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Abstract: Composite adsorption materials combine the advantages of various adsorptive materials
and compensate for the defects of single adsorbents. Magnetic montmorillonite (MMMT) shows good
adsorption properties for Pb(II). In order to further improve the adsorption properties of MMMT,
in this work, Zn-BDC, a kind of metal–organic framework (MOF), was modified onto the surface
of MMMT by in situ polymerization. The composite material MMMT@Zn-BDC was characterized
by Zetasizer, SEM, TEM, FTIR, XRD, VSM, and XPS. The influence of adsorption conditions on the
adsorption capacity of MMMT@Zn-BDC for Pb(II) was examined, including the adsorbent dosage,
pH of Pb(II) solution, initial concentration of Pb(II), and the temperature and adsorption time. Also,
the adsorption mechanism was studied. The results of this study show that MMMT@Zn-BDC adsorbs
Pb(II) via chemisorption. In addition, MMMT@Zn-BDC exhibits good potential for adsorbing Pb(II),
including its high adsorption capacity (724.64 mg/g) and good recyclability.
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1. Introduction

Heavy metal pollution in water is becoming a more serious problem with increasing
industrialization. Heavy metal pollution is a serious threat to the human body, ecological environment,
and economic development [1,2]. Heavy metals are highly toxic, are easily enriched in organisms,
and cannot be degraded naturally [3]. Trace heavy metals cause serious harm to microorganisms,
aquatic plants, and animals. They can also enter the human body through the food chain or drinking
water and cause serious injury and disease [4,5]. Lead is one such heavy metal. Lead and its compounds
are frequently used as raw materials for modern industrial transportation, they are also used in
metallurgy, printing, military and electronics. Incidents of excessive Pb(II) in liquid food and water
have been reported many times [6,7]. Lead poisoning is a kind of accumulative poisoning. With the
increasing accumulation of lead in the human body, people have a higher risk of kidney damage,
hematopoietic dysfunction, and mental impairment [8].

Heavy metal wastewater is usually treated by ion exchange, biological treatment, precipitation,
membrane permeation and adsorption [9,10]. The adsorption method [11,12] is widely used because
of its performance efficiency, simple operation, selectivity, lack of pollution and low cost. Magnetic
adsorbent materials represent a new type of adsorbent and have been shown to effectively adsorb lead
ions [13,14]. More importantly, applying a magnetic field can easily separate the adsorbent from the
water, which is beneficial for reusing the materials and concentrating heavy metals during treatment.
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Magnetic particles, especially Fe3O4, are easy to prepare and inexpensive [15–17]. However, Fe3O4 is
easy to collect using the magnetic dipole effect [18]. Montmorillonite (MMT) is a lamellar crystalline
mineral, consisting of eight layers sandwiched between two layers of tetrahedra. The cations in the
middle of the interlayer include K+, Na+, Ca2+, Mg2+ and so on, which balance the negative charges of
the main layers [19,20]. These cations can be exchanged by other cations with a high valence state and
concentration [21]. In addition, the surface of MMT is electronegative; thus, it easily electrostatically
adsorbs heavy metal ions such as lead ions [22]. Therefore, MMT is an ideal adsorbent for heavy
metals [16,23,24]. However, as a dispersible adsorbent, MMT is not easy to recover; in contrast,
magnetic MMT (MMMT) is both easily separated and exhibits good adsorption properties.

During this study, we found that MMMT has unsatisfactory adsorption capacity when the is
Pb(II) concentration is high. Therefore, we considered modifying MMMT so that it can cope effectively
with both high and low concentrations of Pb(II). Metal–organic framework (MOF) materials were first
proposed by the Yaghi group [25]. MOFs are zeolite materials with a network structure, and they can
be self-assembled from organic compounds and metal ions [26]. The pore size ratio and specific surface
area of MOFs is high [27]. The physical and chemical properties of MOF materials are stable, and they
can also be easily recycled. These advantages make MOFs an excellent adsorbent [28–30]. Especially
in the field of heavy metal adsorption, MOFs have shown excellent adsorption properties [31,32].
Zn-BDC is a type of MOF that can be prepared from Zn2+ and terephthalic acid and catalyzed by
triethylamine at room temperature. In this study, Zn-BDC was coated onto the surface of MMMT via
in situ polymerization, thus obtaining the composite MMMT@Zn-BDC.

