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Abstract: The fuel cell, as one of the most promising electrochemical devices, is sustainable, clean,
and environmentally benign. The sluggish oxygen reduction reaction (ORR) is an important fuel cell
cathodic reaction that decides the efficiency of the overall energy conversion. In order to improve
ORR efficiency, many efficient catalysts have been developed, in which the N-doped material is
most popular. Polyaniline and polypyrrole as common aromatic polymers containing nitrogen were
widely applied in the N-doped material. The shape-controlled N-doped carbon material can be
prepared from the pyrolysis of the polyaniline or polypyrrole, which is effective to catalyze the ORR.
This review is focused on the recent advance of polyaniline or polypyrrole-based ORR electrocatalysts.
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1. Introduction

A fuel cell is a device that directly transfers chemical energy stored in fuel and oxidizer to electrical
energy [1–3]. It is different from conventional batteries in that the fuel cell generates electricity as
long as the fuel is continuously supplied. Because it is not restricted by the Carnot cycle, the energy
conversion efficiency can reach 40–60%, 1.5–2 times that of the internal combustion engine, it is also
environmentally friendly (emissions of CO2 or water) and produces no noise. Therefore, it is considered
to be the most promising clean and efficient power generation technology. One major hindrance of
fuel cell application is the sluggish oxygen reduction reaction (ORR) [4–6]. The reaction occurs on
the cathode as a half reaction. The commercial Pt/C catalysts are the most applied catalysts [7–9].
However, platinum is rare and very expensive. In addition, Pt particles may be peeled off or aggregate
in the catalysis process, which causes a decrease in activity [10–13]. Therefore, the development of
efficient ORR catalysts is one of the most important factors for the fuel cell.

In order to replace Pt/C, three types of electrocatalysts are mainly researched, including non-metal
catalysts [14,15], non-noble metal catalysts [16–19], and low-content noble metal catalysts [20,21].
Carbon materials, as the essential support of electrocatalysts, were usually doped by a heteroatom
(N, B, P, S, etc.) [22–26] to improve the activity of ORR electrocatalysts. The nitrogen-doped
carbons are the most promising catalyst materials for ORR [27–29]. Two types of aromatic polymers
including polyaniline (PANI) and polypyrrole (PPy) are used to provide nitrogen atoms and control
the morphology.

PANI and PPy are both widely used conductive polymers [30–32]. Their morphology can be
controlled with different synthesis methods. After pyrolysis, the morphology-controlled nitrogen
doping carbon can be obtained. Furthermore, the nitrogen content of the polymer derived N-doped
carbon is also controllable. This mini-review focuses on PPy- and PANI-derived electrocatalysts for
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the oxygen reduction reaction (ORR). Because the two main challenges in the ORR catalysts design are
high efficiency and stability, many PANI- and PPy-derived materials have been designed. This review
presents the representative works and suggests potential prospective researches.

2. Polyaniline-Derived Catalysts for Oxygen Reduction Reaction

In order to get efficient ORR catalysts, metal-free materials, noble metal-free materials, and noble
metal materials are normally used. The noble metal sticks to the Pt and Pt alloys. Polyaniline-derived
catalysts are efficient for ORR.

