)(CH3OH)]·CH3OH (1),
[Cd(SCN)2(DPNDI)] (2), and [Cd(DPNDI)2(DMF)2]·2ClO4 (3) were obtained when reaction of DPNDI
with Cd(NO3)2, Cd(SCN)2, and Cd(ClO4)2, respectively, in which 1 is a one-dimensional linear network
showing strong lone pair-π interactions, 2 is a two-dimensional networks with the (4, 4) net topology,
while 3 is also a two-dimensional network showing a one-dimensional rhomboid channel. It was found
that counter anions significantly affect the final structureof the crystal lattice. Moreover, the influence
of the anions on the photochromism process of these compounds has been also discussed.

2. Experimental Section

2.1. Materials and Methods

All chemicals and reagents were used as received unless otherwise stated. The organic ligand
DPNDI was synthesized according to the same procedures reported in the literature [35]. The infrared
spectra were obtained in the range of 400–4000 cm-1 from a Perkin-Elmer FT-IR spectrophotometer
(Waltham, MA, USA), and powder X-ray diffraction (PXRD) were recorded on a Rigaku MiniFlex-II
X-Ray diffractometer (Tokyo, Japan) using graphite-monochromated Cu Kα radiation (λ = 1.5406 Å) in
the range of 5–50◦. TGA measurements were performed on a TG-209 system (DuPont, Wilmington,
DE, USA), with a heating rate of 10 ◦C/min with N2 atmosphere. The electron spin resonance
(ESR) measurements were obtained on a Bruker A300 instrument (Billerica, MA, USA) operating in
the X-band at room temperature using powder crystal material. Luminescent properties were recorded
on an Edinburgh Instrument FLS 920 luminescence spectrometer (Livingston, UK). UV–Vis diffuse
reflectance spectra were recorded at room temperature on a Perkin–Elmer Lambda 900 UV–Vis
spectrophotometer (Waltham, MA, USA) equipped with an integrating sphere by using BaSO4 as a
white standard in the range of 300–800 nm.

2.2. Synthesis of [Cd(NO3)2(DPNDI)(CH3OH)]·CH3OH (1)

A solution of Cd(NO3)2·4H2O (61.6 mg, 0.2 mmol) in CH3OH (5 mL) was carefully layered onto a
solution of DPNDI (21.0 mg, 0.05 mmol) in N,N′-dimethylacetamide (5 mL) in a test tube. The solution
was left to stand for several days in the dark at room temperature, and light-yellow crystals of 1 were
obtained (yield: 42% based on DPNDI). Anal. Calcd for C28H20CdN6O14: C 43.25, H 2.57, N 10.81%.
Found: C 43.52, H 2.50, N 10.88%. IR (KBr, cm-1): 3067 (w), 2938 (w), 1724 (s), 1676 (s), 1590 (s),
1433 (m), 1347 (s), 1294 (s), 1247 (s), 1028 (m), 871 (m), 833 (m), 762 (s), 632 (m), 528 (s).

2.3. Synthesis of [Cd(SCN)2(DPNDI)] (2)

A solution of Cd(SCN)2 (45.6 mg, 0.2 mmol) in CH3OH (5 mL) was carefully layered onto a
solution of DPNDI (21.0 mg, 0.05 mmol) in N,N′-dimethylacetamide (5 mL) in a test tube. The solution
was left to stand for several days in the dark at room temperature, and yellow crystals of 2 were
obtained (yield: 58% based on DPNDI). Anal. Calcd for C26H12CdN6O4S2: C 48.07, H 1.85, N 12.94%.
Found: C 48.73, H 1.98, N 13.06%. IR (KBr pellet, cm−1): 3596 (w), 3510 (w), 3057 (w), 2095 (s), 1714 (m),
1667 (s), 1576 (s), 1442 (m), 1342 (m), 1243 (s), 1185 (s), 976 (m), 833 (m), 751 (s), 632 (m), 523 (s).
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2.4. Synthesis of [Cd(DPNDI)2(DMA)2]·2ClO4 (3)

A solution of Cd(ClO4)2·6H2O (83.9 mg, 0.2 mmol) in CH3OH (5 mL) was carefully layered onto a
solution of DPNDI (21.0 mg, 0.05 mmol) in N,N′-dimethylacetamide (5 mL) in a test tube. The solution
was left to stand for several days in the dark at room temperature, and light-yellow crystals of 3
were obtained (yield: 45% based on DPNDI). Anal. Calcd. for C56H42CdCl2N10O18: C 50.67, H 3.17,
N 10.55%. Found: C 50.93, H 3.41, N 11.08%. IR (KBr, cm-1): 3229 (br, w), 2938 (w), 1714 (m), 1676 (m),
1609 (s), 1499 (m), 1400 (m), 1342 (s), 1254 (s), 1080 (s), 971 (s), 890 (s), 789 (s), 590 (m), 513 (m).