In this study, we propose a simple in situ polymerization method to combine MMMT with
Zn-BDC. This composite material not only exhibits better recyclability but can also cope with a higher
concentration of Pb(II). Additionally, it has good potential for the removal of Pb(II) from water and
liquid food.

2. Materials and Methods

2.1. Materials

Pb(NO3)2, Zn(CH3CO2)2·6H2O, 1,4-dicarboxybenzene (BDC), FeCl3·6H2O, FeCl2·4H2O, MMT
(>98%) were purchased from Aladdin Chemical Reagent Co., Ltd. (Shanghai, China). Methanol,
triethylamine, N,N-dimethylformamide (DMF), and ammonia were all analytical reagent grade.

2.2. Preparation of MMMT@Zn-BDC

2.2.1. Preparation of Zn-BDC

The preparation of Zn-BDC was done according to the method in [33]. The procedure was as
follows: Zn(CH3CO)2 (1.699 g) and BDC (0.506 g) were separately dissolved in 200 mL and 100mL of
DMF. These two solutions were combined and stirred for 30 min. Then, 0.85 mL of TEA was slowly
dropped into the mixed solution and stirred for 2 h at room temperature. The white precipitates
produced were collected by centrifugation. The product was washed alternately with DMF and
methanol. Then, the product was immersed in methanol, which was replaced every 12 h to remove
the DMF in Zn-BDC. After repeating the centrifugation, washing, and immersion steps two times,
the product was dried for 6 h at 60 ◦C under vacuum condition. The final mass of Zn-BDC was 1 g.

2.2.2. Preparation of MMMT

The co-precipitation method was applied to synthesize MMMT [34]. Various amounts of MMT
(0.5, 1, 1.5, or 2 g) were separately dispersed in 70 mL of deionized water; then, the dispersions
were transferred into round-bottomed flasks. At the same time, nitrogen was continuously flowed
into the dispersions to remove oxygen from the dispersions. After 30 min, FeCl3·6H2O (0.01 mol)
and FeCl2·4H2O (0.005 mol) were dissolved in these dispersions, the reaction temperature was 70 ◦C,
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and the pH was adjusted to 9–10 using ammonia. After stirring for 30 min, the products were separated
by external magnetic field. Next, the separated MMMT products were washed with alternating
deionized water and ethanol, and finally, the product was dried in a freeze-drying box. Using this
same method but without adding MMT, the resulting weight of Fe3O4 would be 1 g.

2.2.3. Preparation of MMMT@Zn-BDC

First, MMMT (1 g) was added to a round-bottomed flask containing 33 mL of DMF. Then,
Zn(CH3CO)2 (1.699 g) was dissolved in this dispersion, and BDC (0.506 g) was separately dissolved in
33 mL of DMF. After stirring for 1 h, the dispersion and BDC solution were mixed. TEA (0.85 mL) was
slowly added to the resulting suspension; then, after continuously stirring for 2 h, the reaction was
stopped. This synthesis process is shown schematically in Figure 1. The products were separated and
washed using the same process as used in the preparation of Zn-BDC, and finally, they were dried in a
freeze-drying box.
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Figure 1. Synthesis of MMMT@Zn-BDC.