2.1. Metal-Free Polyaniline-Based Catalysts

N-doped carbon, which is one of the most promising ORR catalysts, can be obtained through the
pyrolysis of PANI-based materials. The effect of nitrogen is still under study. The N species contain
pyridinic-, pyrrolic-, and graphitic-nitrogen. Pyridinic N possesses better activity than graphitic N
because of their different sp2 electronic structures [33]. For the metal-free PANI-based ORR catalysts,
researchers make many efforts to control the morphology of the catalysts. The PANI nanotubes were
pyrolyzed at different temperatures. After pyrolysis, the morphology of the nanotubes was maintained
and typical nitrogen species, such as pyrrolic-, pyridinic-, and graphitic-N, were obtained. The product
fabricated at 700 ◦C (NCNT-700) exhibited the highest electrocatalytic ORR activity, long-standing
stability, and good tolerance against methanol. The half-wave potential of the NCNT-700 is 0.84 V
vs. RHE. The improved activity is mainly attributed to the high nitrogen level of the active pyridinic
and graphitic N. JingJing Xu et al. [34] developed a highly efficient ORR catalyst derived from
PANI@CNTs-sulfonated polystyrene. Quilez-Bermejo Javier et al. [35] studied the activity of N-doped
carbons derived from PANI. When the pyrolysis was processed at a high temperature above 1100 ◦C,
the conversion from pyridine to quaternary N in the edge position occurred and resulted in excellent
ORR activity. The catalysts derived from PANI nanofiber and glucose showed high onset potential
(−0.171 V vs. Ag/AgCl), large limiting current density, and a 4-electron process [36]. Perchloric acid
(HClO4) was used as an oxidant and pore-forming agent in an electrochemical polymerization [37].
In the first step, carbon paper was used in a traditional three-electrode system. HClO4 and aniline were
used as the electrolyte solution. Secondly, the materials were carbonized under a nitrogen atmosphere.
The obtained material shows a high surface area of 1341.12 m2 g−1 and high N content. PANI-derived
mesoporous carbon was obtained based on yolk-shell nanostructured polyaniline@SiO2 particles [38],
and the SiO2 particles were used as the hard template. The electrocatalyst presented high stability
and tolerance to CH3OH. B/N [39] and N,P [40] co-doped carbon materials were developed and
showed high ORR activity. Quilez-Bermejo Javier et al. [41] heated the PANI and de-doped PANI
(PANId) under two different atmospheres: a pure inert atmosphere (N2) and a slightly oxidizing
mixture of gases (3000 ppm O2 in N2). Interestingly, the pyrolysis under 800 ◦C using a slight oxidant
atmosphere produces carbon materials with much higher ORR activity. The authors believe the larger
amount of N-edge and O-edge sites contribute to the phenomenon. Therefore, in the pyrolysis process,
the commonly used inert atmosphere may not the best choice.

2.2. Noble Metal-Free Polyaniline-Based Catalysts

Some nonprecious metals, represented by iron, cobalt, nickel, and manganese, were used to
generate the efficient ORR electrocatalysts. Among the non-noble metal-based ORR catalysts, Fe-N-C
is one of the most promising materials [42–45]. Compared to commercial Pt/C, Fe-N-C has several
advantages such as low price, high efficiency, tolerance to the toxicity of CO, and long life.

Gang Wu et al. [46] incorporated iron and/or cobalt in the PANI-derived carbon catalyst.
Firstly, aniline oligomer was mixed with carbon particles and transition metal precursors (cobalt
nitrate and/or iron chloride), followed by the addition of ammonium persulfate as an oxidant to
fully polymerize the aniline. After the polymerization process, the materials underwent pyrolysis in
an N2 atmosphere. Among the prepared materials, PANI-Fe-C and PANI-FeCo-C materials showed
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similar ORR activity, and the half potential of the materials was slightly lower than that of Pt/C.
The mechanism study showed a four-electron process, and the hydrogen peroxide yield was smaller
than 1.0%. The PANI-derived catalysts showed high durability according to the fuel-cell performance
test as well as the RDE test.

In order to insight the active sites of Fe-N-C catalyst, PANI and cyanamide were used as nitrogen
precursors [16]. The prepared materials showed much larger micropore surface area and the volumes of
mesopores (pore diameter 2 to 50 nm) was ~0.25 cm3 g−1. The authors concluded that the edge-hosted
FeN4 sites contribute to the high activity in the Fe-N-C catalyst. Researchers found that a pore width
between 5 and 20 angstroms [47] had a great influence on activity. The prepared material has a
large mesopore surface area. When the precursor is PANI alone, the Brunauer–Emmett–Teller (BET)
surface area is nearly 1000 m2 g−1, and when the precursor is PANI and CM, the surface area is nearly
1600 m2 g−1. The prepared catalysts processed a four-electron pathway, and the yield of hydrogen
peroxide was lower than 2%. Carbon-embedded nitrogen-coordinated iron (FeN4) was proposed as
the catalytic active site. Aberration-corrected scanning transmission electron microscopy was used to
visualize the FeN4 site, and the contributions of these active sites associated with specific lattice-level
carbon structures were explored computationally.

