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Abstract: Polyethylene glycol-based nanocomposites containing an organo-modified hydrotalcite
with loadings ranging from 0.5 to 5 wt.% were prepared by melt mixing performed just above
the melting point of the polymer matrix. In these conditions, the dispersion of the nanofiller
within the polymer matrix was quite homogeneous as revealed by TEM analyses. The effect of
various thermal treatments and filler loadings was thoroughly investigated by means of rheological,
morphological and gas chromatography-mass spectrometry, hyphenated to thermogravimetry
analysis tests. Unfilled polyethylene glycol exhibited a continuous decrease in complex viscosity
upon heating. In contrast, the complex viscosity of nanocomposites containing nanofiller loadings
higher than 1 wt.% showed first a decrease, followed by an increase in the complex viscosity as
the temperature increases, exhibiting a minimum between 130 and 140 °C. Annealing at 180 °C for
different times further increased the viscosity of the system. This unusual behavior was explained
by the occurrence of grafting reactions between the -OH terminal groups of the polyethylene glycol
chains and the hydroxyl groups of the organo-modified filler, thus remarkably affecting the relaxation
dynamics of the system.

Keywords: rheological behavior; polyethylene glycol; organo-modified hydrotalcite; grafting
reactions; annealing

1. Introduction

Polymer-based nanocomposites have attracted a growing attention in the last few years, as the
introduction of solid nanoparticles into a soft polymeric matrix allows for multi-functional materials with
tailored and controlled properties, potentially suitable for advanced applications [1-3]. Compared to
traditional composites, nanocomposites are characterized by a significantly increased interfacial area
between the embedded nanoparticles and polymer matrices [4,5]. However, the full potential of this
large interface can be effectively exploited only when the polymer-nanoparticle interactions are strong
enough to overcome the intrinsic tendency of nanoparticles to self-aggregate [6]. Therefore, the dispersion
and distribution of the incorporated nanoparticles, as well as the extent of interaction between the two
components, is crucial to control the final properties of the resulting nanocomposite [7,8]. In addition,
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the polymer/nanofiller and nanofiller /nanofiller interactions remarkably affect the linear and non-linear
rheological behavior of these materials [9,10]. In general, the viscoelastic behavior of polymer-based
materials impacts on both the processing technology and conditions [11] and on the final properties [12]
of the products. In addition, the rheological response of polymeric nanocomposites reflects their intimate
microstructure, offering the possibility to gain a fundamental understanding of their structure-property
relationships [12,13]. In this context, dynamic oscillatory measurements performed at low frequencies
are capable of revealing fundamental information as far as the microstructural evolution of nanofilled
polymers is concerned, being very sensitive to changes in nanocomposite internal structure and to the
relaxation dynamics of polymer chains [14,15]. Furthermore, the low-frequency rheological behavior is
strictly related to the interactions occurring within the nanostructured polymer-based materials and gives
insight into the organization of the nanofillers within the host matrix and their arrangements in complex
architectures [16]. In fact, when the formation of a percolated network of nanoparticles occurs, the motion
of long polymer chain segments is restricted, thus resulting in a change in the relaxation spectrum of the
material [17,18]. Usually, for polymer-based systems with uniform dispersion of nanofillers, a transition
from liquid-like to solid-like rheological behavior is observed at relatively low content: this finding
is clearly recognizable as the Newtonian behavior disappears, together with a divergence in complex
viscosity [19,20], and a flattening in storage and loss moduli at low frequencies [21,22]. From another point
of view, the temperature dependence of the rheological behavior of polymer melts is well known [21],
including its effect on the microstructure [23]. Conversely, few works report on the influence of the
temperature on the rheological behavior of polymer-based nanocomposites.

Due to the large number of commercially available grades with well characterized molar mass
and narrow molar mass distribution, as well as their favorable processing characteristics, polyethylene
oxides are ideal matrices [24] for investigating the rheological behavior of the corresponding
composites. Kelarakis et al. [25] studied the rheological behavior of polyethylene oxide/clay
nanocomposites as a function of their temperature, observing a remarkable increase in the melt viscosity
as temperature increased and a pronounced solid-like character at high temperatures. This unusual
behavior was attributed to the internal fluidity of the system, which allowed a reorganization of the
polymer chains, facilitating the formation of a percolation network at high temperatures. Conversely,
the thermoreversible physical gelation observed in the polyethylene oxide/carbon black system at
temperatures far above the matrix melting point was ascribed to particle clustering phenomena, due to
electrostatic particle-particle interactions [26].