2.3. Characterization

The surface morphology was recorded by scanning electron microscopy (SEM, S4800, Hitachi,
Tokyo, Japan). A transmission electron microscope (TEM, JEM-2100, Lorentz, Tokyo, Japan) and energy
dispersive spectrometer (EDS, GENESIS, EDAX, Mahwah, NJ, USA) were used to analyze the internal
structures and composition of the materials. Nitrogen adsorption isotherms were obtained using
Micromeritics ASAP 2020M. Functional groups of the adsorbent were determined using a Fourier
transform infrared spectrometer (FTIR, Bruker, Karlsruhe, Germany). The crystallinity was determined
by X-ray diffraction (XRD, Bruker, Karlsruhe, Germany). The magnetic properties were evaluated by
vibrating sample magnetometry (VSM) analysis (SQUID-VSM, Quantum Design, Santiago, CA, USA).
The elements of the adsorbent were analyzed by X-ray photoelectron spectroscopy (XPS, AXIS ULTRA
DLD, Shimadzu, Tokyo, Japan).

2.4. Adsorption Experiment

The mother Pb(II) solution was prepared by Pb(NO3)2, and the resulting Pb(II) concentration
was 1000 mg/L. Various Pb(II) solutions were diluted from this mother liquor. A Pb(II) solution
(20 mL, 200 mg/L) was placed into several flasks, and various dosages of MMMT@Zn-BDC from
5 to 20 mg were separately added to these flasks. HNO3 and NaOH (0.1 mol/L) were applied
to adjust the pH of the Pb(II) solution from 2 to 6. Then, the flasks were placed in an oscillator;
the speed of revolution was 150 rpm. After the adsorption finished, the adsorbent was recovered
using magnetic field. The concentration of residual Pb(II) solution was detected with an atomic
absorbance spectrophotometer. The adsorption capacity of MMMT@Zn-BDC for Pb(II) at a certain
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time (qt) was calculated by Equation (1), Equation (2) was used to calculate the adsorption capacity of
MMMT@Zn-BDC for Pb(II) to be in equilibrium (qe).

qt =
(C0 − Ct)V

m
(1)

qe =
(C0 − Ce)V

m
(2)

C0 (mg/L) is the initial concentration of Pb(II), Ct (mg/L) is the concentration of Pb(II) at a certain time
during the process of adsorption, V (mL) is the volume of the Pb(II) solution, m (mg) is the dosage of
adsorbent. Ce is the remaining Pb(II) concentration after the adsorption process reaching equilibrium.
Finally, Equation (3) shows the calculated method of removal ratio (R) of MMMT@Zn-BDC for Pb(II):

R =
C0 − Ce

C0
× 100% (3)

2.5. Reutilization Test

HCl (0.1 mol/L) was used to elute Pb(II) loaded in MMMT@Zn-BDC. The elution process was
as follows: Pb(II)-loaded MMMT@Zn-BDC and the eluent were added into a conical flask, and the
concentration was maintained at 1 g/L. Then, the flask was placed in the oscillator, the eluent was
replaced every 3 h until Pb(II) could no longer be detected in the eluent. After elution, the adsorbent
was freeze-dried and then reused four times to evaluate the relationship between reuse times and the
adsorption capacity.

3. Results and Discussion

3.1. Optimize the Preparation Conditions of MMMT@Zn-BDC

We studied the effects of adding MMT and Zn-BDC on the adsorption capacity and the binding
rate (BR) of MMT and Zn-BDC coated onto the adsorbent to the actual weight added in the reaction
solution. The results are shown in Table 1.

BR =
m
M

× 100% (4)

where m (g) is the mass of MMT and Zn-BDC loaded onto the adsorbent, and M (g) is the weight of
MMT and Zn-BDC inserted in the reaction solution.

According to Table 1, when the mass ratio of MMT to Fe3O4 is 1:1, the BR and the adsorption
capacity showed a good result. Based on the optimal ratio (1:1) of MMT to Fe3O4, we further optimized
the amount of added Zn-BDC. Considering both BR and the adsorption capacity, we chose 1:1 as the
reaction mass ratio of MMMT and Zn-BDC.

Table 1. The effect of the addition of Fe3O4, MMT, and Zn-BDC on the adsorption capacity.

