

Supplementary Materials

Cobalt-doped Porous Carbon Nanosheets Derived from 2D Hypercrosslinked Polymer with CoN₄ for High Performance Electrochemical Capacitors

Yuanhai Chen ¹, Fengru Liu ¹, Feng Qiu ^{1,2,*}, Chenbao Lu ³, Jialing Kang ¹, Doudou Zhao ¹, Sheng Han ^{1,*} and Xiaodong Zhuang ^{3,*}

- ¹ School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, Shanghai 201418, China; <u>yuanhai charles@163.com</u> (Y.C.); <u>lfru0719@163.com</u> (F.L.); <u>176061210@mail.sit.edu.cn</u> (J.K.); <u>176062121@mail.sit.edu.cn</u> (D.Z.)
- ² School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
- ³ School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; <u>castle@sjtu.edu.cn</u>
- * Correspondence: <u>feng.qiu@bristol.ac.uk</u> (F.Q.); <u>hansheng654321@sina.com</u> (S.H.); <u>zhuang@situ.edu.cn</u> (X.Z.)

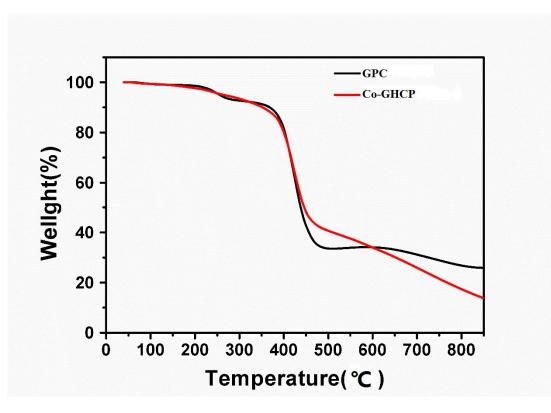
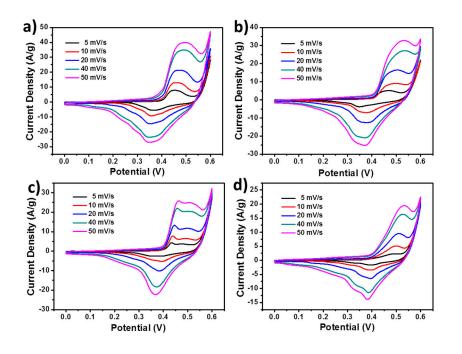
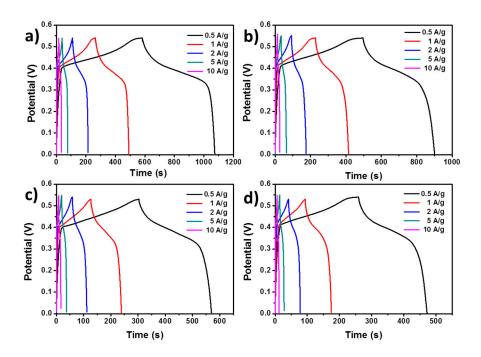




Figure S1. Thermo-gravimetric analysis (TGA) curve of Co-GHCP and GPC.

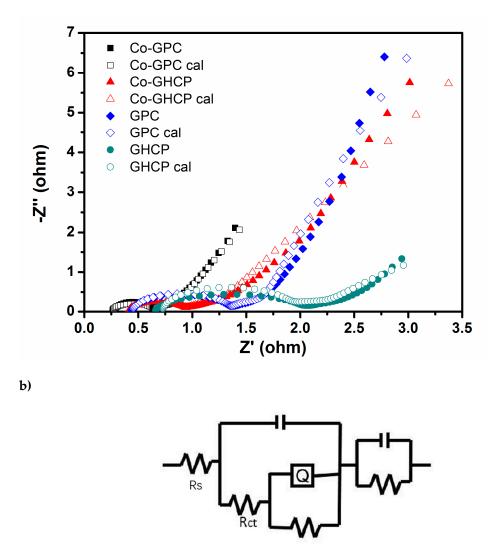


Figure S2. CV curves of (a) Co-GPC, (b) Co-GHCP, (c) GPC and (d) GHCP electrodes at various scan rates of 5, 10, 20, 40 and 50 mV s⁻¹ in the range of 0~0.6 V.

Figure S3. The galvanostatic charge-discharge curves of (a) Co-GPC, (b) Co-GHCP, (c) GPC and (d) GHC electrodes at various specific currents of 0.5, 1, 2, 5 and 10 A g^{-1} in the range of 0~0.54 V.

a)

Figure S4. (a) The magnified EIS plot of the low frequency region (solid: experimental data; open: fitting data); (b) the equivalent circuit used for fitting of EIS data.

