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Abstract: Modifications to improve thinning approximation (TA) were considered in order to calculate
two-dimensional scattering patterns (2DSPs) for dissipative particle dynamics (DPD) simulations of
polymer melts under a shear flow. We proposed multipoint TA and adaptive TA because the bond
lengths in DPD chains vary widely when compared to those in Kremer–Grest (KG) chains, and the
effectiveness of these two types of TA for the two major DPD parameter sets were investigated.
In this paper, we report our findings on the original DPD model with soft bonds and that with rigid
bonds. Based on the behavior of the 2DSPs and the distribution of orientations of the bond vectors,
two spot patterns originating from the oriented chain correlations were observed when distinct
distributions of the highly oriented bond vectors in the shear direction were obtained. For multipoint
TA, we concluded that at least two additional midpoints (nmid ≥ 2) are required to clearly observe
the two spot patterns. For adaptive TA, a dividing distance of lATA ≤ 0.4 is sufficient for clear
observation, which is consistent with the requirement of nmid ≥ 2 for multipoint TA.

Keywords: dissipative particle dynamics (DPD) simulations; two-dimensional scattering patterns
(2DSPs); thinning approximation (TA); shear deformation

1. Introduction

Dissipative particle dynamics (DPD) [1–3] simulations are widely performed in order to study
the dynamic and rheological properties of simple and complex fluids such as polymer melts
and solutions [4–8], block copolymers [9–15], lipids [16–19], and colloidal suspensions [20–22].
One advantage of the DPD method is that it allows longer time and length scales than conventional
molecular dynamics (MD) simulations. The particles in DPD simulations are more coarse-grained
than those of standard bead–spring models such as the Kremer–Grest (KG) model [23]. In terms
of computing costs, those for DPD simulations are reasonable for the study of polymeric fluids.
In general, we believe that the orientation distributions of polymers in polymeric fluids depend on
the local velocities of the fluids. The orientations of polymer chains are generally investigated by
analyzing two-dimensional scattering patterns (2DSPs) obtained in wide-angle X-ray scattering (WAXS)
experiments [24]. Since polymers in a melt have a disordered structure, their 2DSPs show a foggy
ring without crystalline diffraction; this ring pattern is called an amorphous halo [25]. When polymer
chains are oriented in a certain direction, the amorphous halo splits into two foggy spots in the
direction perpendicular to the orientation of the polymer chains [24,26,27]. In order to investigate
the molecular orientation of polymer chains, researchers have examined 2DSPs of amorphous and
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semicrystalline polymers under uniaxial deformation [27], liquid crystalline polymers under shear
flows [28], polyethylene and poly(vinylidene fluoride) fibers under shear flows [29], polyisoprene
rubber and natural rubber under uniaxial deformation [30], and isotactic polypropylene under shear
flows [31].

For block copolymer systems, 2DSPs were extensively observed to study structural changes due
to shear or uniaxial deformations [32–42]. For example, Betes et al. [32] reported the dependence of
the order–disorder transition in poly(ethylene-propylene)–poly(ethylethylene) (PEP–PEE), a diblock
copolymer, on the shear rate; two-dimensional contour plots of the two phases show changes
corresponding to those in scattering patterns. Okamoto, Saijo, and Hashimoto performed real-time
SAXS observations of lamella-forming block copolymers under large-amplitude oscillatory shear
deformation [33]. In a notable study, Matsushita et al. examined anisotropic 2DSPs of the
alternating lamellar structures of ABA triblock copolymers without shear or uniaxial deformations [43].
Vigild et al. [34] reported changes in 2DSPs of poly(ethylene-propylene)–poly(dimethylsiloxane)
(PEP–PDMS), a diblock copolymer, to study the correspondence between their rheological and
structural properties. Reynders et al. [35,36] reported changes in 2DSPs of a micellar network of
polystyrene–poly(ethylene-propylene)–polystyrene (PS–PEP–PS), a triblock copolymer, in oil under
elongation. Krishnamoorti et al. conducted neutron scattering experiments to examine 2DSPs
during a cylinder-to-sphere order–order transition in block copolymers [37]. Sakurai and co-workers
examined 2DSPs of strain-induced deformation of glassy spherical micro-domains in elastomeric
triblock copolymers [38–40]; they also measured the stress as a function of strain in these systems.
Mao et al. and McCready and Burghardt reported changes in 2DSPs corresponding to deformation
of re-oriented micro-domains in a hexagonally ordered styrene–ethylene–butylene–styrene (SEBS)
triblock copolymer under uniaxial extensional flow [41,42].