Fe3O4:MMT
(g/g) BR (%) qe (mg/g) MMMT:

Zn-BDC (g/g) BR (%) qe (mg/g)

2:1 97.26 ± 0.32 71.36 ± 0.23 2:1 69.12 ± 0.28 224.66 ± 0.18
1:1 96.83 ± 0.41 98.67 ± 0.19 1:1 66.39 ± 0.57 280.51 ± 0.23
2:3 65.94 ± 0.29 99.06 ± 0.22 2:3 32.94 ± 0.69 281.48 ± 0.35
1:2 49.61 ± 0.30 98.92 ± 0.47 1:2 19.97 ± 0.64 282.04 ± 0.44
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3.2. Characterization

3.2.1. SEM Observation

SEM images of Fe3O4, MMMT, Zn-BDC, and MMMT@Zn-BDC are shown in Figure 2. In Figure 2a,
the morphology of magnetic nanoparticles is agglomerated spherical. After MMT was coated onto
Fe3O4 by co-precipitation method, as shown in Figure 2b, irregular sheet MMT adheres to surface
of Fe3O4. In Figure 2c, Zn-BDC shows an uneven crystal shape and size because it was prepared at
room temperature [35]. In Figure 2d, after Zn-BDC was coated onto MMMT via in situ polymerization,
short, rod-shaped crystals of Zn-BDC appear on the rough surface of the MMMT. The introduction of
MMMT changed the size of the Zn-BDC crystal.
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3.2.2. TEM Analysis

TEM was used to analyze the internal structures and composition of MMMT, Zn-BDC,
and MMMT@Zn-BDC. As shown in Figure 3a, when the amplification size is 500 nm, Fe3O4 particles
are nearly spherical, while the irregular crystals are MMT. Fe3O4 and MMT are distributed almost
in the same plane. It was confirmed that MMMT had been prepared successfully. In Figure 3b, the
Zn-BDC crystals are also irregular, and it shows a slender lamellar structure. After synthesizing
Zn-BDC on the MMMT surface, a slender lamellar structure appeared as can be seen in Figure 3c. It
was concluded that a slender lamellar structure had been prepared successfully.
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3.2.3. N2 Adsorption and Desorption Analysis

Figure 4a shows the results of N2 adsorption and desorption. The adsorption isotherm belongs
to the type II isotherm. With increasing adsorption pressure, the first inflection point of the isotherm
rapidly appears, indicating that monolayer adsorption is complete. As the adsorption pressure
continues to increase, multi-layer adsorption gradually occurs, and when the saturated vapor pressure
is reached, the adsorption layer is infinite. The surface area of MMMT@Zn-BDC was calculated to be
74.35 m2/g by the multipoint BET (Brunauer–Emmett–Teller) method [36], and the pore volume and
pore size were 0.27 cm3/g and 15.48 nm, respectively.
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3.2.4. FTIR Analysis

Figure 4b is the FTIR spectra of MMMT. The peaks at 811 cm−1, 848 cm−1 and 1046 cm−1 belong to
the asymmetric stretching of O–Si–O, deformation vibration of Al–OH–Mg, and stretching vibration of
Si–O. These three characteristic peaks belong to MMT [37]. For MMMT prepared by the co-precipitation
method, the stretching vibration of Fe–O caused a peak at 576 cm−1 [38], and the peak at 3439 cm−1

is the stretching vibration of O–H, which together show that MMMT was synthesized successfully.
The band between 1376 cm−1 and 1589 cm−1 was attributed to the stretching vibration of the carbonyl
group in BDC [39]. After Zn-BDC was coated onto the surface of MMMT, the characteristic absorption
band remained, which shows that Zn-BDC was successfully synthesized on the surface of MMMT.

