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Abstract: Lactide-Caprolactone copolymer (LACL) was added to a Polylactide/Poly(ε-caprolactone)
(PLA/PCL) blend as a compatibilizer through solution mixing and the casting method. The melt
crystallization behavior and crystalline morphology of PLA, PLA/PCL, and PLA/PCL/LACL were
investigated using differential scanning calorimeter (DSC) and polarized optical microscopy (POM),
respectively. The temperature of the shortest crystallization time for the samples was observed at
105 ◦C. The overall isothermal melt crystallization kinetics of the three samples were further studied
using the Avrami theory. Neat PLA showed a higher half-time of crystallization than that of the
PLA/PCL and PLA/PCL/LACL blends, whereas the half-time of crystallization of PLA/PCL and
PLA/PCL/LACL showed no significant difference. The addition of PCL decreased the spherulite
size of crystallized PLA, and the nuclei density in the PLA/PCL/LACL blend was much higher
than that of the PLA and PLA/PCL samples, indicating that LACL had a compatibilization effect
on the immiscible PLA/PCL blend, thereby promoting the nucleation of PLA. The spherulites in
the PLA/PCL and PLA/PCL/LACL blend exhibited a smeared and rough morphology, which can
be attributed to the fact that PCL molecules migrated to the PLA spherulitic surface during the
crystallization of PLA.

Keywords: polylactide; poly(ε-caprolactone); compatibilization; melt crystallization

1. Introduction

Polylactide (PLA) is a thermoplastic aliphatic polyester, known as “green plastic” due to its
renewable, biodegradable, and biocompatible characteristics [1–3]. Even if PLA has been frequently
used in the biomedical industry and pharmaceutical fields, its broader application as a large-scale
commodity and engineering material is still limited by its brittleness, slow crystallization rate, and low
thermal stability [4–7]. To improve the toughness and crystallization kinetics of PLA, common routes
including polymer blending, copolymerization, incorporation of nanofillers, and surface modifications
have been developed [8–10]. Among these strategies, blending PLA with other polymers is the most
versatile and economical method in industrial settings.
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Poly(ε-caprolactone) (PCL) is also a biocompatible and biodegradable polyester, which exhibits
a relatively low glass transition temperature (about −60 ◦C), a low melting point (about 60 ◦C), and
high flexibility with an elongation at break of about 600% at room temperature [11–13]. Blends of
PLA with PCL has been extensively studied, as PCL could improve the toughness of PLA and retain
its biodegradability. However, many studies have reported that there are no favorable interactions
between the two polymers [14]. Zhang et al. [15] prepared PCL/PLA, PEO/PLA, and PEG/PLA
double-layer films to investigate the influence of the covered thin polymer layer on the spherulitic
growth rates of PLA. Observation using phase contrast optical microscopy showed that the PCL/PLA
pair was immiscible, which was responsible for the slower spherulitic growth rate of PLA than
that of the PEO/PLA and PEG/PLA pairs. Since the mechanical properties of polymer blends are
strongly influenced by the compatibility between the components, compatibilization is necessary
for the immiscible PLA/PCL blends. A great amount of effort has been focused on incorporating
compatibilizers to improve the interfacial adhesion of the blends. Chee et al. [16] added glycidyl
methacrylate (GMA) as a reactive compatibilizer to improve the interfacial adhesion between PLA
and PCL. The blends showed remarkable improved elongation at break and impact strength, and finer
dispersion and smooth surface of the specimens were noted as GMA loading increased, indicating that
the addition of GMA improved the interfacial compatibility of the immiscible blend.

