Supplementary Information

Facile, scalable, eco-friendly fabrication of highperformance flexible all-solid-state supercapacitors

Jincy Parayangattil Jyothibasu 1,2 and Rong-Ho Lee 2,*

¹ Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan ; jincycusat@gmail.com

² Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan; rhl@nchu.edu.tw

* Correspondence: Rong-Ho Lee-e-mail: rhl@dragon.nchu.edu.tw; Tel.: +886-4-22854308

Fig. S1 SEM images of the (a) raw Kapok fiber and (b) PPy powder.

Fig. S2 SEM images of the (a) raw and (b) functionalized CNTs (f-CNTs).

Fig. S3 CV curve of the pure *f*-CNT freestanding electrode, measured at 5 mV s⁻¹.

Fig. S4 (a) CV curves recorded at various scan rates and (b) GCD curves recorded at various current densities of the pure *f*-CNT freestanding hybrid electrode.

Fig. S5 (a) CV curves recorded at various scan rates and (b) GCD curves recorded at various current densities for the KF@PPy/*f*-CNT12 freestanding hybrid electrode.

Fig. S6 (a) CV curves recorded at various scan rates and (b) GCD curves recorded at various current densities for the KF@PPy/*f*-CNT21 freestanding hybrid electrode.

Electrode materials	Specific capacitance of electrode	Electrolyte	Capacitance retention	Ref.
	1289 mF cm ⁻² (5 mV s ⁻¹)			
KF@PPy/f-CNT11	1138 mF cm ⁻² (2 mA cm ⁻²)	1 M H2SO4	86.5% (1000 cycles)	This work
	52 F cm ⁻³ (5 mV s ⁻¹)			
rGO/PPy NT paper	807 mF cm ⁻² (1 mA cm ⁻²)	1 M H ₂ SO ₄	78.0% (2000 cycles)	1
GO-PPy paper	440 mF cm ⁻² (0.5 A g ⁻¹)	1 M H2SO4	81%	2
rGO/PPy paper	468 mF cm ⁻² (1 mA cm ⁻²)	1 M H2SO4	-	3
PPy/MnO2 composite	240 mF cm ⁻² (5 mV s ⁻¹)	1.0 M Na2SO4	62.3%	4
lCNT-GO/PPy	202.3 mF cm ⁻² (10 mV s ⁻¹)	1.0 M KCl	-	5
PPy/l-Ti3C2 film (l-Ti3C2, a MXene material)	203 mF cm ⁻²	0.5 M H2SO4	100% (20.000 cvcles)	6
CNT/PANI hydrogel film	680 mF cm ⁻² (1 mA cm ⁻²)	1 M H2SO4	_	7
CNT/PPy electrode	0.28 F cm ⁻² (1.4 mA cm ⁻²)	0.05 M Na2SO4	-	8
RGO/PPy CCFs paper	363 mF cm ⁻² (0.5 mA cm ⁻²)	PVA/H3PO4	-	9
Reduced graphene oxide/polypyrrole/cellulose hybrid papers	1.20 F cm ⁻² (2 mA cm ⁻²)	1 M NaCl	89.5%	
			(5000 cycles)	10
rGO/PPy films	411 mF cm ⁻² (0.2 mA cm ⁻²)	1 M KCl	80% (5000 cycles)	11
Graphite/polyaniline hybrid electrodes on printing paper	355.6 mF cm ⁻² (0.5 mA cm ⁻²)	1 M H2SO4	-	12
PPy-coated cotton fabrics	1325 mF cm ⁻² at 2 mA cm ⁻²	1 M Na2SO4	87% capacitance	19

TABLE S1 Capacitive performances of freestanding electrodes reported in the literature and in this present study

		retention after		
		1000		
			charge/discharge	
			cycles	
Polypyrrole/reduced graphene oxide coated fabric electrodes (Py–RGO-fabric)	265 F g ⁻¹ (5 mV s ⁻¹)	2.0 M NaCl	64% capacitance retention after 500 cycles	20
PANI/Au/paper electrode	800 mF cm ⁻² (1 mA cm ⁻²)	1 M H2SO4	-	21