3.2.5. VSM Analysis

The magnetic properties of MMMT and MMMT@Zn-BDC were studied by VSM analysis,
and the results are shown in Figure 3d. The saturation magnetization of MMMT was 31.88 emu/g.
After MMMT was coated onto Fe3O4, this value decreased to 10.09 emu/g. The decrease in magnetic
properties indicated that Zn-BDC successfully covered MMMT. Good magnetic properties enable
MMMT@Zn-BDC to accumulate rapidly under the external magnetic field. As shown in the inset of
Figure 4d, MMMT@Zn-BDC could be separated by applying an external magnet for 20 s.

3.2.6. XPS Analysis

Figure 5a is the full XPS spectrum of MMMT@Zn-BDC before and after adsorption. The peak of
Fe 2p belongs to Fe3O4, the peaks of Si 2p, Al 2p, Mg(KL23L23) originate from MMT [40], and the Zn 2p
peak is from Zn-BDC. Meanwhile, the Pb4f peak appeared only after loading MMMT@Zn-BDC with
Pb(II), demonstrating that MMMT@Zn-BDC is a good adsorbent for Pb(II). In Figure 5b, the peaks at
725.12 eV and 711.08 eV are characteristic of Fe 2p1/2 and Fe 2p3/2. Notably, the satellite peak of Fe2O3

at 714 eV did not appear in Figure 4b; this is because the peak is covered by the peaks of Fe 2p1/2 and
Fe 2p3/2, which also proves Fe3O4 was successfully prepared [41]. In the C 1s spectrum in Figure 5c,
the peaks at 288.75 eV, 286.14 eV and 284.80 eV belong to C=O, C–O and C–C, respectively [42].
However, as shown in Figure 5d, after loading MMMT@Zn-BDC with Pb(II), the above three peaks
are moved to 288.45 eV, 285.96 eV, and 284.75 eV, respectively. The hydroxyl and carboxyl groups can
complex with Pb(II), and caused the move of the binding energy.
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Figure 5. XPS spectra of MMMT@Zn-BDC: (a) wide scan, (b) Fe 2p; C 1s spectra of (c) MMMT@Zn-BDC
and (d) MMMT@Zn-BDC loaded with Pb(II).

3.3. Optimization of the Adsorption Conditions

3.3.1. Effect of the pH of Pb(II) Solution

A NaOH and HNO3 (0.1 mol/L) solution was used to adjust the pH of the Pb(II) solution from
2 to 6. When the pH is greater than 7, Pb(II) precipitates in the form of Pb(OH)2. Therefore, the pH
was adjusted to 2−6 in this study. The effect of pH value on the adsorption capacity is shown in
Figure 6a. MMMT@Zn-BDC (20 mg) was added to 20 mL Pb(II) with a concentration of 200 mg/L.
The solution was agitated in a rocking bed. The adsorption capacity of MMMT@Zn-BDC to Pb(II) was
then measured at each pH value. When the pH was between 2 and 4, the adsorption capacity increased
rapidly with increasing pH. However, between 4 and 6, the adsorption capacity increased slowly.
The pH of the Pb(II) solution can affect the surface charge of the adsorbent. At a lower pH, the surface
negative charge of MMMT@Zn-BDC is relatively less; thus, its capacity to electrostatically adsorb Pb(II)
is poor. With the increasing pH, the amount of surface negative charge of MMMT@Zn-BDC increases,
which makes it favorable to positively charged Pb(II). This also proves that electrostatic adsorption is
one way that the adsorbent adsorbs Pb(II). Because the initial pH of the 200 mg/L Pb(II) solution was
5.45, when the pH was not adjusted the adsorption capacity was 195.33 mg/g, which is close to that of
the adsorption capacity with a pH of 6. So, there is no need to further adjust the pH.
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3.3.2. Effect of the Adsorbent Dose