Yang Hu et al. [48] used PANI nanofibers as nitrogen and carbon precursors. The mass content
of Fe was 0, 0.3, 0.5, 1.0, 3.0, 5.0, and 10.0 wt %. The 3.0 Fe-PANI catalyst showed the best onset
potential: 0.905 V vs. RHE. The materials process a four-electron ORR pathway. Prussian blue
analogue (PBA, Co3[Fe(CN)6]2) and polyaniline (PANI) were mixed as the precursor [49]. The 2–5 nm
PBA nanocrystals homogeneously dispersed in PANI. The PBA nanocrystals are the precursor for the
active sites, and are also the template for pore formation in the pyrolysis process. The catalysts exhibit
ORR activity comparable to that of the commercial Pt/C (20 wt % Pt loading) in the alkaline and acidic
environment. Carbon nanotubes (CNTs) were used to support Fe-PANI [50]. Jian Zhang et al. [51]
pyrolyzed the polyaniline on carbon nanospheres, and ferric chloride was used as an oxidant and
iron source. The scheme is shown in Figure 1. The authors concluded that the as-prepared catalyst
shows a high activity and much better stability than that of commercial Pt/C in an acid medium.
Guanghua Wang et al. [52] prepared an N-doped carbon catalyst with trace iron (0.54 wt. % Fe).
The PANI-iron coordination polymers were pyrolyzed.

Other nonprecious metals, such as cobalt, nickel, and manganese, were also used to
generate electrocatalysts for ORR. Shiyi Cao et al. [53] synthesized mesoporous hybrid shells of
carbonized polyaniline (C-PANI)/Mn2O3. The manganese oxide hybrid materials showed high ORR
electrocatalytic activity. In particular, the onset potential is +0.974 V (versus RHE), the specific
current is 60.8 mA/mg, and the electronic transfer number is 4. The remarkably high ORR
activity can be attributed to the high specific surface area, the surface oxidation state of Mn, and
composition-codependent behavior. PANI and beta-MnO2 nanocomposites [54] were also built. PANI
nanofibers were hybridized with cobalt nitrate [55]. After pyrolysis, the PANI nanofibers formed
graphene networks with N-doped. It is a facile and scalable approach to the synthesis of Co and N
codoped graphene networks for ORR in acidic solutions with high activity and excellent durability.
Furthermore, the NiCo-doped PANI precursors underwent pyrolysis in an inert atmosphere at
800 ◦C [56], and the molar ratio of Ni and Co was adjusted. Among the prepared catalysts, the catalyst
Ni6Co1/C-N, which showed the largest surface area according to the BET method, presented the
best ORR activity and stability. PANI was used to reduce Ag+ cations [57] to get catalysts. The Ag
dendrites were readily generated in PANI nanofiber dispersion via the redox reaction between AgNO3

and PANI.
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Figure 1. Schematic of the synthesis process of the FeNxC/C–F catalyst [51]. (A) Mixing of CNS with
aniline oligomers. (B) Oxidative polymerization of aniline by addition of FeCl3 solution. (C) First heat
treatment in an ammonia atmosphere. (D) Acid leaching. The second heat treatment after acid leaching
is not shown.