It is also known that the mechanical properties of immiscible or partially miscible blends are
greatly dependent on their solid-state morphology and crystallization behavior. Therefore, the study of
the crystallization and morphology of PLA/PCL blends has received great interest. Rizzuto et al. [17]
introduced two kinds of poly(lactide-ran-caprolactone) P(LA-ran-CL) random copolymers into the
PLA/PCL (80/20) blends and paid attention to the spherulitic growth kinetics and overall isothermal
crystallization kinetics of the PLA phase. They found that the copolymers induced plasticization effects
that increased the crystallization ability of the PLA phase. The copolymer with the higher amount
of ε-caprolactone and a lower Tg produced a larger plasticization effect and significantly increased
the overall crystallization rate of PLA. The cold crystallization of PLA within the PLA/PCL (80/20)
blends, with or without the addition of three types of poly(L-lactide-block-carbonate) (PLA-b-PC)
diblock copolymers, was also investigated by the same group [18]. They found that the miscibility
between PLA and PCL was improved with a reduced PCL droplet size when the copolymers were
introduced. Using a 50/50 PLA-b-PC copolymer caused a threefold reduction in PCL particle size and
a Tg depression of 10 ◦C for the PLA phase. They concluded that the crystallization of PCL droplets
can accelerate the cold crystallization of PLA with enhanced nucleation. They also concluded that no
significant nucleation effects were detected for the PLA/PCL blends during the melt crystallization.

In addition, forming inclusion complexed compounds of PCL, PLA, and PCL-b-PLA results
in highly suppressed microphase-separation and thus a compatible PLA/PCL blend and blocks in
PCL-b-PLA copolymer, which are normally incompatible, as described above [19–24]. After removing
the host and coalescence, the coalesced PCL/PLLA blend or PLC-b-PLLA showed no apparent
crystallinity [20–22]. On the other hand, the inclusion of complexed PLLA with high stereoregularity
and/or their diblock copolymer (PCL-b-PLA) with relatively low molecular weights revealed a
relatively fast crystallization rate, with a short time of 20–140 s for complete crystallization [19].
However, enhancing mechanical properties for practical applications requires a high molecular weight,
which in turns leads to a weakened crystallization rate due to long polymer chains and entanglement.
Furthermore, most commercial PLLA has low optical purity due to its D-isomer acting as stereo
defective parts, leading to further retarded crystallization ability. A L-Lactide-caprolactone copolymer
(LACL) was employed as a compatibilizer in PLA/PCL blends in our previous study [25]. The effect
of LACL on the morphology, mechanical properties, and cold crystallization behaviors of the blends
was investigated. The addition of LACL decreased the dimensions of the dispersed PCL phase and
PLA therefore crystallized at a lower temperature during the non-isothermal cold crystallization.
The crystallization rate of PLA was accelerated, and the size of the crystals decreased with the addition
of LACL during isothermal cold crystallization. Despite the reported crystallization behavior of the
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PLA/PCL blend [17,26], the effect of a small amount of random copolymer of L-Lactide-caprolactone
on the melt crystallization kinetics, crystalline morphology, crystallinity as well as melting behavior
has not yet been fully explored.

To further illustrate the compatibilization effect of LACL, its impact on the isothermal melt
crystallization (i.e., the crystallization of PLA cooling from the melt) of high-molecular-weight PLA
within PLA/PCL/LACL blends is investigated in this study. The isothermal melt crystallization
kinetics and crystalline morphologies of PLA, PLA/PCL, and PLA/PCL/LACL are studied using
differential scanning calorimeter (DSC) and polarized optical microscopy (POM). The related melting
behavior and degree of crystallinity of crystallized samples were also investigated.

2. Materials and Methods

2.1. Materials

Polylactide (PLA, 2002D) with a high weight-average molecular weight (Mw) of 2.6 × 105 g/mol,
a commercial product of NatureWorks Co. Ltd., Blair, NE, USA, had a D-isomer content of 4.25 wt %, a
residual monomer content of 0.3 wt %, and a density of 1.24 g/cm3 [27–29]. The poly(ε-caprolactone)
(PCL, CAPA6500 with a Mw of 8.5 × 104 g/mol and a polydispersity index of 1.8) used in this
study was purchased from Solvay Co. Ltd., Brussels, Belgium. Its melt flow index (MFI) was
about 7 g/10 min (160 ◦C/2.16 Kg, ASTMD1238), and its –OH value was lower than 2 mg KOH/g.
The lactide-caprolactone copolymer (LACL, PLC 7015) was kindly donated by Corbion Purac,
Gorinchem, Netherlands. The molar ratio of the L-lactide/caprolactone is 70/30, and its Mw is
2.0 × 105 g/mol.