Sample	Rct (Ω)	Rs (Ω)		
Co-GPC	0.28	0.26		
Co-GHCP	0.35	0.42		
GPC	0.47	0.45		
GHCP	0.38	0.72		

Table S1. The charge-transfer resistance values (Rct) and the solution resistance values (Rs) of the samples as electrodes of supercapacitors in 1 M KOH.

Table S2. Comparison of capacitance performance with other porphyrin-containing		
porous polymers or porous carbons.		

Sample	Electrolyte	Maximum Cs	Rate performance	Reference	
Co-doped porous carbons		455 F g ⁻¹ at 0.5	Cs retention of		
nanosheets from 2D	1 M KOH	A g-1	69.2% at 10 A g ⁻¹	This	
hypercrosslinked polymer		418 F g ⁻¹ at 1.0	Cs retention of	work	
containing Co porphyrin		A g-1	75.4% at 10 A g ⁻¹		
2D CoSNC		360.1 F g ⁻¹ at	C _s retention of		
nanocomposites from	2 M KOH	1.5 A g ⁻¹	74.3% at 15.0 A g ⁻¹	Ref. 1	
porphyrin-based MOF		1.5 A g 1	74.5 % at 15.0 A g ⁻		
Microporous	0.1 M	142 F g ⁻¹ at 5.0	Cs retention of	Ref. 2	
Poly(zincporphyrin)	Bu4NPF6	A g-1	~70% at 50 A g-1		
Cu-porphyrin@PPy	0.5 M	~496 F g ⁻¹ at 1.0	Cs retention of	Dof 2	
nanocomposites	H_2SO_4	A g-1	~57% at 10 A g-1	Ref. 3	
Fe-doped porous carbon					
from Fe porphyrin-based	1 M H ₂ SO ₄	~182 F g ⁻¹ at 1.0	Cs retention of	Ref. 4	
microporous conjugated	1 101 1 12504	A g-1	~67 % at 10 A g ⁻¹	Kel. 4	
polymer					
Nanoporous carbons from	1 M H ₂ SO ₄	425 F g ⁻¹ at 2.0	Cs retention of	Ref. 5	
porphyrin-based MOF	1 IVI I 12304	A g-1	~57.4 % at 10 A g^{1}	Kel. J	
Fe-doped porous carbons		380 F g-1 at 1.0	C _s retention of		
from Fe porphyrin-based	-	0			
coordination polymers		A g-1	~52 % at 10 A g ⁻¹	Ref. 6	
Co-doped porous carbons		100 F g-1 at 1.0	C _s retention of	Kei. 0	
from Co porphyrin-based	-	Ũ			
coordination polymers		A g-1	~35 % at 10 A g ⁻¹		

Reference

- F. Cao, M. Zhao, Y. Yu, B. Chen, Y. Huang, J. Yang, X. Cao, Q. Lu, X. Zhang, Z. Zhang, C. Tan, H. Zhang, Synthesis of Two-Dimensional CoS1.097/Nitrogen-Doped Carbon Nanocomposites Using Metal–Organic Framework Nanosheets as Precursors for Supercapacitor Application, Journal of the American Chemical Society, 138 (2016) 6924-6927.
- H. Zhang, Y. Zhang, C. Gu, Y. Ma, Electropolymerized Conjugated Microporous Poly(zincporphyrin) Films as Potential Electrode Materials in Supercapacitors, Advanced Energy Materials, 5 (2015) 1402175.
- H. Yao, F. Zhang, G. Zhang, H. Luo, L. Liu, M. Shen, Y. Yang, A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor, Chemical Engineering Journal, 334 (2018) 2547-2557.
- A.C. Lim, H.S. Jadhav, J.G. Seo, Electron transport shuttle mechanism via an Fe-N-C bond derived from a conjugated microporous polymer for a supercapacitor, Dalton Transactions, 47 (2018) 852-858.
- T.H. Chang, C. Young, M.H. Lee, R.R. Salunkhe, S.M. Alshehri, T. Ahamad, M.T. Islam, K.C.W. Wu, M.S.A. Hossain, Y. Yamauchi, K.C. Ho, Synthesis of MOF-525 Derived Nanoporous Carbons with Different Particle Sizes for Supercapacitor Application, Chemistry–An Asian Journal, 12 (2017) 2857-2862.
- 6. S. Jin, J.P. Hill, Q. Ji, L.K. Shrestha, K. Ariga, Supercapacitive hybrid materials from the thermolysis of porous coordination nanorods based on a catechol porphyrin, Journal of Materials Chemistry A, 4 (2016) 5737-5744.