2.3. Noble Metal Polyaniline-Based Catalysts

In the harsh chemical and electrochemical conditions, the carbon supports are susceptible to
corrosion. In order to increase the stability, which is the key factor in catalyst application, PANI was
used as a protector to inhibit carbon nanospheres from corrosion of the carbon supports. In order to
improve the durability of the Pt-based ORR catalysts, perfluorosulfonic acid (PFSA) and PANI were
used to co-stabilize Pt catalysts [58]. The prepared Pt-PFSA/C@PANI catalyst shows comparable
activity with the commercial Pt/C. Furthermore, the catalyst shows much higher stability than the
commercial Pt/C. The stability is very important for this Pt-based catalyst. The stability can be
concluded to the result of PFSA and PANI. The Pt NPs was wrapped by PFSA (Pt@PFSA). Then the
Pt@PFSA were anchored on C@PANI. The coating of PANI on carbon supports can cover the surface
of the carbon supports, and this causes the micropores on the surface of the carbon to disappear.
The phenomenon can prevent Pt NPs being embedded in the micropores. The dual PFSA and PANI
polymers are important for the stability of the as-prepared catalyst.

The Pt-based alloy is also used to enhance the ORR activity and reduce the Pt content [59].
Yang Liu et al. [60] prepared several Pt-Co/C-PANI catalysts via a microwave-assisted polyol method.
The best-prepared catalysts showed a mass activity of 1.33 A mgPt

−1 and specific activity of 1.29 mA
cm−2, and the performance was 7.8 and 5.4 times higher than that of Pt/C catalyst. The ORR activity
and stability of Pt and PtM (M = Ni, Co, Cr, Pd) supported on polyaniline/CNTs were explored and
compared with the commercial Pt/C catalyst [61].

3. Polypyrrole-Derived Catalysts for Oxygen Reduction Reaction

Like the PANI-derived catalysts, the polypyrrole-derived catalysts can also be divided into 3 kinds:
metal-free, noble metal-free, and noble metal.
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3.1. Metal-Free Polypyrrole-Derived Catalysts

Hongli An et al. [62] polymerized PPy in a CNT matrix, then the CNTs were covered with PPy on
the surface (CNTs@PPy). Then the hybrid material underwent pyrolysis to obtain an N-doped CNT.
The ORR activity is shown in Figure 2. The as-obtained NCNTs exhibited an onset potential of 0.95 V,
a diffusion-limited current of 6.82 mA cm−2, and excellent stability in alkaline media. The results
indicate that the high ORR performances were mainly derived from the pyridinic-N in the NCNTs.
Furthermore, the ratio of three different nitrogens (pyridinic, pyrrolic, or graphitic N) can be easily
tuned by adjusting the amount of PPy in the CNTs@PPy core-shell precursors.
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Figure 2. (a) CV curves of PPy-P800, CNTs-P800, CNTs@PPy-P800, and Pt/C in N2 and O2-saturated
solution, respectively. (b) LSV curves of PPy-P800, CNTs-P800, CNTs@PPy-P800, and Pt/C catalyst
in O2-saturated 0.1 M KOH solution at a sweep rate of 10 mV s−1 and an electrode rotation speed of
1600 rpm. (c) The onset potential, half-wave potential, and current density of PPy-P800, CNTs-P800,
CNTs@PPy-P800, and Pt/C, respectively. (d) Corresponding mass activities of these four samples [62].

In order to improve the activity and lifetime of the catalysts, other heteroatoms such as P, S,
and F were also added. Phytic acid was used as P-dopant, and polystyrene sphere was used as
a template [63]. After the pyrolysis process, the resultant N,P-MC materials exhibited spherical
mesopores with an average diameter of ca. 70 nm. The BET surface area of the N,P-MC sample is
305 m2 g−1. N,P-MC exhibits best ORR activity among the prepared materials. The material performs
a 4-electron process, has high ORR activity, and good methanol tolerance. The mesoporous structure,
high surface area, and increased active sites (N,P) are key factors that improve ORR performance.
Researchers [64] synthesized nitrogen-doped carbon nanofiber films (NCNFs) via the carbonization
of polypyrrole-functionalized electrospun polyacrylonitrile (PAN) nanofibers. A triazine-based
polypyrrole network (TPN) was synthesized and then pyrolyzed to get an N-rich carbon catalyst [65].
In the TPN synthesis process, the 2,4,6-tripyrrol-1,3,5-triazine monomer was used; the protonating
agent was TfOH and the oxidizing agent was benzoyl peroxide. The obtained NC-900 (pyrolyzed at
900 ◦C) catalyst, which presents a surface area of 779 m2 g−1 and contains 3.02% nitrogen, exhibits
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promising ORR activity in alkaline media. Two key ORR parameters—onset potential and half-wave
potential of prepared NC-900—are both higher than those of Pt/c. Furthermore, the as-prepared
material shows better MeOH tolerance and higher durability.

