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Abstract: Porous polym er materials have received great interest in both academic and industrial
fields due to their wide range of applications. In this work, a porous polyamide 6 (PA6) material was
prepared by a facile solution foaming strategy. In this approach, a sodium carbonate (SC) aqueous
solution acted as the foaming agent that reacted with formic acid (FA), generating CO2 and causing
phase separation of polyamide (PA). The influence of the PA/FA solution concentration and Na2CO3

concentration on the microstructures and physical properties of prepared PA foams were investigated,
respectively. PA foams showed a hierarchical porous structure along the foaming direction. The mean
pore dimension ranged from hundreds of nanometers to several microns. Low amounts of sodium
salt generated from a neutralization reaction played an important role of heterogeneous nucleation,
which increased the crystalline degree of PA foams. The porous PA materials exhibited low thermal
conductivity, high crystallinity and good mechanical properties. The novel strategy in this work
could produce PA foams on a large scale for potential engineering applications.

Keywords: foams; polyamide; crystalline; thermal conductivity; mechanical property

1. Introduction

Polyamide 6 (PA6), also known as Nylon 6, is widely known for its high impact resistance,
good toughness, abrasion resistance and strength. Due to its excellent physical properties, PA6 is
widely used in industry, for example, as textile fibers and engineering polymer composites [1]. It is
expected that PA6 can be processed into lightweight products that are used in the field of insulation
and cushioning.

Porous polymer materials have attracted wide attention from both industry and academia.
Depending on the application, the porous material must meet specific requirements. Thus, great effort
has been invested in the manipulation of their properties. Besides the material composition, the porous
structure plays a crucial role when it comes to the tailoring of porous materials [2]. Traditional polymer
foams, for example, expanded polystyrene, are produced from polymer melts and blowing agents [3].
They are usually used in fields such as packaging, insulation, and impact protection. Supercritical fluid
foaming technology is developed to manufacture microcellular foams with the cell size in the order
of 1–100 µm. In this process, gas diffuses into polymers and then bubbles nucleate in a gas–polymer
system at a high temperature [4]. Thermoplastic microcellular foams with improved properties are
obtained for possible engineering applications [5].

Recently, alternative strategies have been designed to process polymers into functional porous
materials. High-internal-phase emulsions polymerization used water-in-oil emulsions as templates
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to construct cellular structures in subsequent synthesized polymers [6–8]. Anionic polymerization
realized a porous structure by controlling the phase separation and growth of spherulitic domains
during polymerization [9]. Foam-like cryogels were produced by sublimating ice templates from
frozen polymer gels via freeze-drying [10,11]. Nanoporous aerogels were also fabricated from wet
gels by sol-gel chemistry via supercritical drying technique [12,13]. The phase inversion method
generated pores in wet phase using solvents exchange and then porous monoliths were obtained
after drying at ambient pressure [14,15]. However, supercritical drying and freeze-drying are slow
and energy-consuming, making the large-scale production of aerogels very expensive and risky.
Solvent exchange in phase inversion is not environmentally friendly and is also time-consuming.
The polymerization method usually suffers from complicated processing. New strategies with high
efficiency and low cost are desirable to produce novel porous materials on a large scale.

In the present work, we report an efficient, low-cost and template-free method for manufacturing
polyamide (PA) foams. In this process, Na2CO3 aqueous solution, used as a foaming agent, was injected
into a PA/formic acid (FA) solution. The reaction between Na2CO3 and FA induced phase separation
of PA and formed the cell walls of porous materials. Meanwhile, CO2 was generated, and bubbles
were nucleated in polymer solution by creating a thermodynamic instability. The influence of foaming
parameters, that is, concentration of PA/FA solution and Na2CO3 aqueous solution, on microstructures,
crystallinity, compressive mechanical properties and thermal conductivity were investigated.

2. Materials and Methods

2.1. Material

Polyamide 6 (PA6) with a molecular weight of 20,000 was brought from Ube Industries (Osaka,
Japan). Sodium carbonate (SC) and formic acid (FA) were produced by Tianjin Fengchuan chemical
reagents (Tianjin, China). All chemical reagents were used as received.