In this context, we have recently studied the effect of boehmites and hydrotalcites on the thermal
and rheological behavior of a polyethylene glycol (PEG) matrix [27]. Unlike boehmites, a homogeneous
dispersion of nanoparticles within the polymer matrix was observed in hydrotalcites containing
nanocomposites, thus affecting the rheological behavior of PEG. The presence of well dispersed
hydrotalcites causes a slowdown in the relaxation dynamics of polymer chains and a consequent
transition from liquid-like to solid-like behavior. Pursuing this research, the present work aims
at assessing the effect of thermal treatments and filler loadings on the temperature dependence of
the rheological behavior of PEG-based nanocomposites prepared by melt mixing and containing
organo-modified hydrotalcite with loadings ranging from 0.5 to 5 wt.%. It can be anticipated that aside
from some clustering phenomena, the experimental results clearly show the occurrence of grafting
reactions between the nanofiller and the hydroxyl end-groups of PEG, which remarkably affect the
relaxation dynamics of polymer chains.

2. Materials and Methods

2.1. Materials

Polyethylene glycol (PEG), purchased from Sigma-Aldrich (Saint Louis, MO, USA), was used as
polymer matrix. The sample had an average molar mass (M) of 20,000 g/mol, with a polydispersity
index of 1.1 and melting temperature of 65 °C.
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A Magnesium—Aluminum Stearate Hydrotalcite (hereafter coded as LDHs) from Prolabin
(Perugia, Italy) containing about 55 wt.% Al-Mg stearates as organo-modifiers was used as the
nanofiller; main characteristics: Al,O3:MgO ratio = 37:63, surface area = 16 m?/g, loose bulk density =
150 g/L, powder particle size = 6 pum, crystallite size—XRD peak (003) = 100 nm.

2.2. Nanocomposite Preparation

The nanofiller powders were embedded within PEG by melt mixing, using a Brabender
Plastograph mixer operating at 65 °C and 100 rpm for 3 min. These conditions were optimized
in order to avoid any degradation phenomena of the polymer matrix [27]. The nanofiller loading was
0.5,1,15,2.5,3.5 and 5 wt.%.

Specimens for the rheological characterization were obtained by compression molding using a
laboratory press (Collin Teach Line 200T, Ebersberg, Germany) at 65 °C for 2 min with a pressure of
100 bar. The unfilled PEG was subjected to the same processing.

2.3. Characterization

Rheological measurements were performed using an ARES (TA Instrument, New Castle, DE, USA)
strain-controlled rheometer in parallel plate geometry (plate diameter: 25 mm), under a nitrogen
atmosphere to avoid oxidative degradation.

The complex viscosity and storage and loss moduli were measured performing frequency scans
from 107! to 10% rad /s, at different temperatures. The strain amplitude was fixed at y = 10%, which is
low enough to be in the linear viscoelastic regime, as probed by strain sweep measurements carried out
on all the prepared nanocomposites, but, at the same time, providing sufficient torque for rheological
measurements. Temperature sweep tests were carried out from 65 to 180 °C at 2 °C/min, w =0.1rad/s,
v = 10%. Before starting the rheological tests, each sample was put in between the rheometer plates
and conditioned at 65 °C for 10 min, thus ensuring its complete melting. The typical gap between the
plates imposed during the rheological analyses was 1 mm.

Transmission electron microscope (TEM) studies were performed on a JEOL JEM-1011 (Freising,
Germany) working with an accelerating voltage of 100 kV. Ultrathin sections (nominal thickness of
80 nm) of PEG-based systems were cut at —40 °C using a Leica UC6 microtome (Wien, Austria) with
an EM-FCS cryo kit equipped with a diamond knife, and collected onto formvar-coated copper grids.

Extraction tests were performed on all the nanocomposites. More specifically, samples were
treated with THF in static mode, putting in contact 1 mg of sample with 10 mL of THE. Then,
the remaining solid was separated from the solvent by centrifugation.