The relationship between the morphology of PPy and the corresponding ORR activity were
studied [66]. The granular- and tubules-like PPy was annealed at 800 ◦C with morphology maintained.
For the ORR catalyst performance, such as onset potential, half-wave potential, electron number, and
stability, the tubules-like carbon was better than the granular-like carbon. The higher catalytic activity
was explained by a better electrical conductivity in the tubular structure than in the granular one.

3.2. Non-Noble Metal Polypyrrole-Derived Catalysts

A series of Fe-N-C electrocatalysts derived from PPy were designed and studied [67]. In the
catalysis preparation, mesoporous carbon (MPC), PPy, and Fe(II) acetate were used as the C source,
N source, and Fe source, respectively. Firstly, polyvinylpyrrolidone (PVP) was added to a MPC-PPy
support, and the hybrid material was heat-treated. Secondly, the pyrolysis carbon support was further
impregnated with Fe2+ ions. The authors concluded that the microporosity of the prepared catalysts
directly influences the ORR activity. The same research team [68] synthesized a Fe-Co-N-C catalyst for
ORR according to a sacrificial method. Also, pyrrole was used as an inexpensive precursor for N-doped
carbon materials. Alkaline membrane fuel cells (AMFC) were used in the research. A high performance
for AMFC, 420 mW cm−2 at 60 ◦C, was achieved. Furthermore, a good performance of alkaline direct
ethanol fuel cells was achieved. Min Sun et al. [69] use electrochemical polymerization method to
synthesize structured Fe-N-C ANFs/CP (activated NFs derived from PPy doped with iron atoms in
situ grown on carbon paper) on a carbon paper. The authors focused on the connection between iron
concentration and ORR activity. The research showed that the 0.05-Fe-N-C ANFs exhibited the highest
activity and good durability. The high activity is ascribed to the high Fe-Nx concentration, the porous
structure, and well-dispersed active sites.

A novel kind of tetrazine-based polypyrrole spheres (PTPys) was prepared by protonic
acid catalyzed Friedel–Crafts polymerization of bis(N-pyrrolyl)-1,2,4,5-tetrazine (TPy) with
dimethoxymethane in dichloroethane [70]. Firstly, PTPys with a diameter of 100 to 300 nm were
synthesized and pyrolyzed at 900 ◦C to generate N-doped porous carbon spheres (N/Cs-900
electrocatalyst). Then Fe(OAc)2 were mixed with PTPys and then pyrolysis to get N/Fe-codoped
porous carbon spheres (Fe/N-Cs-900 electrocatalyst). The Fe/N-Cs-900 catalyst showed the best
ORR activities. In the acidic solution, the Fe/N-Cs-900 catalyst exhibited excellent activity, which is
comparable to the Pt/C catalyst. In the alkaline solution, the Fe/N-Cs-900 catalyst showed better ORR
performance than Pt/C. The well-defined spherical architecture, high N content, high surface area,
and porosity contributed to the high ORR activities. Haodong Sha et al. [71] experimentally studied
the active sites for ORR catalysts. A series of carbon-supported cobalt-polypyrrole-4-toluenesulfinic
acids were pyrolyzed in an inert atmosphere at 800 ◦C, then electrochemically evaluated in aqueous
0.5 M sulfuric acid. A series of catalysts were prepared. Metallic cobalt, cobalt oxide, and nitrogen
species (Co-Nx) bonded to cobalt were formed. Co-Nx, which is the active site, was formed when
the cobalt loading was less than 1.0 wt %. When the loading was higher than 1.0 wt %, metallic Co
and Co oxide particles coexisted with the Co-Nx compound. Both metallic Co and Co oxide were
not active for catalyzing ORR. As a result, at a Co loading of ~1.0 wt %, the catalyst gave the best
ORR activity. The ORR active site in (Co-PPy-TsOH/C)P catalyst was likely a Co-pyridinic-N group.
A ternary CoNiMn-layered double hydroxide (LDH)/PPy/reduced graphene oxide (rGO) composite
was fabricated by one-step involving the formation of the LDH and polymerization of the pyrrole
(Py) [72].