2.2. Preparation of PA Foams

The preparation process of PA foams is illustrated in Figure 1. Nylon-6 pellets were dissolved in
anhydrous formic acid with a desirable concentration through magnetic stirring at room temperature
for 3 h. Meanwhile, sodium carbonate (SC) solutions with desirable content were prepared by
dissolving SC particles in deionized (DI) water. Then, 6 mL of transparent PA/FA solution were
transferred into a cylinder mold with a diameter of 30 mm and height of 20 mm. Subsequently,
excessive SC solutions were injected into the mold through a syringe. Large amounts of CO2 were
generated by the neutralization reaction and bubbles nucleated in the viscous solution. Along with the
PA molecules separated from the solvent, the bubbles grew, foaming the porous structure. The obtained
porous materials were washed with DI water four times and dried in an oven at a temperature of
60 ◦C for 6 h. Samples prepared were named by PA concentration followed by blow agent solution
(SC) percentage according to the processing parameters, for example, 12PA-3SC.
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2.3. Characterizations

A field emission scanning electron microscope (ZEISS GeminiSEM 500, Oberkochen, Germany)
was used to characterize the macroporous structures of the sample. Prior to observation, all the samples
were cryo-fractured by immersing them in liquid N2 (−196 ◦C), and were then sputtered with gold to
ensure sufficient conductivity. Pore diameters of foams were measured using Image J software.

Differential scanning calorimetry (DSC) was performed using a 200F3 equipment (Netzsch,
Ahlden, Germany) following the procedure described below. A 10 mg tested sample was loaded
in an aluminum pan and first heated from 25 ◦C to 280 ◦C at a heating rising ramp of 10 ◦C/min.
The pan was held at 280 ◦C for 5 minutes and then cooled to 25 ◦C at the same temperature ramp.
The crystallinity (Xc) of porous PA6 was calculated according to the first melting curve using the
following equation:

Xc(%) =
∆Hm

∆Hc
× 100

where ∆Hc for 100% crystalline PA6 is 188 J/g [16].
Wide-angle X-ray diffraction (WAXD) patterns were recorded in a D8 Discover X-ray diffractometer

(Bruker, Karlsruhe, Germany) with CuKα radiation (λ = 0.154 nm).
The bulk densities (ρb) of PA foams were calculated by the division of mass to volume of cylindrical

samples. Five samples were used to evaluate each composition.
The thermal conductivity of sample was measured using a TPS 2500S equipment (Hot Disk,

Uppsala, Sweden) based on ISO 22007-2.2. Prior to testing, two prepared cylinder samples with flat
bottoms were prepared by slight polishing. A thermo sensor probe was placed between the two
samples during the tests.

Compression tests were performed using a universal testing machine (Hongda, Beijing, China)
with a load cell of 5 kN. The crosshead rate and maximum strain were set to 1 mm/min and 60%,
respectively. To determine the elastic modulus, compression tests with intermittent unloading (to zero
force) and reloading were conducted additionally at ambient condition (20 ◦C and 65% humidity).
Five replicas were tested for each composition.

3. Results and Discussion

3.1. Morphologies

Each sample was characterized at a similar position and the corresponding SEM images of PA
foams are shown in Figure 2. It was found that the microstructures of three-dimensional PA foams
depended on two factors, including the amount of CO2 produced by reaction of Na2CO3 (SC) and
formic acid (FA) and the separation rate of PA molecules from FA. Irregular porous structures were
generated when 3 wt % of SC solution was used as a blowing agent, as seen in Figure 2a–c. This was
because the low foaming power resulted from the low concentration of SC. With the increase of SC
concentration, cellular structures appeared and the pores decreased in dimensions. For instance,
when the concentration of SC increased from 5% to 9% with fixed 16 wt % PA, the average cell diameter
of corresponding samples reduced from 2.2 to 0.75 µm (Figure 2e,k). This change of microstructure
could be attributed to two factors: On one hand, higher concentration of SC solution generated larger
amounts of CO2, thereby leading to a high pressure in the bubble, which could refine the cellular
structure and reduce the pore size [17]. On the other hand, nucleation sites for polymers during the
foaming stage increased due to the heterogeneous nucleation effect of sodium salts generated from
the neutralized reaction. This limited the expansion of bubbles and therefore made the obtained PA
foams have smaller pores with even distribution [18]. However, when the concentration of SC was
9%, excessive pressure in the mold intensified the combination of air bubbles, causing defects in the
cellular structure and uneven distribution of pore dimension, as seen in Figure 2j.