Various amounts of MMMT@Zn-BDC (from 10 mg to 40 mg) were separately dispersed in 20 mL
of Pb(II) solution with a concentration of 200 mg/L. Figure 6b shows the effect of the dosage of
MMMT@Zn-BDC on the adsorption capacity. As the dosage of MMMT@Zn-BDC increased from 10 mg
to 40 mg, qe decreased from 326.99 to 99.03 mg/g. At the same time, the removal ratio increased from
81.74% to 99.03%. When the dosage of the adsorbent was low, the amount of Pb(II) was excessive for
the available adsorption sites. At this time, the probability that adsorption sites were occupied was
high, so the adsorption capacity was high. When the dosage of the adsorbent increased, sufficient
adsorption sites were available for Pb(II), so the removal ratio increased while qe decreased because of
a large number of unoccupied adsorption sites exist in the adsorbent. When the adsorbent dosage was
1.0 mg/mL, the removal ratio reached 97.67%. As the adsorbent dosage increased, the change in the
removal ratio was not obvious. Thus, considering the adsorption capacity, we chose 1 mg/ml as the
dosage of the adsorbent for further experiments.
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3.3.3. Effect of the Pb(II) Concentration

The initial concentration of Pb(II) can have serious implications for the adsorption capacity
of MMMT@Zn-BDC. Therefore, we investigated the adsorption capacity of the solution with
concentrations ranging from 10 to 1000 mg/L. Similarly, 20 mg of MMMT@Zn-BDC was separately
dispersed in 20 mL different concentrations of Pb(II) solutions, the results are shown in Figure 6c.
Even if the concentration reached 1000 mg/L, the adsorption was still not saturated but the removal
rate decreased to 71.7% at this concentration. In practical applications, the removal ratio is an important
factor for evaluating the adsorption properties of an adsorbent, so we did not continue to increase the
Pb(II) concentration. With the increase in Pb(II) concentration from 10 to 1000 mg/L, the adsorption
capacity increased from 10 mg/g to 717.01 mg/g. This is because at a higher concentration, excessive
Pb(II) is available for the adsorption sites of MMMT@Zn-BDC, thus, it is easy to capture Pb(II) for the
adsorbent sites. When the concentration of Pb(II) was below 200 mg/L, the lead ions were almost
completely removed, and the removal ratio reached 97.67%. So, the Pb(II) concentration of 200 mg/L
was chosen as the experimental concentration for further experiments.

3.3.4. Effect of Adsorption Time

The relationship between adsorption time and adsorption capacity was also investigated in this
study. MMMT@Zn-BDC (20 mg) was dispersed in 20 mL of Pb(II) solution, and the concentration
remained at 200 mg/L. The adsorption capacities at different times are shown in Figure 6d. During
the primary stage of the adsorption process, the increase in the adsorption capacity is an almost
logarithmic relationship. As adsorption proceeded between 0 and 20min, a large number of free
adsorption sites could rapidly bind Pb(II). As the adsorption time was prolonged, the adsorption sites
gradually become occupied by Pb(II), and the increase in the adsorption capacity started to slow down.
After 90 min of the adsorption process, the adsorption capacity was 195.33 mg/g, and the removal
rate was 97.67%. Beyond this adsorption time, the adsorption capacity remained unchanged. Thus,
the time that the adsorption reached equilibrium was 90min, at the concentration of 200 mg/L.

3.3.5. Effect of the Adsorption Temperature

The adsorption capacity of MMMT@Zn-BDC for Pb(II) was measured from 293.2 K to 308.2 K.
The dosage of the addition of MMMT@Zn-BDC in Pb(II) solution was 1 mg/mL. The effects of
temperature on the adsorption capacity are shown in Figure 6e. With increasing temperature,
the adsorption capacity increased from 194.34 mg/g to 198.21 mg/g. At the same time, the removal rate
increased from 97.17% to 99.11%. The results show that the adsorption process of MMMT@Zn-BDC
for Pb(II) is an endothermic process. Therefore, increasing the temperature is beneficial to the
adsorption process.

3.3.6. Effect of the Recycling Process

Dilute HCl (0.1 mol/L) was used to desorb the Pb(II) loaded on the adsorbent and after detachment
the adsorbent was repeatedly applied to remove Pb(II). The effects of reuse cycles on adsorption
capacity and removal ratio are shown in Figure 6f. With the increasing number of reuses, the
adsorption capacity decreased gradually. After being reused five times, the adsorption capacity
was 160.90 mg/g, that is, the adsorption capacity declined. However, the adsorption rate remained at
80.45%, which shows that MMMT@Zn-BDC has good recyclability.