Although many studies based on the DPD method and the KG model were published, very few
were conducted on 2DPSs. One of the reasons was that two spots originating from bond orientation
cannot be reproduced. Recently, one of this work’s authors, Hagita, and co-workers developed the
method of thinning approximation (TA) to estimate 2DSPs of KG chains under shear [44]. TA was
introduced to deduce information on the bond orientation of chains. Although the coarse-grain (CG)
model usually offers a picture of the chains, the chain picture is lost when the model is used for dense
polymer melts because the density field of particles of the polymer chains is almost homogeneous.
It was confirmed that TA is effective for calculating 2D WAXS patterns of dense polymer melts under
a rapid shear flow. The approximation consists of (1) midpoint insertion and (2) determination of a
circular average to improve the statistics. The circular average is based on the assumption of rotational
symmetry around the qx axis of the scattering vector q, where the x axis is the elongation axis. The TA
process is illustrated in Figure 1. Figure 1a shows an example of polymer chains before and after
TA, where the filled circles represent inserted pseudo-particles. Figure 1b shows the velocity profile
of shear deformation at a constant shear rate. Figure 1c shows the circular averaging based on the

assumption of rotational symmetry around the qx axis, and qyz is defined as qyz =
(

q2
y + q2

z

)1/2
.
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H.; Kawakatsu, T. J. Phys, Soc. Jpn. 2017, 86, 124803. [44], with the permission. 
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Figure 1. Schematic illustrations of (a) the thinning approximation (TA) process; (b) the velocity profile
obtained at a constant shear rate; and (c) the circular average; two-dimensional scattering patterns
(2DSPs) of Kremer–Grest (KG) chains under shear flow (d) with TA and (e) without TA. The presented
2DSPs were partially reprinted from an earlier paper, Hagita, K.; Murashima, T.; Takano, H.; Kawakatsu,
T. J. Phys, Soc. Jpn. 2017, 86, 124803. [44], with the permission.

Although TA with midpoints was successful for KG chains, we found that it did not work for
DPD chains because the fluctuations in bond length were larger in DPD chains than those in KG chains.
To resolve this problem, we inserted multiple points in the bonds, and we expected the number of
points required for a certain bond to depend on its bond length. In this paper, we report the cases with
a fixed number of inserted points and cases with an adaptive (i.e., variable) number of inserted points.
Hereafter, we refer to the first case as multipoint TA and the second case as adaptive TA (ATA).

In our study, we examined 2DSPs of dense polymer melts under a rapid shear flow to
confirm the effectiveness of multipoint TA and ATA for DPD simulations. To simulate shear flows,
the SLLOD (transposed Doll’s tensor) algorithm [45] was used with the Lagrangian rhomboid boundary
conditions [46,47], which are equivalent to the Lee–Edwards boundary conditions [48].

In Section 2, we explain methods of the DPD simulations and the calculation of 2DSPs with
multipoint and adaptive TA. In Section 3, we examine the proposed improvements of TA for DPD
simulations. A summary of the results and our conclusions are presented in Section 4.

2. Methods and Model

2.1. DPD Simulations

Groot and Warren [3,9] proposed the DPD method for polymeric systems. A DPD polymer is
modeled as soft-core particles (segments) connected by springs. In the DPD model, the soft-core
potential represents a collection of monomers, and the dynamics of the soft-core segments are solved.
In this study, we considered melts of M polymers with monodisperse chain length (N segments).
In this study, we focused on the monodisperse chain length that is characterized by the Weisenberg
number. For the polymers with polydisperse chain length, the spot for high shear rate is expected to
be unclear because the short chains will quickly relax and will not be oriented. Research on this type
of polymers is currently in progress.
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In the DPD [1–3] method, the time evolution of the velocity, vi, of the ith segment is governed by
the following equation of motion:

m
dvi
dt

= ∑
j 6=i

Fi,j, (1)

where m denotes the mass of a segment of the homopolymer, Fi,j is the force from the jth segment
acting on the ith segment. Here, vi is also given by the time-derivative of the position, ri: dri/dt = vi,.
The force is given by the sum of the non-bonded conservative force, FC

i,j; dissipative force, FD
i,j; random

force, FR
i,j; and bonded force: FB

i,j; Fi,j = FC
i,j + FD

i,j + FR
i,j + FB

i,j.
The non-bonded conservative force is a soft repulsive force, and it is represented by:

FC
i,j
(
ri,j
)
=

{
ai,j

(
1− ri,j

rc

)
r̂i,j for r < rc

0 for r ≥ rc
, (2)

where ai,j and rc are the force constant and cutoff distance, respectively; ri,j =
∣∣ri − rj

∣∣;
and r̂i,j =

(
ri − rj

)
/ri,j. Generally, the dissipative and random forces are given by

FD
i,j
(
ri,j
)
= −γ

(
1−

ri,j

rc

)2(
r̂i,j · vi,j

)
r̂i,j, (3)

FR
i,j
(
ri,j
)
= σθi,j

(
1−

ri,j

rc

)
r̂i,j, (4)

where vi,j = vi − vj, and ∆t is the time step. The randomly fluctuating variables, θi,j, obey Gaussian

statistics, where 〈θi,j(t)〉 = 0 and 〈θi,j(t)θk,l(t′)〉 =
(

δi,kδj,l + δi,lδj,k

)
δ(t− t′). The noise amplitude, σ,

is related to the dissipation factor, γ, as follows:

σ2 = 2γkBT, (5)

where kB and T denote the Boltzmann constant and temperature, respectively. The canonical ensemble
in Equation (5) was confirmed by Espanõl and Warren to be satisfactorily represented by the DPD
model [2]. Thus, σ is called the DPD thermostat parameter. The force in a harmonic spring connecting
two bonded segments in a polymer chain [3,9] can be described by

FB
i,j
(
ri,j
)
= −K

(
ri,j − r0

)
r̂i,j, (6)

where K and r0 are the spring constant and equilibrium bond length, respectively. In this study,
we used the reduced units of mass (m), length (rc), energy (kBT), and time (τ), i.e., m = 1, rc = 1,
kBT = 1, and τ = rc

√
m/kBT, respectively, and the time step was set to ∆t = 0.01. In the present paper,

we used the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [49] for all of
the simulations.

We examined two types of DPD polymer with different bond springs. The first type of DPD
polymer has “soft” bonds, whereas the second type has “rigid” bonds. Table 1 lists the DPD parameters
used for these two types of polymer. In the original work of Groot and Warren [3,9], the soft bond
corresponds to the optimized DPD parameters. Since then, the soft bond has been widely employed in
DPD simulations [10–15] to study the morphology of block copolymer materials. The rigid bond has
been used to reduce bond crossings [50–58]. For efficient reduction of the bond crossings, segmental
repulsive potential models have been widely studied [52–58]. Note that the segmental repulsive
potential is not taken into account in this work because our focus is the steady states of polymer melts
under a rapid shear flow, where the polymer chains are highly oriented to the flow direction.
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Table 1. Dissipative particle dynamics (DPD) parameters of the polymers modeled by soft and rigid
bonds. This table was reproduced from an earlier paper, Iwaoka, N.; Hagita, K.; Takano, H. J. Chem.
Phys. 2018, 149, 114901 [59], with the permission of AIP Publishing.

Polymer Type aij K r0 σ

Soft bond [3,9–15] 25 4.0 0.0 3.0
Rigid bond [52–58] 60 450 0.85 3.0

2.2. Two-Dimensional Scattering Patterns

The scattering intensity I(q) is a function of the density field ρ(R(i, j, k)) in the observed system,
where R(i, j, k) is the position of the grid point (i, j, k), which is the index of a three-dimensional (3D)
regular mesh grid. We can obtain ρ(R(i, j, k)) from the position vector, r(n) (where n = 1, · · · , MN),
which denotes the position of the nth segment of the polymer. Using ρ(R(i, j, k)), I(q) can be calculated
as follows:

I(q)
I(0)