Sample 12PA-5SC showed an irregular porous structure (Figure 2d). When a proper fraction of
SC solution was used, a higher PA concentration led to greater viscosity of the solution. This was
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able to enhance homogeneous nucleation, generating a more regular internal structure (Figure 2e,f).
Moreover, the increase of viscosity may affect the expansion of bubbles and retard the growth of foams,
resulting in smaller pores and thicker cell walls [19].

In general, both solution viscosity and foaming rate could affect the morphologies of the prepared
PA foams. The released CO2 amount and the viscosity of solution should be adjusted to obtain the
optimal cellular structure. Both PA concentration and SC content had a critical influence.
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Figure 2. SEM images of PA foams with different compositions and their corresponding pore’s size
distribution: (a) 12PA-3SC; (b) 16PA-3SC; (c) 18PA-3SC; (d) 12PA-5SC; (e) 16PA-5SC; (f) 18PA-5SC;
(g) 12PA-7SC; (h) 16PA-7SC; (i) 18PA-7SC; (j) 12PA-9SC; (k) 16PA-9SC; (l) 18PA-9SC.

The structural changes of PA foams along the foam growth direction were studied by taking
sample 16PA-5SC as a representative. Figure 3 shows the morphologies of three positions of bulk
sample from bottom to top (foaming direction). The average pore diameter, pore size distribution and
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cell wall thickness of the porous material had a hierarchical change along the direction of foaming.
The close pore percentage was relatively high at the beginning of foaming, resulting in an average pore
diameter of ~2 µm in the bottom of the sample (Figure 3c). As the foam grew, the mold’s space was
progressively occupied. Continuous CO2 release increased the pressure on the mold, which increased
the open cell content and decreased the mean pore diameter to 0.5 µm (Figure 3a) [20].

Polymers 2018, 10, x FOR PEER REVIEW  5 of 11 

 

and cell wall thickness of the porous material had a hierarchical change along the direction of foaming. 
The close pore percentage was relatively high at the beginning of foaming, resulting in an average 
pore diameter of ~2 μm in the bottom of the sample (Figure 3c). As the foam grew, the mold’s space 
was progressively occupied. Continuous CO2 release increased the pressure on the mold, which 
increased the open cell content and decreased the mean pore diameter to 0.5 μm (Figure 3a) [20]. 

 
Figure 3. SEM images of the structural changes and pore size distribution along the foaming direction: 
(a) top, (b) middle and (c) bottom part of 16PA-5SC. 

3.2. DSC Analysis 

The effect of processing parameters on crystalline properties was studied by DSC. The first 
heating curve and the first cooling pattern are shown in Figure 4. Information such as crystallinity 
(X), crystallization temperature (Tc) and melting temperature (Tm) provided by DSC analysis are 
included in Table 1. PA6 polymer showed a single melting peak at 226.3 °C. However, the prepared 
PA foams in this work exhibited a multiple melting phenomenon. The sodium salts played a role of 
heterogeneous nucleation and crystal nuclei formed rapidly at a high temperature (230–240 °C). 
Crystals grew by a polymer chain segments arrangement on the surface of nuclei, making the PA 
foams have a melting peak at ~265 °C. Another melting peak was located at the low temperature side 
(~216 °C), which was lower than the Tm of raw PA6, indicating that the foaming process was not 
beneficial for lamellae stacking. This was possible due to the generated CO2, which prevented the 
arrangement and stacking of polymer chain segments. In addition, the prepared PA foams had much 
higher crystalline degree than raw PA6, as shown in Table 1, resulting from the heterogeneous 
nucleation effect of generated sodium salts.  

Figure 3. SEM images of the structural changes and pore size distribution along the foaming direction:
(a) top, (b) middle and (c) bottom part of 16PA-5SC.

3.2. DSC Analysis

The effect of processing parameters on crystalline properties was studied by DSC. The first
heating curve and the first cooling pattern are shown in Figure 4. Information such as crystallinity (X),
crystallization temperature (Tc) and melting temperature (Tm) provided by DSC analysis are included
in Table 1. PA6 polymer showed a single melting peak at 226.3 ◦C. However, the prepared PA foams in
this work exhibited a multiple melting phenomenon. The sodium salts played a role of heterogeneous
nucleation and crystal nuclei formed rapidly at a high temperature (230–240 ◦C). Crystals grew by a
polymer chain segments arrangement on the surface of nuclei, making the PA foams have a melting
peak at ~265 ◦C. Another melting peak was located at the low temperature side (~216 ◦C), which was
lower than the Tm of raw PA6, indicating that the foaming process was not beneficial for lamellae
stacking. This was possible due to the generated CO2, which prevented the arrangement and stacking
of polymer chain segments. In addition, the prepared PA foams had much higher crystalline degree
than raw PA6, as shown in Table 1, resulting from the heterogeneous nucleation effect of generated
sodium salts.