Non-noble metal oxides were also studied. A novel strategy based on block copolymer
self-assembly in solution were developed recently [73]. The prepared materials were two-dimensional
graphene-based mesoporous nanohybrids with well-defined large pores of tunable sizes. In the process,
polystyrene-block-poly (ethylene oxide) spherical micelles were used as the pore-creating template.
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The PPy monolayers were grown on both sides of rGO nanosheets, and Fe2O3 NPs were embedded
in them (denoted as mPPy-Fe2O3@rGO). Furthermore, the materials were heated at 800 ◦C to get
sandwich-like mesoporous nitrogen-doped carbon/Fe3O4/rGO (mNC-Fe3O4@rGO). The prepared
mNC-Fe3O4@rGO materials show excellent electrocatalytic activity with a four-electron transfer
nature, a high half-wave-potential of +0.84 V, and a limiting current density of 5.7 mA cm−2. Co3O4

nanoparticles were assembled on a polypyrrole/graphene oxide electrocatalyst ((CoO4)-O-3/Ppy/GO)
as an efficient catalyst for the oxygen reduction reaction (ORR) in alkaline media [74]. By one-step
in situ ball milling of graphite, pyrrole, and cobalt salt without resorting to high-temperature
annealing, a facile strategy was developed to synthesize cobalt oxide and PPy coupled with a graphene
nanosheet (Co3O4-PPy/GN) complex [75]. The as-prepared Co3O4-PPy/GN catalysts showed excellent
electrocatalytic performances for ORRs.

Ag nanoparticles were loaded on oxygen-doped carbonaceous polypyrrole nanotubes
(OCPN) [76] The Ag/OCPN catalysts possess comparable excellent activity with commercial Pt/C in
alkaline solution. Moreover, the prepared catalysts showed superior stability and methanol tolerance.

3.3. Noble Metal Polypyrrole-Based Catalysts

In order to reduce the consumption of Pt material, Pt combined with other materials were
widely investigated. Polypyrrole-based materials were widely used. Dendritic PtCo nanoclusters
supported on sheet-like PPy (PtCo NCs/PPy) was proposed [77]. The synthesis method is a facile
one-pot solvothermal method. Cetyltrimethylammonium chloride and pyrrole were applied as the
capping agent and reductant, respectively. Meanwhile, under solvothermal conditions, the pyrrole
was in situ polymerized to form PPy sheets. The prepared dendritic PtCo NCs/PPy showed an
enlarged electrochemically active surface area (EASA, 30.95 m2 g−1). As compared with Pt1Co3 NPs,
Pt3Co1 NPs, and commercial Pt/C catalysts, PtCo NCs/PPy showed the best catalytic performance
and durability. The PPy sheets, as the supporting nitrogen-rich carbon materials, are essential in
the material. Furthermore, PPy was used to modify mesoporous carbon black as the supporting
material [78]. Ru-Pt NPs (1–2 nm) were dispersed on the PPy-modified carbon. In the process
of PPy-modified carbon preparation, the amount of pyrrole was investigated. In order to test the
ORR activities and the methanol tolerance of the material, the prepared electrocatalysts were tested
according to both conventional electrochemical techniques and a direct methanol single cell. It is
inspiring that the ORR performance of Ru-Pt/C-PP was far superior to that of Pt/C in the direct
methanol fuel cell. The summary of electrocatalysts for ORR is shown in Tables 1 and 2.