=

∣∣∣∑i,j,k ρ(R(i, j, k)) exp(−iq·R(i, j, k))
∣∣∣2∣∣∣∑i,j,k ρ(R(i, j, k))

∣∣∣2 . (7)

For efficient computing of the numerator in Equation (7), we often use 3D fast Fourier transformation
(3D-FFT), where:

FT[ρ(R(i, j, k))] = ∑
i,j,k

ρ(R(i, j, k)) exp(−iq·R(i, j, k)). (8)

When the scattering elements are points, I(0) is given by the product of squares of the scattering
factors of the elements and the number of elements. In the present work, the scattering factors were set

to unity so that I(0) = MN =

∣∣∣∣∣ ∑
i,j,k

ρ(R(i, j, k))

∣∣∣∣∣. For the insertion of additional midpoints, we must

keep the total scattering factors the same; therefore, we scaled the scattering factor of each scattering
site, which consists of segments of DPD chains and the additional midpoints. The intensity of each
point on a 2DSP, I

(
qx, qy

)
, is defined on the plane of I(q), with qz = 0. To calculate the X-ray and

neutron scattering patterns corresponding to the all-atomistic molecular dynamics (AAMD) model,
the density field ρ(R(i, j, k)) can be estimated from the atomic position and atomic weight. For the
X-ray and neutron scattering patterns, the weight for ρ(R(i, j, k)) corresponds to the atomic number
and the scattering length density, respectively, of the atoms. In general, the chain picture is required to
calculate the wide-angle scattering intensity, which is related to the orientation distribution of bonds.
To overcome this problem, we propose using TA to calculate the 2D WAXS patterns of dense polymer
melts with KG chains under a rapid shear flow. Figure 1a shows an illustration of the TA process based
on the insertion of particles in the middle of bonds. In our previous work [44], the total volume is
assumed to be conserved from the viewpoint of the scattering length density. For the fine-graining of
dense KG chains with extra monomers placed in the middle of bonds, the effective volume of each
monomer shrinks by 1/2. Based on Equation (7), I(q) is independent of the scaling factor, α, for ρ.
Here, α is proportional to the volume of one monomer and corresponds to the scattering length density
for X-ray scattering. Owing to the conservation of the total volume, α = 1/2 because the number of
monomers becomes 2N after the TA. Thus, we can assume that the diameter of the polymer chains
decreases to 2−1/3. For the DPD chains, the concept of TA is effective. Owing to the large distribution
of bond lengths when compared to those of KG chains, we assumed multiple (a fixed number and an
adaptive number) midpoints, nmid. Here, the TA for KG chains [44] corresponds to the cases with nmid
= 1, and the scaling factor α of the effective volume of each scattering site used to calculate ρ(R(i, j, k))
is given by α = 1/(nmid + 1) = 1/2. Thus, we used α = 1/(nmid + 1) for multipoint TA. For adaptive
TA, the scaling factor, α = 1/(n + 1), for each bond was set based on the number of divisions, n,
obtained for each bond based on the dividing distance, lATA. When multiple midpoints (i.e., multiple
scattering sites) were placed on a bond, we used a fine mesh for ρ(R(i, j, k)) in the 3D-FFT.
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For the anisotropic case along the x axis, in order to obtain better 2D scattering patterns,
we calculated the average I

(
qx, qy

)
for each 2DSP, which is given by the circular average of I(q)

on the qy − qz plane, as shown in Figure 1c:

I
(
qx, qyz

)
=

∑{(qx ,qyz)|q2
y+q2

z=q2
yz} I(q)

∑{(qx ,qyz)|q2
y+q2

z=q2
yz} 1

, (9)

where qyz =
(

q2
y + q2

z

)1/2
.

As shown in our previous investigation [44] on KG chains, the observed anisotropy of the 2DSP
on the y axis is as small as the random noise. Thus, the circular average with rotational symmetry on
the qy − qz plane seems to be reasonable even though it ignores the anisotropy on the y axis. Therefore,
we assumed rotational symmetry of the system to improve the statistical accuracy of the 2DSP. Note
that the number of grids, n, is given by Lpbc/∆x in the present work. Here, the length of each side
of the box with periodic boundary conditions (PBCs) is Lpbc,x = Lpbc,y = Lpbc,z = Lpbc and the
mesh size in real space is ∆x = ∆y = ∆z. In this case, the mesh size for the 3D-FFT is given by
∆qx = ∆qy = ∆qz = 2π/Lpbc. For the circular averaging, the mesh size for the 2D WAXS pattern is
given by ∆q‖ = ∆qx and ∆q⊥ = ∆qy = ∆qz.