2.2. Sample Preparation

PLA and PCL, in the form of pellets, and LACL in the form of powder, were separately dried
in a vacuum oven at 80, 60, and 60 ◦C for 8 h, respectively. A PLA/PCL (80/20, w/w) blend and a
PLA/PCL/LACL (80/20/5, w/w/w) blend were prepared through solution mixing and subsequent
solvent casting. The blends were dissolved in chloroform and stirred at room temperature for 12 h to
form 0.1 g/mL solutions. Then, the solutions were cast in Petri dishes, followed by solvent evaporation
at room temperature for 24 h to form blend films. To remove residual solvent, the films were further
vacuum dried at 60 ◦C for 8 h. The neat PLA was also prepared using the same procedure.

2.3. Characterization

The isothermal melt crystallization behavior of the samples was characterized using a TA
Instru-ments Q20 DSC with Universal Analysis 2000 software. The samples were first heated from
room temperature to 200 ◦C at a rate of 10 ◦C/min, and held for 3 min to eliminate any prior thermal
history. Then, the samples were cooled to a chosen crystallization temperature (Tc), in the range of 90
and 120 ◦C, at a rate of 60 ◦C/min (to avoid PLA crystallization during cooling), and held at Tc for a
period of time until the crystallization was complete. The evolution of heat flow with crystallization
time was recorded during the melt crystallization process for later data analysis. After isothermal melt
crystallization at Tc, the samples were heated up again to 200 ◦C at 10 ◦C/min to study their melting
behavior. All experiments were performed under a nitrogen atmosphere.

The crystalline morphology of PLA, PLA/PCL, and PLA/PCL/LACL after isothermal melt
crystallization at 95, 105, and 115 ◦C was studied using a POM (Olympus BX51, Olympus Corp., Tokyo,
Japan) equipped with a charge coupled device (CCD) camera. The samples were sandwiched between
two thin glass slides to a thickness of around 50 µm, heated to 200 ◦C on a hot stage, and then held for
3 min to eliminate any residual thermal history. Then, these molten films were promptly transferred
to a preheated vacuum oven for crystallization at 95, 105, and 115 ◦C, respectively. The crystalline
morphology of the samples was recorded using the CCD camera.
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3. Results and Discussion

Figure 1 shows the DSC heat flow and relative crystallinity (Xt) as a function of time (t) for the
samples isothermally melt crystallized at various temperatures (Tc) between 90 and 120 ◦C. The Xt as
a function of t was calculated according to the following Equation (1):

Xt =
Qt

Q∞
=

∫ t
0

(
dH
dt

)
dt∫ ∞

0

(
dH
dt

)
dt

(1)

where Qt and Q∞ are the amounts of heat generated at time t and infinite time, respectively, and
dH/dt is the rate of heat evolution. From the figure, we can see that each sample exhibited only one
exothermal peak with no secondary crystallization. Besides, for PLA, PLA/PCL, and PLA/PCL/LACL,
the crystallization time for each sample decreased with increasing temperature up to 105 ◦C, indicating
the enhanced mobility of PLA molecules upon obtaining much higher thermal energy and hence an
enhanced crystallization rate. On the contrary, when the samples melt crystallized at temperatures
higher than 105 ◦C, the crystallization time increased with increasing temperature, which indicates
that the crystallization kinetics was suppressed with further increasing temperature. It is reasonable
that the crystallization kinetics slowed down as supercooling decreased upon crystallizing at higher
temperatures than the temperature (Tmax) of the maximum crystallization rate. Above Tmax, it became
harder for the PLA molecules to align into crystalline regions, leading to weakened nucleation ability,
which will be verified by the POM results. It should be noted that the shortest crystallization time
(which corresponds to the maximum crystallization rate) for the samples crystallized from the glassy
state (i.e., cold crystallization) was seen at 120 ◦C in our previous work [25], indicating a different
crystallization mechanism for melt crystallization and cold crystallization.
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Figure 1. Heat flows and relative crystallinity as a function of time for PLA, PLA/PCL, and
PLA/PCL/LACL isothermally melt crystallized at various temperatures characterized by differential
scanning calorimeter (DSC).