Gas chromatography-mass spectrometry hyphenated to thermogravimetry analyses were
performed by a Mettler-Toledo TGA/SDTA 85le thermobalance (Columbus, OH, USA) and a
FINNIGAN TRACE GC-ULTRA and TRACE DSQ gas chromatography-mass spectrometry system
(Waltham, MA, USA). A scanning rate of 10 °C/min from room temperature to 1100 °C and a steady
flow of He were employed in the TGA stage. The evolved gas from TGA was transferred to the GC-MS
using a thermostatized interface [28] operating with the temperature of the transfer lines of 250 °C,
the autoinjector temperature of 200 °C, a sampling frequency of 1.0 min~!. An injection loop with a
volume of 2.5 mL was employed.

The chromatographic separation was carried out using a Phenomenex DB5-5ms capillary column
(30 m, 0.25 mm i.d., 0.25 um thickness). The injector temperature was set at 280 °C in splitless mode
and He was used as carrier gas at a constant flow rate of 1.0 mL/min. The MS transfer line and the
oven temperatures were set at 280 and 210 °C, respectively. The MS signal was acquired in EI+ mode
with a 70.0 eV ionization energy. The ion source temperature was heated at 280 °C. The acquisition was
performed both in full-scan mode in the 30-200 m/z range and in Single Ion Monitoring (SIM) mode
by acquiring the signals of different m/z values, namely 18, 28, 30, 31, 44, 45, 59 and 73, corresponding
to the fragments that evolve from PEG.
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3. Results and Discussion

3.1. Effect of LDHs Loading

Oscillatory dynamic measurements were carried out within the material linear viscoelastic regime
to evaluate the effect of different amounts of LDHs on the relaxation dynamics of PEG. Figure 1A,B
shows the trends of complex viscosity (r7*) and storage modulus (G’) at 65 °C as a function of frequency
for unfilled PEG and all the investigated nanocomposites.

100 PEG
—m—PEG —o—
90k —m— PEG +0.5% LDHs 100 || = PEG +0.5% LDHs -
80 X PEG + 1.0% LDHs o gEg + 1(5)";0 Il:g:s
—m— PEG + 1.5% LDH: [|—m— +1.5% s
70 . PEG +2.5% LDH: PEG + 2.5% LDHs
B PEG +3.5% LDHs B PEG + 3.5% LDHs
60 . = B PEG +5.0% LDHs B PEG + 5.0% LDHs
|
E n
— _ . 10 E
(72] 50 3 l.. I.l-.. /(E L ..l
D(? 40 : l..-.. "Eag, & -.-....l.
~ - n
* ™ ......“'l:::==.=== ED ...-.I... M
= E B T auuETgE E ntg"
L HHH 1F w ity
30F " iEn ..'..l:-
[ | | ..:.I
I L |
- A | I/.,l B
0bw v ovinw i 0.1 Nl R
0.1 1 10 100 0.1 1 10 100
Frequency (rad/s) Frequency (rad/s)

Figure 1. Complex viscosity #* (A) and Storage modulus G’ (B) at 65 °C as a function of frequency for
unfilled PEG and all the investigated nanocomposites.

The addition of LDHs leads to a viscosity increase in the whole frequency range, as compared to
unfilled PEG. It is worth noticing that such an enhancement is progressively more pronounced as the
content of LDHs increases. Furthermore, a remarkable modification of the trend of complex viscosity
as a function of frequency is observed, especially in the low-frequency region, where the melt-state
dynamics of large polymer segments are probed. In particular, the unfilled PEG, due to its low
molecular weight, shows the typical Newtonian behavior, recognizable in the frequency independence
of the complex viscosity over the entire investigated frequency range. In the nanocomposites,
the presence of nanofillers causes the disappearance of the Newtonian plateau at low frequencies.
This finding is a clear indication of the good dispersion of LDHs, regardless of their concentration [21].
To further support this hypothesis, TEM analyses were carried out on the different nanocomposite
systems. As an example, Figure 2 shows two typical TEM pictures referring to the highest loaded
nanocomposite at two different magnifications. It is worthy to note that LDHs particles are well
dispersed within the polymer matrix and their size does not exceed about 400 nm with average
dimensions in the range of 50-100 nm. Furthermore, the rheological response of nanocomposites
containing loadings of LDHs higher than 1.5 wt.% suggests the formation of interconnected
network-like structures. This hypothesis will be further investigated later.