3. Results

To improve TA for DPD simulations, we performed DPD simulations of M (= 120) homo-polymer
chains with N (= 100) beads per chain. We began by studying the dependence of the orientation of
bond vectors on the Weisenberg number in DPD simulations under shear. Based on the evaluated
Weisenberg-number dependence, multipoint TA and adaptive TA were examined for DPD simulations
with rigid and soft bonds.

3.1. Weisenberg-Number Dependence of Orientation of Bond Vectors in DPD Simulations under Shear

In rheology [60], the orientation of the bond vector of a polymer chain in melts under shear
can be characterized by the Weisenberg number, Wi, which is defined as the product of the longest
relaxation time, τ1, and the shear rate,

.
γ: Wi = τ1

.
γ. For the excluded-volume chain system that

prohibits bond crossings, orientation is believed to take place when Wi > 1. For systems allowing bond
crossings in DPD simulations, the threshold value of Wi is considered to change, so it is necessary to
directly investigate this value. For various shear rates,

.
γ, the probability, P(|θ|), of the bond orientation

parameter, |θ|, was estimated, where θ is given by cos θ = x/
√

x2 + y2. Before simulations under
shear were carried out, we estimated the longest Rouse relaxation time, τ1, of a chain in the melt for
the calculation of Wi. For the case with N = 100 beads per chain, τ1 is about 1200τ and 3000τ (where τ

is the reduced unit of time, τ = rc
√

m/kBT) for the simulations of dense polymer melts with rigid
and soft bonds, respectively. Figure 2 shows histograms of the probabilities P(|θ|) versus b5|θ|/πc
for rigid and soft bonds, where bXc is the floor function of X. In our previous study [44] on the KG
model, when the orientation distribution P(|θ|) with b5|θ|/πc = 0 increased by about 10% compared
to that at the stationary state (

.
γ = 0), two spot patterns originating from shear deformation were

observed. Therefore, in the present study, we investigated Wi of the DPD simulations in which P(|θ|)
with b5|θ|/πc = 0 increases by about 10%. We found that P(|θ|) with b5|θ|/πc = 0 increases by more
than ~10% when the value of Wi is larger than 12 for the case with rigid bonds and when Wi is larger
than 6 for the case with soft bonds. In this study, we examined the cases with Wi = 6, 12, and 30 for
rigid bonds and with Wi = 6 and 12 for soft bonds.
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3.2. Thinning Approximation with Fixed Number of Additional Midpoints

3.2.1. Rigid Bonds

We evaluated the behavior of 2DSPs in DPD simulations of a dense polymer melt with rigid
chains under shear flow, where

( .
γ, Wi

)
= (0.002, 6), (0.004, 12), and (0.01, 30) for nmid (= 1 to 4)

additional midpoints. Figure 3 shows 2DSPs for the cases with
( .
γ, Wi

)
= (0.002, 6). For the cases

with
( .
γ, Wi

)
= (0.002, 6), since notable bond orientation is not observed in Figure 2, it is natural that

two spot patterns originating from the bond orientation in the 2DSPs cannot be seen when we expect
to see a ring pattern. As we increased nmid, we the found that the ring pattern becomes clearer for
larger nmid. Note that this ring pattern originates from the correlation between the chains. As shown
in Figure 4, the ring pattern is visible because the insertion of midpoints resulted in a clearer image of
the chain.
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Figure 3. Two-dimensional scattering patterns (2DSPs) of DPD simulations of a dense polymer melt
with rigid bonds for the cases with

( .
γ, Wi

)
= (0.002, 6). The 2DSPs were calculated with and without

thinning approximation (TA): (a) Original method; (b–e) nmid additional points, where nmid = 1 to 4;
(f) azimuthal intensities averaged over from q = 6.0 to 8.0 with 0.1 steps.
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Figure 4. Schematic illustrations of (a) DPD chains and (b) additional midpoints for thinning
approximation of a dense polymer melt. The circles denote the overlapping DPD particles. The red
bold lines in (b) denote the series of additional midpoints. Based on the approximation, a clear picture
of the chains was obtained.

