Supplemental Material

${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) spectra of PGSA prepolymer were recorded using VNMRS-700 NMR spectrometer. The replacement of hydroxyl group by acrylate group is confirmed by the appearance of the peaks at $5.9,6.2$ and 6.4 ppm . The ester bond formation of secondary alcohol on tri-substituted glycerol is confirmed at 5.3 ppm and the resonance of protons from mono-substituted glycerol is confirmed at 3.7 ppm . The region of resonance of protons from sebacic acid is labeled on figure between 1-2.4 ppm. According to the work of Nijst et al., the degree of acrylation was calculated from the ${ }^{1} \mathrm{H}$ NMR[1]. In this work, the degree of acrylation was calculated by the following equation:

$$
\text { Degree of acrylation }=\frac{\text { the average integral of acrylate gruop }}{\text { the average integral of sebacic acid }}
$$

The degree of acrylation in PGSA30 is calculated by integral of acrylate group $(1.000+0.774+1.071) / 3$ divided by the integral of sebacic acid (12.648)/4. Then the degree of acrylation in PGSA30 is 29.99%, as shown in Figure S1 (a). In addition, the degree of acrylation in PGSA15 and PGSA7 are 14.38% and 6.85% respectively, and are shown as Figure S1 (b) and Figure S1 (c).

Figure S1 The ${ }^{1} \mathrm{H}$ NMR spectra of (a) PGSA30, (b) PGSA15 and (c) PGSA7, where sebacic acid is marked at region " a " and the hydrogen atoms on glycerol are shown in region " b " and " c ". Region "d" represents the hydrogen atoms of the acrylate group on PGSA backbone, which indicates a successful synthesis.

In Figure S2, ${ }^{1} \mathrm{H}$ NMR analysis is also performed on the PCLDA synthesized.

Figure S2 The ${ }^{1} \mathrm{H}$ NMR spectrum of PCLDA. The region " a " represents the hydrogen atoms of the acrylate group on PCLDA. On the other hand, region " b " indicates the hydrogen atoms on the PCLDA backbone.

The thermal properties of the DLP-AM printed films, including PGSA15, PGSA30, PCLDA, PEGDA and the polymer blends, were characterized through a TA-Q20 DSC (Thermal Analysis Co., USA). The measurements were carried out at a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ from $-80^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ under a nitrogen flow. The DSC graphs are shown in Figure S3 and summarized in Table S1.

Figure S3. The DSC analyses of (a) PGSA15, (b) PGSA30, (c) PGSA7-co-PEGDA=1:1, (d) PGSA15-co-PEGDA=1:1, (e) PGSA30-co-PEGDA=1:1, (f) PEGDA, (g) PGSA7-co-PCLDA=2:1, (h) PGSA15-co-PCLDA=2:1, (i) PGSA30-co-PCLDA=2:1 and (j) PCLDA.

Table S1 Thermal properties of DLP-AM printed PGSA, PCLDA, PEGDA, and copolymer films.

Polymer	Ratio	$\mathbf{T g}\left({ }^{\circ} \mathbf{C}\right)$	$\mathbf{T m}\left({ }^{\circ} \mathbf{C}\right)$
PGSA15	100%	$\mathrm{~N} / \mathrm{A}$	15
PGSA30	100%	-17	$\mathrm{~N} / \mathrm{A}$
PGSA7-co-PEGDA	$1: 1$	-45	$\mathrm{~N} / \mathrm{A}$
PGSA15-co-PEGDA	$1: 1$	-38	$\mathrm{~N} / \mathrm{A}$
PGSA30-co-PEGDA	$1: 1$	-35	$\mathrm{~N} / \mathrm{A}$
PEGDA	100%	-45	$\mathrm{~N} / \mathrm{A}$
PGSA7-co-PCLDA	$2: 1$	$\mathrm{~N} / \mathrm{A}$	-37
PGSA15-co-PCLDA	$2: 1$	-45	3
PGSA30-co-PCLDA	$2: 1$	$\mathrm{~N} / \mathrm{A}$	N / A
PCLDA	100%	$\mathrm{~N} / \mathrm{A}$	30

1. Nijst, C.L.E.; Bruggeman, J.P.; Karp, J.M.; Ferreira, L.; Zumbuehl, A.; Bettinger, C.J.; Langer, R. Synthesis and Characterization of Photocurable Elastomers from Poly(glycerol-co-sebacate). Biomacromolecules 2007, 8, 3067-3073, doi:10.1021/bm070423u.