3.4. Adsorption Mechanism

The adsorption isotherm was determined by the Langmuir and Freundlich models.
The adsorption data were taken from Figure 5c. In general, the Langmuir isotherm model usually
assumes that the adsorption capacity of the adsorption site is uniform, and this isotherm model is
often applied to describe monolayer adsorption processes. On the other hand, the Freundlich isotherm
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model is used to describe the effect of the adsorbate concentration on the adsorption capacity and
whether adsorption is prone to occur. The two equations of the adsorption isotherms are as follows:

Langmuir equation :
Ce

qe
=

1
bqm

+
Ce

qm
(5)

Freundlich equation : lgqe = lgKF +
1
n

lgCe (6)

where the maximum adsorption capacity (qm, mg/g) can be obtained from the Langmuir model, b and
n are the constants of Langmuir and Freundlich isotherm models, respectively, and KF is a constant
representing the adsorption capacity. RL is a dimensionless constant for Langmuir isotherm model,
and it is used to determine whether the adsorption behavior is preferential adsorption. The equation is
as follows:

RL =
1

1 + bC0
(7)

Figure 7a,b shows the curves fitted by the Langmuir and Freundlich isotherm models, Table 2
shows all of the related parameters while the correlation coefficients (R2) fitted by the Langmuir and
Freundlich isotherm models are 0.9850 and 0.9239, respectively. According to its higher correlation
coefficient, the adsorption process of MMMT@Zn-BDC for Pb(II) is better described by the Langmuir
isotherm model, which indicates that Pb ions do not interact. The adsorption capacity of each site on
the adsorbent is the same, and monolayer adsorption accords with the adsorption process. Moreover,
qm reached 724.64 mg/g. In Table 3, the calculated RL values are all less than 1, therefore, it can be
concluded that this adsorption process is favorable [43].

Table 2. Langmuir and Freundlich models’ parameters for removing Pb(II) with MMMT@Zn-BDC.

T (K)
Langmuir Isotherm Freundlich Isotherm

qm (mg/g) b (L/mg) R2 KF n R2

298.2 724.64 0.047 0.9850 110.07 3.03 0.9239

Table 3. RL for Pb(II) removal by MMMT@Zn-BDC.

C0 (mg/L) 10 50 100 200 300 500 800 1000

RL 0.68 0.30 0.18 0.096 0.066 0.041 0.026 0.021

Diffusion is the main adsorption mode for adsorption processes conforming to a pseudo-first-order
kinetics model. The adsorption process that accords with this model, only have one kind of binding site
while the adsorption process that accords with the pseudo-second-order model is chemical adsorption,
which involves the sharing or transfer of electron pairs between the adsorbent and the adsorbate.

Pseudo − first − order equation : ln(qe − qt) = ln qe − k1t (8)

Pseudo − sec ond − order equation :
t
qt

=
1

k2q2
e
+

t
qe

(9)

k1 (1/min) and k2 (g/mg·min) are the constants in these two models. The linear equation fitted by
the above two models is shown in Figure 7c,d, and the parameters were calculated and are shown in
Table 4. The correlation coefficient (R2) of the pseudo-second-order kinetics model is 0.9999, and the
qe,cal is 194.93 mg/g; this result is similar to the experimental result (195.33 mg/g). Meanwhile, the R2

of the pseudo-first-order kinetics model is 0.9566, and the qe,cal is 8.71.Therefore, we can conclude that
the adsorption process of MMMT@Zn-BDC on Pb(II) fits the pseudo-second-order kinetics model,
combined with the hypothetical premise of the pseudo-first-order kinetics, the adsorption process of
MMMT@Zn-BDC for Pb(II) is chemical adsorption [44].
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Table 4. The kinetic models’ parameters of the Pb(II) adsorption process by MMMT@Zn-BDC.