Figure 5 shows 2DSPs for the cases with
( .
γ, Wi

)
= (0.004, 12). When nmid ≥ 2, two spot patterns

originating from the bond orientation were observed. As we increased nmid, we found that the two
spot patterns become clearer for larger nmid.
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3.2.2. Soft (Groot–Warren) Bonds 

Figure 5. Two-dimensional scattering patterns (2DSPs) of DPD simulations of a dense polymer melt
with rigid bonds for the cases with

( .
γ, Wi

)
= (0.004, 12). The 2DSPs were calculated with and without

thinning approximation (TA): (a) Original method; (b–e) nmid additional points, where nmid = 1 to 4;
(f) azimuthal intensities averaged over from q = 6.0 to 8.0 with 0.1 steps.

Figure 6 shows 2DSPs for the cases with
( .
γ, Wi

)
= (0.01, 30). When nmid ≥ 2, two spot patterns

originating from the bond orientation were observed, and they are clearer than the patterns shown in
Figure 5. Even in this case, the two spot patterns were not observed when nmid = 1. Therefore, for the
case of DPD simulations with rigid bonds, at least two additional midpoints (nmid ≥ 2) were necessary.
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3.2.2. Soft (Groot–Warren) Bonds 

Figure 6. Two-dimensional scattering patterns (2DSPs) of DPD simulations of a dense polymer melt
with rigid bonds for the cases with

( .
γ, Wi

)
= (0.01, 30). The 2DSPs were calculated with and without

thinning approximation (TA): (a) Original method; (b–e) nmid additional points, where nmid = 1 to 4;
(f) azimuthal intensities averaged over from q = 6.0 to 8.0 with 0.1 steps.

3.2.2. Soft (Groot–Warren) Bonds

We evaluated the behavior of the 2DSPs of DPD simulations of a dense polymer melt with soft
chains under a shear flow, where

( .
γ, Wi

)
= (0.005, 6) and (0.01, 12) for nmid (= 1 to 4) additional

midpoints. Figure 7 shows 2DSPs for the cases with
( .
γ, Wi

)
= (0.005, 6). When nmid ≥ 2, ring patterns

originating from the chain correlations were observed. In this case, we also observed that the two spot
patterns tend to be weak. Figure 8 shows 2DSPs for the cases with

( .
γ, Wi

)
= (0.01, 12). When nmid ≥ 2,

two clear spot patterns originating from the bond orientation were observed. Therefore, in the case of
the DPD simulations with soft bonds, at least two additional midpoints (nmid ≥ 2) were necessary.
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Figure 7. Two-dimensional scattering patterns (2DSPs) of DPD simulations of a dense polymer melt
with soft bonds for the cases with

( .
γ, Wi

)
= (0.005, 6). The 2DSPs were calculated with and without

thinning approximation (TA): (a) Original method; (b–e) nmid additional points, where nmid = 1 to 4;
(f) azimuthal intensities averaged over from q = 6.0 to 8.0 with 0.1 steps.
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Figure 8. Two-dimensional scattering patterns (2DSPs) of DPD simulations of a dense polymer melt
with the soft bonds for the cases with

( .
γ, Wi

)
= (0.01, 12). The 2DSPs were calculated with and without

thinning approximation (TA): (a) Original method; (b–e) nmid additional points, where nmid = 1 to 4;
(f) azimuthal intensities averaged over from q = 6.0 to 8.0 with 0.1 steps.