By increasing SC solution concentration to 7%, the crystallinity increased. Sodium salts generated
from neutralization in the PA matrix played an important role for heterogeneous nucleation.
The nucleation sites increased and the crystallizing rate also increased, which shortened the time for
segmental rearrangement to a certain extent [21]. However, when the SC concentration increased
to 9%, the crystallinity dropped. Large quantities of sodium salt caused competition for nucleating
sites, preventing heterogeneous nucleation, as seen in the crystallizing pattern in Figure 4d [22,23].
In addition, 16PA-9SC exhibited multiple crystallizing peaks. Rapid and massive nucleation inhibited
the growth of crystals and produced a large amount of non-perfect crystals in the polymer matrix.

When the PA concentration increased from 12% to 16%, no significant change was observed of the
crystallinity in the foams. Higher crystallinity was obtained by further increasing the PA concentration
to 18%. Nucleation and diffusion were the two factors determining crystallization behaviors of PA
foams [24]. With an increase of PA concentration, the nucleation rate was increased. Meanwhile,
the diffusion speed and growth rate of the crystal nucleus slowed down due to increased viscosity of
solutions [25]. Therefore, PA molecular chain segments had sufficient time to rearrange, resulting in a
significant increase of the crystallinity.
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Figure 4. Differential scanning calorimetry (DSC) patterns of raw PA6 and PA foams. (a,b): first melting
scans; (c,d): first cooling scans.

Table 1. Crystalline melting temperature and crystallinity of PA foams.

Samples X1 (%) X2 (%) X (%) Tm1 (◦C) Tm2 (◦C) Tc1 (◦C) Tc2 (◦C)

Raw PA6 25.4 / 25.4 226.3 / 165.5 /
16PA-3SC 13.6 34.7 48.3 215.9 263.9 178.2 237.9
16PA-5SC 20.9 29.8 50.7 215.5 264.3 176.1 233.4
16PA-7SC 17.1 40.2 57.3 215.8 264.0 178.5 234.3
16PA-9SC 17.3 31.6 48.9 217.8 265.3 174.0 /
12PA-5SC 24.1 29.0 53.1 216.9 265.6 176.4 227.9
14PA-5SC 9.4 45.4 54.8 216.7 264.1 179.5 233.6
18PA-5SC 26.7 35.2 61.9 216.8 264.0 177.8 240.4

3.3. WAXD Analysis

WAXD was carried out to investigate the crystalline morphologies of porous PA6 samples.
The corresponding spectra of representative samples are shown in Figure 5. The main diffraction peaks
are shown at 2 = 20.2◦ and 24.1◦, attributed to the (200) and (002) crystal planes of the α crystal phase,
respectively [26]. There was no crystal transformation taking place in PA foams prepared by different
processing parameters. It can be concluded that there is no certain connection between the multiple
melting peaks in DSC analysis and the melting of polymorphic structure of polymers.
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3.4. Thermal Conductivity

Heat transfer within foams is composed of four distinct mechanisms [27]:

λ f oam = λs + λg + λr + λc

where λs and λg represent the thermal conductivity of the solid and the gas, respectively, λr is the
thermal radiation term and λc represents the convection within the cell. λc can be ignored when cell
size is less than 3 mm [28].

The thermal conductivity of the porous material was very sensitive to their bulk density [29].
An increase of PA concentration increased the bulk densities of PA foams, leading to a higher
contribution of λs and a smaller fraction of λg [30]. Therefore, higher thermal conductivity was
obtained, as shown in Figure 6.
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As the SC concentration increased at a fixed PA content, no significant change occurred on the
bulk density. However, the thermal conductivity of PA foams decreased slightly [31]. Two factors
contributed to this phenomenon. First, the dimensions of pores decreased when a greater amount of
SC was used, increasing the specific surface area of PA foams. As a result, the efficiency of internal
gas collision and the radiation heat transfer decreased [5]. Second, higher SC concentration increased
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the amount of non-perfect crystals. This change of microstructure increased interfacial thermal
conductivity, consuming more energy through scattering between different crystalline regions [32].