Looking at the trends of G’ as a function of frequency depicted in Figure 1B, unfilled PEG
exhibits the typical liquid-like terminal behavior (G’ a w?) in the low frequency region, due to
the full relaxation of the macromolecules. Upon incorporation of LDHs, the storage modulus of
nanocomposites progressively increases in magnitude and the slope of the plot of G" vs. w at low
frequencies gradually decreases as the loading of nanoparticles increases.
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Figure 2. TEM pictures of PEG + 5.0% LDHs at two different magnifications (scale bar 500 nm).

The observed deviation from the terminal behavior is indicative of a transition from liquid-like to
solid-like rheological behavior, attributable to the fact that the long-range polymer chain relaxation
is restrained by the presence of well-dispersed anisotropic nanofillers, arranged in a percolative
network that spans throughout the matrix [29]. Usually, the filler concentration, at which G’ begins
to exhibit non-terminal behavior, is referred as the percolation threshold, which marks the transition
from liquid-like to solid-like rheological behavior [30]. It is well documented in literature that the
formation and the evolution of a network of anisotropic nanoparticles in a polymer matrix can
be considered as a kind of physical gelation [31-33]. In fact, a physical gel could be thought as
a percolated three-dimensional network, in which the connectivity arises by physical interactions.
In the case of a filled polymer at its rheological percolation, the macroscopic connectivity is provided
by the different interactions taking place between the components (fillerfiller, filler—polymer and
polymer—polymer). Therefore, to analyze the rheological behavior of PEG/LDHs systems and to
determine the percolation threshold, the well-established Winter-Chambon method was employed [34].
According to this approach, the percolation threshold (i.e., the gel point) can be determined from
the frequency independence of loss tangent (tan § = G’ /G’) in the low frequency region. Figure 3
shows a multi-frequency plot of tan § as a function of nanoparticle loading. The general trend is a
continuous decrease of tan & with increasing LDHs content. The crossover point represents a frequency
independent value of tan §, and the LDHs amount, and the point at which this phenomenon occurs
is the percolation threshold. Figure 3 clearly shows that for PEG/LDHs systems, at the investigated
temperature, the percolation threshold is just below 2.5 wt.%.
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Figure 3. Loss tangent (tan 3) as a function of LDHs loading for PEG-based nanocomposites (T = 65 °C).
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3.2. Effect of Temperature

Figure 4 shows the temperature dependence of complex viscosity of unfilled PEG and PEG-based
nanocomposite melts, recorded during a single frequency heating scan performed at w = 0.1 rad/s.
Such a low value of frequency has been selected to approximate the zero shear behavior. Unfilled PEG
and the nanocomposites containing low amounts of LDHs (up to 1.5 wt.%) exhibit a continuous
decrease of 77* upon heating, over the whole tested temperature interval. Conversely, the complex
viscosity of nanocomposites containing higher loadings of nanofillers shows first a decrease upon
heating, followed by an unexpected increase, exhibiting a minimum at 130-140 °C.
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Figure 4. Dimensionless complex viscosity as a function of temperature for unfilled PEG and all
investigated nanocomposites (w = 0.1 rad/s).

To gain a better understanding of this rheological behavior, isothermal frequency scans have
been performed at different temperatures. Figure 5A shows the trends of complex viscosity for the
nanocomposite containing 5 wt.% of LDHs. The increase in the temperature from 65 to 140 °C causes a
decrease of the complex viscosity over the whole frequency range. At 180 °C, the values of the complex
viscosity are lower than those recorded at 65 °C, but a more pronounced non-Newtonian behavior can
be observed. When the annealing temperature is 180 °C, the complex viscosity increases with time,
steeply at first, and then more gradually until a limiting behavior is reached, corresponding to 150 min
of annealing time. Figure 5B reports the trend of melt yield stress o as a function of annealing time at
180 °C. This parameter was calculated fitting the complex viscosity as a function of frequency using
the Carreau-Yasuda model:

* 07 a -
7" =2 4oL+ (Aw)) "V M

where ¢y is the melt yield stress, 7 is the zero shear viscosity, A is the relaxation time, a is the
Yasuda parameter and n is the dimensionless power law index [10]. This model is divided in two
parts; melt yield stress (low frequency) and zero-shear viscosity (high frequency). For this study;, it is
important to study the low frequency range to quantify the melt yield stress, and a sigmoidal trend of
melt yield stress as a function of annealing time at 180 °C was found.
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Figure 5. Trend of complex viscosity #* as a function of frequency for the PEG + 5% LDHs sample
subjected to the different thermal treatments (A) and melt yield stress ¢y as a function of annealing
time at 180 °C (B).

