Supplementary Materials

Poly(3-hydroxybutyrate) Modified by Nanocellulose and Plasma Treatment for Packaging Applications

Denis Mihaela Panaitescu,^{1,*} Eusebiu Rosini Ionita,² Cristian Andi Nicolae,¹ Augusta Raluca Gabor,¹ Maria Daniela Ionita,² Roxana Trusca,³ Brindusa-Elena Lixandru,⁴ Irina Codita,^{4,5} Gheorghe Dinescu²

¹National Institute for Research & Development in Chemistry and Petrochemistry - ICECHIM, Polymer Department, 202 Spl. Independentei, 060021, <u>ca_nicolae@yahoo.com</u> (C.A.N.); <u>ralucagabor@yahoo.com</u> (A.R.G.);

²National Institute for Laser, Plasma and Radiation Physics, Atomistilor 409, Magurele-Bucharest, 077125 Ilfov, Romania; <u>ionita.rosini@infim.ro</u> (E.R.I.); <u>daniela.ionita@infim.ro</u> (M.D.I.); dinescug@infim.ro (G.D.)

³Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; <u>truscaroxana@yahoo.com</u> (R.T.)

⁴"Cantacuzino" National Medical-Military Institute for Research and Development, 103 Spl. Independentei, 050096, Bucharest, Romania, <u>brandusa lixandru@yahoo.com</u> (B.E.L); <u>icodita@cantacuzino.ro</u> (I.C.)

⁵Carol Davila University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474, Bucharest, Romania

*Correspondence: panaitescu@icechim.ro; Tel.: +004 0213163068

Figure S1. DTG curves (300–350 °C) of PHB nanocomposites before and after the plasma treatment.

Figure S2. FTIR spectra of PHB and PHB nanocomposites with 2 wt % and 5 wt % BC.

Figure S3. FTIR spectra of PHB (A), PHB–2BC (B) and PHB–5BC (C) before and after the plasma treatments.

Wavenumber	Assignment	References				
(cm ⁻¹)						
(-)						
3007	CH ₃ asymmetric stretching vibrations,	Zhang J.; Sato, H.; Noda, I.; Ozaki, Y.				
	indicating the presence of	Macromolecules 2005, 38, 4274-4281				
	intermolecular CHO hydrogen bonds					
2997	CH₃ asymmetric stretching vibrations	Sato, H.; Murakami, R.; Padermshoke, A.;				
		Hirose, F.; Senda, K.; Noda, I.; Ozaki, Y.				
		Macromolecules 2004, 37, 7203-7213;				
		Zhang J.; Sato, H.; Noda, I.; Ozaki, Y.				
		Macromolecules 2005, 38, 4274-4281;				
		Padermshoke, A.; Katsumoto, Y.; Sato, H.;				
		Ekgasit, S.; Noda, I.; Ozaki, Y. Spectrochim.				
		Acta A 2005, 61, 541–550.				
2976/2968	CH ₃ asymmetric stretching vibrations;	Sato, H.; Murakami, R.; Padermshoke, A.;				
	the pear of bands resulting from the	Hirose, F.; Senda, K.; Noda, I.; Ozaki, Y.				
	crystal field splitting, caused by inter- or	Macromolecules 2004, 37, 7203-7213;				
	intramolecular interactions	Zhang J.; Sato, H.; Noda, I.; Ozaki, Y.				
		Macromolecules 2005, 38, 4274-4281;				
		Padermshoke, A.; Katsumoto, Y.; Sato, H.;				
		Ekgasit, S.; Noda, I.; Ozaki, Y. Spectrochim.				
		Acta A 2005, 61, 541–550.				
2934/2923	CH ₂ asymmetric stretching vibrations;	Zhang J.; Sato, H.; Noda, I.; Ozaki, Y.				
	the pear of bands resulting from the	cromolecules 2005, 38, 4274-4281;				
	crystal field splitting, caused by inter- or	Padermshoke, A.; Katsumoto, Y.; Sato, H.;				
	intramolecular interactions	Ekgasit, S.; Noda, I.; Ozaki, Y. Spectrochim.				
		Acta A 2005, 61, 541–550.				
2874	CH ₃ symmetric stretching vibrations	Sato, H.; Murakami, R.; Padermshoke, A.;				
		Hirose, F.; Senda, K.; Noda, I.; Ozaki, Y.				
		Macromolecules 2004, 37, 7203-7213;				
		Socrates, G. Infrared and Raman characteristic				
		group frequencies, 2001, pp. 50–67;				
		Zhang J.; Sato, H.; Noda, I.; Ozaki, Y.				
		Macromolecules 2005, 38, 4274-4281.				
2851	CH ₂ symmetric stretching vibrations	Socrates, G. Infrared and Raman characteristic				
		group frequencies, 2001, pp. 50–67.				

Table S1. Peak assignments in the FTIR spectra of PHB and nanocomposites in the 3050–2800 cm⁻¹ region.

Figure S4. DSC first melting and cooling scans for ZnO plasma-coated PHB–2BC compared to the untreated nanocomposite.

Figure S5. SEM image of PHB right after the plasma treatment.

Figure S6. AFM topographic images of PHB and PHB–5BC before (**a**,**c**) and **after the plasma treatment** (**b**,**d**).

Figure S7. EDX results for PHB-2BC (left) and PHB-2BC-Zn (right). .

 Table S2. EDX data for PHB–2BC nanocomposite before and after plasma and ZnO plasma coating.

PHB nanocomposite—	Elemental composition (weight %)*								
different treatments	С	0	Si	Zn	Mg	Na	К	Al	
PHB-2BC	58.5	38.6	0.6	-	0.3	-	-	-	
РНВ-2ВСр	60.7	34.5	0.5	-	0.3	1.8	0.2	-	
PHB-2BC-ZnO	41.1	47.6	0.8	9.9	-	-	-	0.5	

*the rest up to 100% is Au element due to the sputter-coating of the film surface before the SEM-EDX measurement.