Table 1. Summary of noble metal-free electrocatalysts for oxygen reduction reaction (ORR).

Electrocatalyst Medium Catalysts Loading
[mg cm−2]

Rotation
Speed/rpm

Onset Potential/V
vs. RHE

Halfwave
Potential/V vs. RHE Ref.

PANI-FeCo-C 0.5 M H2SO4 900 0.93 0.79 [46]

3.0 Fe-PANI-L 0.5 M H2SO4 0.6 1000 0.905 - [48]

C-2PANI/PBA 0.5 M H2SO4 0.36 1600 0.81 0.71 [49]

FeNxC/C–F 0.1 M HClO4 0.8 1600 0.88 0.76 [51]

N/C/Fe-c 0.5 M H2SO4 0.48 900 0.78 0.65 [52]

Fe/N-Cs-900 0.5 M H2SO4 - 1600 0.845 0.717 [70]

(Co-PPy-TsOH/
C)P-A-P 0.5 M H2SO4 900 0.78 0.71 [71]

CPANI/Mn2O3 0.1 M KOH 0.28 1600 0.83 0.68 [53]

Fe-Co-N-C 0.1 M KOH 0.635 800 0.85 0.78 [68]

0.1-Fe-N-C
ANFs 0.1 M KOH - 1600 0.83 0.74 [69]

mNC-Fe3O4
@rGO-2 0.1 M KOH 0.24 1600 0.96 0.83 [73]
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Table 2. Summary of metal-free electrocatalysts for ORR.

Electrocatalyst Medium Catalysts Loading
[mg cm−2]

Rotation
Speed/rpm

Onset Potential/V
vs. RHE

Halfwave
Potential/V vs. RHE Ref.

NCNT-700 1 M NaOH 0.4 1600 0.88 at RRDE 0.8 V at RRDE [33]

NCNTs-900 0.1 M KOH 0.64 1600 0.96 0.82 [34]

MEP-NC850 0.1 M KOH 0.25 1600 0.94 0.82 [37]

CNTs@PPy-P800 0.1 M KOH 0.2 1600 0.92 0.81 [59]

N,P-MC 0.1 M KOH 0.2 1600 0.93 0.84 [63]

NCNFs-900 0.1 M KOH 1600 0.92 0.82 [64]

NC-900 0.1 M KOH 1600 0.93 0.84 [65]

4. Summary and Perspective

Polymer-modified electrocatalysts are very promising materials for ORR. Polymers contain
nitrogen atoms, which represented by PANI and PPy have been studied thoroughly. PANI or PPy alone
or combined with carbon-based materials (nanoparticles, nanotubes, graphene, etc.) are pyrolyzed to
generate N-doped carbon. Furthermore, different metals such as platinum, iron, cobalt, manganese,
nickel, etc. are used to modify the N-doped carbon. As Table 1 shows, when binary metals are
combined, such as Fe combined with Co, better ORR performance is achieved than when using single
Fe or Co alone.

The ORR activities under different element additions are very interesting. Different elements,
such as S, B, P, Fe, Co, Ni, Pd, Pt, etc., can be added to the catalysts. When, how, and how many of the
elements are added to the catalysts are very important. When more than one metal element is added,
normally we get several kinds of alloy nanoparticles, which are the important active sites. In a word,
the additional elements matter in ORR catalysts.

For ORR catalysts, the pore area and size are very important. Having a pore size from 0.5 to
200 nm is very important in ORR activities. Further researches are needed to identify the best pore
size. The phenomenon indicates that the polymers-derived materials should pay more attention to the
pore structure and size.

In order to understand the active sites of the ORR catalysts, especially the nitrogen active sites,
nitrogen-containing polymers could be designed for this purpose. Because there are many types of
polymers with different nitrogen structure, they can be used as precursors of the catalysts. Furthermore,
there are different morphologies of polymers, such as nanospheres, nanorods, microspheres, fibers,
3D structure gel, etc. These structures are interesting as precursors, and the relationship between
activities and morphologies requires further research.
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