qe,exp
Pseudo-First-Order Model Pseudo-Second-Order Model

qe,cal k1 R2 qe,cal k2 R2

197.63 8.71 0.02390 0.9566 194.93 0.02521 0.9999
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Moreover, the adsorption capacity changes in the range of 293.2 K to 308.2 K were also investigated.
These data were used to study the adsorption thermodynamics, and the relevant parameters were
calculated by Equation (10):

∆G = −RT ln
qe

Ce
= −RT(−∆H

RT
+

∆S
R

) (10)

where ∆G (kJ/mol), ∆H (kJ/mol) and ∆S (kJ/mol) represent Gibbs free energy, enthalpy and entropy,
respectively. T (K) is the thermodynamic temperature, and R is the gas constant. Table 5 shows the
calculated results.

Table 5. The parameters of thermodynamics for the Pb(II) adsorption process on MMMT@Zn-BDC.

∆ G (kJ/mol)
T (K) ∆ H

(kJ/mol)
∆ S

(J/mol·K)
293.2 298.2 303.2 308.2

−8.62 −9.26 −10.74 −12.06 60.779 0.2359
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The negative ∆G indicates that the adsorption process of MMMT@Zn-BDC for Pb(II) is
endothermic and spontaneous under constant pressure. Meanwhile, ∆H is greater than 40 kJ/mol,
indicating that the adsorption process is chemisorption. This conclusion is in agreement with the
adsorption kinetics model. Therefore, a higher temperature is beneficial to the adsorption process.

In general, based on the results of the optimization process of the adsorption conditions,
the adsorption capacity of MMMT@Zn-BDC for Pb(II) suffers most with changes in the pH.
The hydroxyl and carboxyl groups of the adsorbent surface are not easily dissociated when the
pH is lower than 2. Moreover, a high concentration of hydrogen ions is not conducive to ion exchange
between MMMT and Pb(II). At a higher pH, hydroxyl and carboxyl groups are easier to dissociate,
and these dissociated hydroxyl and carboxyl groups easily form complexes with Pb(II). The study
of adsorption kinetics and adsorption thermodynamics confirmed that the adsorption process is
chemisorption, as shown schematically at different pH values in Figure 8.Polymers 2018, 10, x FOR PEER REVIEW  13 of 16 
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In this study, MMMT@Zn-BDC is a type of composite material. In order to further understand
the advantages of MMMT@Zn-BDC for the adsorption of Pb(II), we compared MMMT@Zn-BDC with
the qm and equilibrium time of the adsorption of several reported adsorbents (Table 6).

Table 6. Comparison of the adsorption capacity of MMMT@Zn-BDC for Pb(II) with that of other
composite materials.

Sorbent qm (mg/g) Adsorption Time Ref.

AS-ACI 133.3 150 [45]
Mg2Al–CO3–LDH 123 120 [46]

m-CS/PVA/CCNFs 175.4 200 [47]
Zr-MOF 166.74 120 [48]

MIL-101-NH2@SA 529.10 180 [49]
MMMT@Zn-BDC 724.64 90 This work

4. Conclusions

For the first time, we prepared a magnetic composite material by combining Fe3O4, MMT and
Zn-BDC using a co-precipitation method and in situ polymerization. This magnetic compound
was applied to adsorb Pb(II). Based on the results of adsorption isotherm and adsorption kinetics,
the adsorption behavior is in accordance with the Langmuir isotherm model and pseudo-second-order
kinetics model, and the process of MMMT@Zn-BDC adsorbing Pb(II) is endothermic. The time
required to reach adsorption equilibrium is 90 min. In addition, MMMT@Zn-BDC also exhibited
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excellent recycling performance. The removal rate remained at 80.45% after recycling five times.
Its easy separation and sustainability make MMMT@Zn-BDC a superior adsorbent for removing Pb(II).
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