Electrode material	Specific capacitance of supercapacitor	Energy density	Power density	Ref.
KF@PPy/f-CNT11	258 mF cm ⁻² (5 mV s ⁻¹) 219.4 mF cm ⁻² (0.5 mA cm ⁻²) 3.44 F cm ⁻³ (5 mV s ⁻¹)	22.3 μW h cm ⁻² 297.3 μW h cm ⁻³	2.1 mW cm ⁻² 28 mW cm ⁻³	This work
lCNT-GO/PPy	70.0 mF cm ⁻² (10 mV s ⁻¹)	$6.3 \ \mu W \ h \ cm^{-2}$	3.7 mW cm ⁻²	5
CNT/PANI hydrogel film	184.6 F cm ⁻² (1 mA cm ⁻²)	-	-	7
RGO/PPy CCFs paper	-	0.28 mW h cm ⁻³	20.9 mW cm ⁻³	9
rGO/PPy films	222 mF cm ⁻²	$20 \ \mu W \ h \ cm^{-2}$	5 mW cm^{-2}	11
Graphite/polyaniline hybrid electrodes on printing paper	77.8 mF cm ⁻² (0.1 mA cm ⁻²)	0.32 mW h cm ⁻³	0.054 W cm ⁻³	12
CNT/PPy	4.9 F cm ⁻³	0.26 mW h cm ⁻³	0.15 W cm ⁻³	8
PPy/CNT/cotton fabric	50.9 mF cm ⁻² (10 mV s ⁻¹)	64.64 W h kg ⁻¹	5.14 kW kg-1	13
3D-graphene/graphite- paper	11 mF cm ⁻²	$1.24~\mu W~h~cm^{-2}$	1 mW cm ⁻²	14
PEDOT-GO/U–C electrode	30 mF cm ⁻² (10 mV s ⁻¹)	0.0022 mW h cm ⁻²	0.2 mW cm ⁻²	15
PANI-ZIF-67-CC	35 mF cm ⁻²	0.0161 mW h cm ⁻³	0.833 W cm ⁻³	16
PEDOT/H-15G-CNTF	37.8 mF cm ⁻² (5 mV s ⁻¹)	0.051 mW h cm ⁻³	2.1 mW cm ⁻³	17
MoS2@CNT/RGO electrode	29.7 mF cm ⁻² (0.1 mA cm ⁻²)	$4.13~\mu W~h~cm^{-2}$	3.2 mW cm ⁻²	18

TABLE S2 Capacitive performances of all-solid-state supercapacitors reported in the literature and in this study

References

- 1. C. Yang, L. Zhang, N. Hu, Z. Yang, H. Wei and Y. Zhang, *Journal of Power Sources*, 2016, **302**, 39–45.
- 2. K. Shu, C. Wang, C. Zhao, Y. Ge and G. G. Wallace, *Electrochimica Acta*, 2016, **212**, 561–571.
- C. Yang, L. Zhang, N. Hu, Z. Yang, H. Wei, Y. Wang and Y. Zhang, *Applied Surface Science*, 2016, 387, 666–673.
- 4. X. Fan, X. Wang, G. Li, A. Yu and Z. Chen, Journal of Power Sources, 2016, 326, 357–364.
- 5. H. Zhou and H. J. Zhai, Organic Electronics, 2016, **37**, 197–206.
- M. Zhu, Y. Huang, Q. Deng, J. Zhou, Z. Pei, Q. Xue, Y. Huang, Z. Wang, H. Li, Q. Huang and C. Zhi, *Advanced Energy Materials*, 2016, 6, 1600969.
- 7. S. Zeng, H. Chen, F. Cai, Y. Kang, M. Chen and Q. Li, *Journal of Materials Chemistry A*, 2015, **3**, 23864–23870.
- 8. Y. Chen, L. Du, P. Yang, P. Sun, X. Yu and W. Mai, Journal of Power Sources, 2015, 287, 68–74.
- 9. S. Lyu, H. Chang, F. Fu, L. Hu, J. Huang and S. Wang, *Journal of Power Sources*, 2016, **327**, 438–446.
- 10. C. Wan, Y. Jiao and J. Li, Journal of Materials Chemistry A, 2017, 5, 3819–3831.
- 11. J. Chen, Y. Wang, J. Cao, Y. Liu, Y. Zhou, J. H. Ouyang and D. Jia, ACS Applied Materials & Interfaces, 2017, 9, 19831–19842.
- B. Yao, L. Yuan, X. Xiao, J. Zhang, Y. Qi, J. Zhou, J. Zhou, B. Hu and W. Chen, *Nano Energy*, 2013, 2, 1071–1078.
- 13. S. Huang, P. Chen, W. Lin, S. Lyu, G. Chen, X. Yin and W. Chen, *RSC Advances*, 2016, **6**, 13359–13364.
- 14. A. Ramadoss, K. Y. Yoon, M. J. Kwak, S. I. Kim, S. T. Ryu and J. H. Jang, *Journal of Power Sources*, 2017, **337**, 159–165.
- 15. D. Fu, H. Zhou, X.-M. Zhang, G. Han, Y. Chang and H. Li, *ChemistrySelect*, 2016, 1, 285–289.
- 16. L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen and B. Wang, *Journal of the American Chemical Society*, 2015, **137**, 4920–4923.
- D. Fu, H. Li, X.-M. Zhang, G. Han, H. Zhou and Y. Chang, *Materials Chemistry and Physics*, 2016, 179, 166–173.
- S. Wang, J. Zhu, Y. Shao, W. Li, Y. Wu, L. Zhang and X. Hao, *Chemistry A European Journal*, 2017, 23, 3438–3446.

- 19. Y. Liang, W. Weng, J. Yang, L. Liu, Y. Zhang, L. Yang, X. Luo, Y. Cheng and M. Zhu, *RSC Advances*, 2017, **7**, 48934-48941.
- 20. J. Xu, D. Wang, Y. Yuan, W. Wei, L. Duan, L. Wang, H. Bao and W. Xu, *Organic Electronics*, 2015, **24**, 153-159.
- 21. L. Yuan, X. Xiao, T. Ding, J. Zhong, X. Zhang, Y. Shen, B. Hu, Y. Huang, J. Zhou and Z. L. Wang, Angewandte Chemie International Edition, 2012, **51**, 4934-4938.