3.3. Adaptive Thinning Approximation (ATA)

In THE DPD simulations, the fluctuations in bond length are much larger than those observed in
coarse-grain molecular dynamics (CGMD) simulations of KG chains. In particular, the fluctuations
were remarkable for DPD simulations of polymer melts with soft bonds, as shown in Figure 7 of
the work of Iwaoka et al. [60]. We examined the average value and distribution of bond lengths in
the polymer melt with rigid bonds and the polymer melt with soft bonds. The average, standard
deviations, and squared average of bond length are 0.860, 0.066, and 0.862, respectively, for the rigid
bond and 0.891, 0.291, and 0.938, respectively, for the soft bond. In addition to the method that
includes a fixed number, nmid, of additional midpoints, another promising method includes a number
of additional midpoints based on the dividing distance, lATA. This method of determining the flexible
nmid is called adaptive thinning approximation (ATA), as noted in Section 1. We calculated 2DSPs
with lATA = 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 for both cases with rigid (Figure 9) and soft (Figure 10)
bonds. When lATA ≤ 0.4, two clear spot patterns were observed for both cases. When lATA ≥ 0.5,
we can see the ring patterns originating from lATA in the range of −15 < qx < 15 and −15 < qyz < 15.
Since the value obtained by dividing the average DPD bond length (0.860 and 0.891 for the rigid and
soft bonds, respectively) by 0.4 is approximately 2, the value of lATA = 0.4 seems to be consistent with
the corresponding observation of two spot patterns when nmid ≥ 2, as reported in Section 3.1.
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Figure 9. Two-dimensional scattering patterns (2DSPs) of DPD simulations of a dense polymer
melt with rigid bonds for the cases with

( .
γ, Wi

)
= (0.004, 12). The 2DSPs were calculated for

lATA = 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7.
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Figure 10. Two-dimensional scattering patterns (2DSPs) of DPD simulations of a dense polymer
melt with soft bonds for the cases with

( .
γ, Wi

)
= (0.01, 12). The 2DSPs were calculated for

lATA = 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7.

4. Summary and Conclusions

We considered thinning approximation for DPD simulations in order to calculate 2DSPs of dense
polymer melts under a rapid shear flow with the SLLOD algorithm [45]. We investigated multipoint
TA and adaptive TA as improvements because the bonds of the DPD chains are much softer and
have larger length distributions than those of KG chains. The DPD simulations solve the dynamics
of soft-core particles (segments), each of which represents a collection of monomers. A DPD chain
was modeled as a set of such segments connected by springs. The two major sets of DPD parameters
sets used—the soft and rigid bonds as presented in Table 1—were compiled from data reported in the
literature. Unlike the original DPD model [3,9] with the soft bonds, rigid bonds with the segmental
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repulsive potentials [52] were introduced to reduce bond crossings. From the simulations of shear
deformation, we found that distinct distributions of highly oriented bond vectors in the shear direction
emerge when Wi ≥ 12 and Wi ≥ 6 for the cases with the rigid and soft bonds. The 2DSPs show
that the two spot patterns originating from the oriented chain correlations appear when Wi ≥ 12
for the simulations with rigid and soft bonds. For the simulations with Wi = 6 and the soft bonds,
two weak spot patterns were observed even though the ring patterns are dominant. For multipoint
TA, two clear spot patterns were observed in the 2DSPs when nmid ≥ 2 for both rigid and soft bonds.
Thus, we conclude that at least additional midpoints (nmid ≥ 2) were necessary. We also confirmed
the effectiveness of adaptive TA when lATA ≤ 0.4, which is consistent with corresponding observation
of two spot patterns when nmid ≥ 2 for multipoint TA.

Bond crossings are considered to have an important effect on the rheological and mechanical
properties. In order to eliminate bond intersection in the equilibrium state compared to the rigid-bond
model, one of the authors proposed multipoint segmental repulsive potentials (MP-SRP) [60].
By prohibiting the bond crossings, the orientation of the bond vector is considered to be relatively
strong. The behavior in this case with MP-SRP is qualitatively considered to be the same as the result
of the DPD simulation presented in this paper; a detailed comparison of the results will be carried out
in the near future.

Furthermore, when considering the behavior of oriented polymer chains and their 2DSPs in the
flow field for comparison with experimental results, generalization of the flow field in simulations
under PBCs is required. Recently, Nicholson and Rutledge released uniaxial extensional flows (UEF)
packages [61] for LAMMPS [49] in order to obtain infinitely succeeding uniaxial extensional flows
(UEFs). One of the authors extended the UEF package for Langevin dynamics and DPD dynamics
to develop the UEF-EX (Uniform Elongational Flow EXtension) package [62]. Calculation of 2DSPs
for simulations using this package under the Kraynik–Reinelt boundary conditions [63] will also be
discussed in forthcoming papers.
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