The Avrami theory has been widely used to investigate the isothermal crystallization process
for polymers [30]. According to the theory [31,32], the relative crystallinity (Xt) develops with
crystallization time (t), as

1 − Xt = exp(−ktn) (2)
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The linear form of Equation (2) can be expressed as

log [−ln (1 −Xt)] = log k + n log t (3)

where n is the Avrami exponent, which is dependent on the nature of nucleation and growth
geometry of the crystals, and k is the overall rate constant associated with both nucleation and
growth contributions. The overall isothermal melt crystallization kinetics of PLA, PLA/PCL, and
PLA/PCL/LACL were calculated using Equation (3), and the corresponding Avrami plots are
presented in Figure 2. The parameters n and k were obtained from the slopes and interceptions
of the Avrami plots, respectively, and are summarized in Table 1.Polymers 2018, 10, x FOR PEER REVIEW  5 of 13 
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various temperatures.

It can be found that the values of n for PLA were between 2.14 and 2.42, indicating that the
melt crystallization mechanism of PLA corresponded to three-dimensional spherulitic growth and
heterogeneous nucleation. In previous work, the values of n for PLA were between 1.99 and 2.18
during isothermal cold crystallization, indicating that most of the crystals grew in two directions when
PLA was heated from the glassy state. As shown in Table 1, the PLA/PCL blend showed slightly higher
n values between 2.23 and 2.67, indicating that the addition of PCL did not change the crystallization
mechanism and the geometry of the crystal growth of PLA. As compared to that of neat PLA, the
PLA/PCL/LACL blend exhibited a narrowed range of n values between 2.17 and 2.38, which was also
smaller than those of the PLA/PCL blend. This phenomenon further indicates that the addition of
LACL had a compatibilization effect on the immiscible PLA/PCL blend. In addition, the k value for
the samples all increased with the crystallization temperature Tc, and then decreased with Tc, after
reaching a maximum value at 105 ◦C. It is inappropriate to directly compare the overall crystallization
rate from the k values, because the unit of k is min-n and n is not constant at different Tc. Thus, the
crystallization half-time (t1/2), which is the time required to achieve 50% of the final crystallinity of the
samples, was introduced for an accurate evaluation of crystallization kinetics. The value of t1/2 was
calculated using Equation (4).

t1/2 =

(
ln 2

k

)1/n
(4)

The overall crystallization rates of the samples can be easily interpreted by comparing their t1/2.
The variations of t1/2 for PLA, PLA/PCL, and PLA/PCL/LACL isothermally melt crystallized at
different Tc are listed in Table 1 and presented in Figure 3. The t1/2 value for all the samples first
decreased with increasing Tc, reached the shortest crystallization time at 105 ◦C, and then increased
with increasing Tc. At a given Tc, PLA showed a higher t1/2 value than that of the PLA/PCL and
PLA/PCL/LACL blends, indicating that PCL accelerated the crystallization rate of PLA. However, the
t1/2 value of PLA/PCL and PLA/PCL/LACL showed no significant difference, which indicates that
further addition of LACL had little effect on the melt crystallization rate of PLA. As for the samples
isothermally cold crystallized at the same temperatures in our previous study, neat PLA showed
the fastest crystallization at 120 ◦C, while PLA/PCL and PLA/PCL/LACL exhibited the highest
crystallization rate at 110 and 115 ◦C, respectively. The cold crystallization rate of PLA was accelerated
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by PCL, and further accelerated by LACL. On the other hand, compared to the t1/2 value (2–26 min) of
cold crystallization in blends, the t1/2 values are 25–77 min for melt crystallization, indicating that the
acceleration effects of PCL and PCL/LACL on the crystallization of PLA were greatly hindered during
melt crystallization.