2.5. X-ray Data Collection and Structure Refinement

The crystallographic data for compounds 1, 2, and 3 were collected at 153 K using a Rigaku-AFC7
(Tokyo, Japan) equipped with a Saturn CCD area-detector system. Measurements were made by
using graphite-monochromatic Mo Kα radiation (λ = 0.71073 Å). The frame data were integrated, and
absorption correction was calculated using the Rigaku CrystalClear program package (Tokyo, Japan).
All the structures were solved by direct methods with the SHELXS-97 program (Göttingen,
Germany) [36], and refined by full-matrix least-squares methods on F2 using the SHELXL-2014
program package (Göttingen, Germany) [37]. All non-hydrogen atoms were refined anisotropically,
and hydrogen atoms of aromatic rings were placed at calculated positions and refined isotropically
using a riding mode. The crystal data and the structure refinements are summarized in Table 1.
Crystallographic data have been deposited in the Cambridge Crystallographic Data Center as
supplementary publication number CCDC 1,812,274–1,812,276 for 1–3, which can be obtained free of
charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Experimental details for X-ray data collection and the refinements are summarized in Table 1.

Table 1. Crystallographic data and structure refinement details for 1−3.

Compound 1 2 3

Chemical formula C28H20CdN6O14 C26H12CdN6O4S2 C56H42CdCl2N10O18
formula weight 776.91 648.94 1326.29
crystal system triclinic triclinic monoclinic
space group P1 P1 C2/c
a (Å) 7.3845 (4) 5.7707 (4) 18.821 (4)
b (Å) 9.2831 (4) 10.7235 (11) 27.177 (5)
c (Å) 12.4333 (6) 16.9651 (16) 17.704 (4)
α (deg) 73.934 (4) 87.406 (8) 90
β (deg) 87.906 (4) 82.664 (7) 108.97 (3)
γ (deg) 68.292 (5) 81.112 (7) 90
V (Å3) 758.87 (7) 1028.39 (16) 8564 (3)
Z 1 1 4
ρcalc(g/cm3) 1.700 1.048 1.029
µ (Mo Kα)·(mm−1) 0.802 0.661 0.373
F(000) 390 322 2696
collected reflns 5405 7524 29874
unique reflns/ Rint 2492/0.0183 3509/0.0746 7543/0.070
no. of observations 2433 2641 6625
GOF 1.024 1.033 1.160
R1

a, wR2
b (I > 2σ(I)) 0.0315, 0.0907 0.0824, 0.2206 0.0816, 0.1821

R1
a, wR2

b (all data) 0.0322, 0.0912 0.0982, 0.2402 0.0921, 0.1882
aR1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = [Σw(Fo

2 − Fc
2)2/Σw(Fo

2)]1/2.

www.ccdc.cam.ac.uk/data_request/cif
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3. Results and Discussion

3.1. Crystal Structure

Single-crystal X-ray analysis reveals that compound 1 is a 1D coordination polymer. There are
half of a Cd2+ ion, one half of a DPNDI, one NO3

− anion, one coordinated methanol molecule,
and one free methanol molecule in the asymmetric unit. As shown in Figure 1a, each Cd cation is
coordinated in hexagonal bipyramidal geometry by four oxygen atoms from two NO3

− anions, two
oxygen atoms from two methanol molecules (dCd-O = 2.160–2.517 Å) and two nitrogen atoms from
two electron-deficient DPNDI ligands (dCd-N = 2.295 Å). The neighboring two Cd cations are bridged
by DPNDI ligands to form a one-dimensional coordination polymer (Figure 1b). For each DPNDI,
the dihedral angle between NDI core and pyridine group is around 83.9◦, which is slightly larger than
that of free ligand [38].
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Figure 1. (a) Coordination environment of Cd2+ in 1, symmetry codes: (i) 2 – x, –y, 1 – z; (ii) –x, 2 – y, –z;
(b) the lone pair-π interactions between NDI units and methanol; and (c) the lone pair-π interactions
extending the one-dimensional chains into a two-dimensional supramolecular network. All hydrogen
atoms are omitted for clarity.

In the one-dimensional linear networks, each smallest repetitive unit contains one free methanol
molecule which is pointed to the imide ring of DPNDI unit through lone pair-π interaction. The distance
between the oxygen lone-pair electrons in methanol molecule and the imide ring is only 2.785 Å
(Figure 1b), which is much shorter than that reported previously [38]. Interestingly, the neighboring
two one-dimensional coordination polymers are connected each other through another lone pair-π
interactions between the lone pair-bearing coordinated NO3

− anions and imide ring of DPNDI,
to generate a two-dimensional supramolecular network (Figure 1c). The distance between oxygen
atoms of coordinated NO3

− anions and the imide rings is 2.953 Å. These 2D networks are further
connected by van der Waals interactions to form a three-dimensional supramolecular architecture.