These findings could be ascribed to the establishment of strong interactions between the PEG
macromolecular chains and the dispersed LDHs nanoparticles. In fact, the hydroxyl termination
of PEG macromolecules and the hydroxyl groups at the LDHs surface could interact during the
annealing process, favoring the occurrence of some grafting reactions. To verify this hypothesis,
the previously prepared samples, as well as the samples annealed at 135 and 180 °C for 150 min
were analyzed by TGA-GC-MS. In addition, all these samples were further extracted with THF to
remove the polyethylene glycol and the residue was analyzed. Figure 6 illustrates the TGA-GC-MS
chromatograms of the samples, focusing on the m/z value of 73, typical for the loss of the ethylene
glycol units. The chromatograms of the unextracted samples are very similar to each other and
consist of a series of peaks relevant to ethylene glycol evolution due to the polyethylene glycol chain
degradation. As the loss profiles are very similar for all the samples, it appears that the thermal
treatments, even for relatively long time periods, do not induce degradation in the polyethylene glycol
chains. Considering the solid residue after extraction, no trace of polyethylene glycol was observed
in the previously prepared sample and in the sample annealed at 135 °C, thus clearly indicating
that the washing procedure is highly effective in removing all the polyethylene glycol. In contrast,
the TGA-GC-MS trace of the sample annealed at 180 °C reveals the presence of a small amount of PEG
chains linked to the modified nanofiller.

Similarly, grafting reactions between a hydroxyl terminated polymer chain and hydroxyl groups
at a silicon surface have been described in various systems, leading to the formation of thin films
of the corresponding functional polymer onto the substrate [35,36]. In these systems, the grafting
time for the full coverage of the surface depends on the molar mass of the functional polymer [37]
and on the annealing temperature [38], which results in 300 h when the annealing temperature is
140 °C [35] but just some hours [36] when the grafting temperature is 180 °C. These results suggest
that a grafting reaction between the hydroxyl terminal groups of the polyethylene glycol chains and
the hydroxyl groups of the hydrotalcite occurs when the nanocomposites are annealed at temperatures
higher than 135 °C.
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Figure 6. TGA-GC-MS chromatograms of the unextracted (A) and extracted (B) PEG + 5% LDHs
sample annealed at 135 and 180 °C for 150 min.

4. Conclusions

Polyethylene glycol was exploited as a model matrix for investigating the relaxation dynamics
occurring in its nanocomposites containing an organo-modified hydrotalcite at different loadings,
when subjected to annealing processes performed at selected temperatures and times. In particular,
unfilled polyethylene glycol and its nanocomposites containing low filler amounts (i.e., up to 1.5 wt.%)
exhibited a continuous decrease of complex viscosity upon heating, over the whole temperature
interval. Conversely, the nanocomposites containing higher nanofiller loadings showed an unusual
increase in the complex viscosity in the terminal flow region. Gas chromatography-mass spectrometry
hyphenated to thermogravimetric analyses, performed on the nanocomposite solid residues after
extraction of the polyethylene glycol matrix in THF, revealed the occurrence of grafting reactions
between the ~OH terminal groups of the polyethylene glycol chains and the hydroxyl groups of the
organo-modified filler. These findings suggest that the inherent reactivity between fillers and functional
matrices can be exploited by thermal treatments, thus substantially influencing the rheology and melt
processing behavior of a large variety of composites, including those based on poly(lactic acid),
poly(lactic-co-glycolic acids) and those with terminal hydroxyl groups. The proposed nanocomposite
systems may deserve further investigation as thermal energy storage materials with improved
properties due to the interactions taking place between their two components.
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