3.5. Mechanical Properties

The compressive curves of prepared PA foams are shown in Figure 7a. The corresponding
mechanical properties, such as compressive stress at 60% of strain (σ60%) and energy absorbed (Ea),
are summarized in Table 2. The energy absorbed was taken at 60% strain. Notably, the prepared foams
displayed a “zero-yield-stress” phenomenon, except for 18PA-5SC, possibly due to imperfections on the
end surfaces and some premature localized plastic deformation. Therefore, elastic moduli of samples
were determined by a corrected method described in a previous report [33]. The corresponding
stress–strain curves from uniaxial compression tests with intermittent unloading-reloading are shown
in Figure 7b. The measured values of moduli (E) are included in Table 2.
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Table 2. Compressive mechanical properties of PA foams.

Samples ρb (g/cm3) E (MPa) σ60% (MPa) Ea (kJ)

16PA-3SC 0.096 ± 0.002 1.38 ± 0.15 1.08 ± 0.05 231.8 ± <0.1
16PA-5SC 0.095 ± 0.002 1.33 ± 0.10 1.23 ± 0.06 239.2 ± <0.1
16PA-7SC 0.092 ± 0.002 1.29 ± 0.07 1.12 ± 0.03 238.8 ± <0.1
16PA-9SC 0.090 ± 0.001 1.05 ± 0.06 0.96 ± 0.02 198.2 ± <0.1
12PA-5SC 0.066 ±< 0.001 1.02 ± 0.07 0.92 ± 0.02 199.5 ± <0.1
14PA-5SC 0.082 ± 0.001 1.14 ± 0.04 1.21 ± 0.04 237.1 ± <0.1
18PA-5SC 0.101 ±<0.001 4.74 ± 0.08 1.53 ± 0.05 403.7 ± <0.1

When the PA content was 16% in solution, E decreased with the increase of SC content used.
This can be attributed to the increased microstructural defects in pore walls caused by higher foaming
power when larger quantities of SC were added. PA foams prepared from 5% SC foaming agent had
the highest compressive stress (σ60%) and greatest energy absorbed (Ea). This was because a more
regular cellular structure was obtained for this composition. Lower or higher foaming power increased
the structural defects in PA foams. When the concentration of SC increased from 3% to 5%, the cellular
structures of the PA foams became more regular. More cell walls were bent when the materials were
subjected to an external force. Therefore, more energy was absorbed [34]. Further increases of SC
concentrations caused an excessive growth of cells, resulting in cell merger and collapse. This caused
structural defects in cell walls, reducing the absorption of energy [35].

As PA concentration increased at 5% SC solution, PA foams with improved mechanical properties
were obtained. First, bulk densities of PA foams increased as higher quantities of PA were used,
resulting in thicker cell walls that could withstand higher loads. Second, the crystalline degree of
materials increased due to the homogeneous nucleation effect, as mentioned in DSC analysis [36].
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Moreover, the prepared PA foams displayed a hierarchal porous structure along the foaming direction
as shown in Figure 3. This structure made the PA foams an excellent material for cushioning. The PA
foams obtained from 18 % PA absorbed 403.7 kJ of energy at 60% of strain.

4. Conclusions

Porous PA materials were prepared from a PA/FA solution by a facile solution foaming strategy.
The obtained PA foams showed a hierarchical porous structure along the foaming direction and
the pore size ranged from 0.5 to 3 µm. By increasing the SC concentration, the foaming power and
the nucleation sites increased, decreasing the pore’s dimension in foams. The size of pores also
reduced as PA concentration increased because of the limited bubble expansion induced by the greater
viscosity. The crystalline degree of PA foams increased with the increase of PA concentration due
to the homogeneous nucleation effect. Sodium salt generated from neutralization mainly played a
role of heterogeneous nucleating agent. A critical content of SC was found to produce PA foams with
more regular cells and higher crystalline degree. Moreover, no crystal phase transformation occurred
during the foaming process. The increase of concentration of SC solution had a minor effect on the
bulk density of foams. However, it diminished the thermal conductivity of foams by increasing the
interfacial thermal loss between different crystalline regions. Prepared PA foams exhibited low thermal
conductivity and good mechanical properties. The novel strategy in this work could extensively
produce PA foams for a range of practical applications such as thermal insulation, cushioning and
adsorption, etc.
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