Single-crystal X-ray diffraction analysis reveals that 2 crystallizes in the triclinic space group
P1 and is composed of a two-dimensional framework. The asymmetric unit of 2 contains a half of
Cd2+ cation, a half of DPNDI ligand and one SCN− anion (Figure 2a). The Cd2+ cation has a slightly
distorted octahedral coordination environment, with the site occupied by two nitrogen atoms from two
DPNDI, two nitrogen atoms from two SCN− anions (dCd-N = 2.265–2.381 Å), and two sulfur atoms from
two other SCN− anions (dCd-S = 2.709 Å). Each Cd2+ cation is connected by two DPNDI ligands to form
a one-dimensional coordination configuration (Figure 2b). As shown in Figure 2c, the one-dimensional
units are connected each other by S and N atoms of SCN− anions resulting in a two-dimensional grid
network with the Cd···Cd separations of 5.771 Å. The metal ions play a role as 4-connecting nodes
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in this grid network. If the DPNDI node is represented by the N–N bond, two thiocyanates node is
represented by N–S bond, connections between the metal nodes, the DPNDI and thiocyanates nodes
alternately will bring about a 2D (4, 4) topological network, as shown in Figure 2d; and there are π···π
stacking interactions (3.358 Å) between the naphthalene rings in the (4, 4) grid. In the crystal lattice,
such 2D networks are piled up in parallel and separated by solvent molecules.
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Single-crystal X-ray diffraction analysis reveals that 3 crystallizes in the monoclinic space group
C2/c and is composed of an extrodinarily large, cationic square-grid framework carrying two ClO4

−

anions in each square cavity. The asymmetric unit consists of one half of Cd2+ cation, one DPNDI ligand,
one DMA molecule and one ClO4

− anion (Figure 3a). It should be pointed out that the diffraction data
were treated by the SQUEEZE during the refinement to remove diffuse electron density associated
with these largely disordered solvent molecules [39]. Each octahedral Cd2+ cation is linked by four
equatorial DPNDI tectons through the formation of Cd–N bonds (dCd–N = 2.352 Å) and capped by
two O atoms from two DMA molecules in axial directions through the formation of Cd–O bonds
(dCd–N = 2.301 Å), which leads to a non-interpenetrated and cationic two-dimensional network with
square cavities of around 20 Å × 20 Å (Figure 3b). In a given grid, the Cd2+ cations are responsible for
the square-grid architecture, the ClO4

− anions play important roles in preventing interpenetration of
networks by partially occupying the cavities and aligning planar network sheets parallel to each other
by participating in CH···anion interactions with core-Hs of DPNDI (dC–O = 3.168 Å) (Figure 3b). Along c
axis, the neighboring two-dimensional networks are further bridged by ClO4

− anions through another
CH···anion interactions to form a three-dimensional framework with one-dimensional channels filled
by ClO4

− anions and solvent molecules (Figure 3c).

3.2. Photochromic Properties

Compounds 1 and 3 are photosensitive, giving a color change from yellow into brown or dark
brown upon exposure to UV–VIS light in air within 5 min (Figure 4). However, no color changes are
observed for compound 2 even when irradiated for 30 min. The photoproducts of 1 and 3 are stable
in air, but can return to yellow in a dark room for one day at room temperature. In addition, such
decolored samples can also display color changes after irradiation again, which indicates reversible
photochromism of 1 and 3. X-Ray crystallography and PXRD reveals that the crystal structures of
photoproducts of 1 and 3 are identical to original of 1 and 3 (Figures S4–S6), but their UV–Vis spectra
are different (Figure 4). This phenomenon indicates that the photo-responsive behaviors may be a result
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from an electron-transfer chemical process in the structure, and not from a structural transformation.
As shown in Figure 4, the original of 1–3 show strong absorption bands below 500 nm, which
corresponds to the n–π* and π–π* transition of the conjugated aromatic ligand [40]. After irradiation,
the photochromic products of 1 and 3 show new characteristic bands around 520 nm and 645 nm.
These characteristic spectral bands are similar to that observed for NDI radical, suggesting that
the color changes of 1 and 3 may arise from the photo-induced generation of radicals in DPNDI
molecules [29,30,41].
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To confirm the generation of the radicals, the electron spin resonance (ESR) spectra of 1–3 were
measured before and after irradiation (Figure 5). Compounds 1 and 3 exhibit no ESR signal before
irradiation, but strong ESR signals at 2.0026 and 2.0019 for compounds 1 and 3 are observed after
irradiation, which are similar to those found in NDI-based coordination polymers [29,30,32,40].
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This indicates that DPNDI ligand is indeed reduced to generate DPNDI− free radicals after two
compounds are irradiated. On the contrary, 2 shows no ESR signals before and after irradiation
(Figure 5c), which evidences, again, the silence of its photochromism.
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3.3. Luminescence

Coordination polymers containing metal centers with the d10 electron configuration have been
attracting more interest because of their wide-spread applications in chemical sensors, labeling, and
photo-chemistry [42]. Considering the luminescence performance of DPNDI (Figure S7), the d10 Cd(II)
metal ion, and the photochromism of 1 and 3, the photo-controlled luminescence of these compounds
were studied in the solid state at room temperature. As shown in Figure 6, compound 1-3 can exhibit
blue luminescence with emission maximum at 462, 448, and 495 nm, respectively, upon excitation
at 350 nm. For compounds 1 and 3, photocontrolled tunable luminescences are observed under
the trigger of ultraviolet visible light. The strength of the emission of 1 and 3 are gradually reduced
under ultraviolet visible light irradiation, and the luminescence is almost quenching when the samples
change to dark brown after irradiating for six minutes (Figure 4a,c), but their luminescence can be
recovered when the samples stand in the dark for several hours. These distinct behaviors indicate that
the photocontrolled tunable luminescence of 1 and 3 are reversible, which further demonstrate that
there are electron-transfer interactions among the components of the compounds during irradiation,
thus resulting in weaker luminescence and even quenching. However, for compound 2, almost no
obvious changes are observed even upon irradiation for 30 min (Figure 4b).
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of 1 and 3 are measured every 2 min upon irradiations (300 W xenon lamp). The spectra of 1 and 2
were recorded upon irradiations (300 W xenon lamp) at every 2 minutes, the spectra of 2 were recorded
before radiation (black line) and after radiation for 30 min (red line).
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On the basis of the above results, the anions should play a very important role in determining
the structures of the three Cd(II) cadmium coordination polymers. The nature (coordinating ability
and geometry) of the anions is the primary reason. In 1, the NO3

− anion coordinates to the Cd(II)
cation in a terminal chelating mode, which prevents the structure extending into a higher dimension.
When the anions are changed to SCN−, the 2D layered networks of 2 are obtained, due to the adjacent
1D chains bridged by SCN−. Compared with NO3

− and SCN−, the coordinating ability of ClO4
−

is worst in the construction of coordination polymers. The ClO4
− cannot coordinate to the Cd(II)

cation in the self-assembly of 3 and it is located at the 1D channel as a counter ion. It is known
that MeOH and DMA are electron-donating species, which can give electron in redox photochromic
metal complexes [43,44]. Therefore, the radical generation in 1 and 3 are related to electron transfer
pathway from solvent molecules (based on TGA data, Figures S1–S3), but not the anions to DPNDI,
which coincides with the recent examples [44,45]. For 2, because S atoms of SCN¯ anions coordinated
to the Cd(II) cation, they can remotely donate some electrons from the electronegative S atoms to
the electron-deficient NDI cores, which will slightly decrease the π-acidities of the DPNDI (increase
the LUMO level of DPNDI) [46]. In other words, the electron-accepting ability of the DPNDI in 2 is
slightly decreased by the coordinated SCN− anion, which probably results in the energy level not
matching between the solvent molecules and electron-deficient DPNDI electron-deficient NDI. Thus,
only 1 and 3 can undergo a photoinduced radical generation upon irradiation, while 2 is silent to
the light.

4. Conclusions

In summary, three coordination polymers were successfully constructed from the DPNDI ligand
and cadmium ions with different counter anions. Compound 1 displays the one-dimensional
linear network, 2 displays the two-dimensional network with the (4, 4) net topology, and 3 is a
non-interpenetrated square-grid coordination polymer containing one-dimensional rhomboid channels.
The structural differences between compounds 1, 2, and 3 reveals that the coordination abilities and
geometries of counter anions have a significant influence on the assembly procedure. Moreover,
due to the different electron donating abilities of counter anions, they exhibit different photochromic
behaviors upon irradiation. These studies demonstrate that counter anions not only affect
the geometry of coordination polymers, but also can effectively control the photochromic properties of
coordination polymers.

Supplementary Materials: Luminescence spectra of ligand, TG curves of compounds 1–3, and PXRD.
The supplementary materials are available online at http://www.mdpi.com/2073-4360/10/2/165/s1.
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