Table 1. Avrami parameters of PLA, PLA/PCL, and PLA/PCL/LACL blends isothermally melt
crystallized at various temperatures.

Samples Tc (◦C) (n) K (min−n) t1/2 (min)

PLA

90 2.20 2.57 × 10−5 103.7
95 2.26 3.45 × 10−5 80.3

100 2.41 7.07 × 10−5 45.0
105 2.42 1.22 × 10−4 35.9
110 2.35 1.02 × 10−4 42.8
115 2.14 1.22 × 10−4 56.3
120 2.19 4.00 × 10−5 85.6

PLA/PCL

90 2.38 2.29 × 10−5 76.8
95 2.26 1.29 × 10−4 44.8

100 2.23 4.29 × 10−4 27.5
105 2.47 2.42 × 10−4 25.0
110 2.43 1.24 × 10−4 34.9
115 2.67 1.64 × 10−5 53.6
120 2.37 3.17 × 10−5 68.0

PLA/PCL/LACL

90 2.17 8.27 × 10−5 64.5
95 2.22 1.45 × 10−4 45.8

100 2.19 4.04 × 10−4 29.8
105 2.15 4.77 × 10−4 29.6
110 2.28 2.09 × 10−4 35.1
115 2.38 5.83 × 10−5 51.6
120 2.38 4.03 × 10−5 59.9
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crystallized at various temperatures.

These different crystallization behaviors for melt crystallization and cold crystallization may result
from the different initial states prior to crystallization processes. For the cold crystallization process,
PLA was heated from the glassy state, during which PCL remained in the crystalline state. When the
increased temperature was beyond the melting point of PCL, the crystallization of PLA molecules was
influenced by the melted PCL molecules. For example, in the PLLA/PCL blend, annealing the blends
below the Tg (close to the Tm of PCL) of PLLA promoted nucleation and crystallization, resulting
in decreased cold crystallization temperatures [18,26]. Particularly, annealing at lower temperatures,



Polymers 2018, 10, 1181 7 of 12

which favors the crystallization of PCL, caused more PCL crystals and thus a more apparent promotion
effect on PLLA crystallization [18]. This effect arose from the potential nuclei of the PCL crystals upon
heating from the glassy state of PLLA [18,26]. As such, during the cold crystallization of PLA/PCL
and PLA/PCL/LACL in our previous work, the nucleation effect and nucleation density are much
higher than was the case in the present work, as will be shown in the POM results. However, for the
melt crystallization in this work, PLA was cooled from the melt. PCL always remained in the melting
state throughout the whole crystallization process in the studied temperature range, providing no PCL
crystals and thus no apparent nucleation effect induced by PCL. As such, the t1/2 value (25–77 min) of
melt crystallization in blends was 3–12 times that (2–26 min) of cold crystallization as described above.

Figure 4 presents the DSC heating scans of PLA, PLA/PCL, and PLA/PCL/ LACL which were
isothermally melt crystallized at various temperatures. For the samples crystallized at relatively
lower temperatures ranging from 90 to 105 ◦C, the DSC curves exhibited a double melting behavior.
The two endothermic peaks corresponded to the melting crystals with different stability and perfection.
When the samples crystallized at a lower Tc, the higher degree of supercooling led to fast nucleation,
which formed imperfect crystals with lower stability. With the increase in temperature during DSC
heating, the crystals with lower stability first melted and were accompanied by recrystallization,
which formed the first melting peak at the lower temperature. The second melting peak at
the higher temperature corresponded to the melting of more perfect crystals created during the
recrystallization process. This explanation is consistent with a melting-recrystallization origin revealed
by temperature-modulated DSC in crystallized PLA with a D-LA content of ca. 6% in a previous
study [33]. Accordingly, the second endothermic peak almost remained at a constant temperature of
around 155 ◦C. With increasing Tc, the formed crystals became more stable with a higher perfection
and larger thickness, which resulted in a higher melting point according to the Gibbs−Thomson
equation. Therefore, the first melting peaks gradually moved to a higher temperature and merged with
the second melting peak. When the samples crystallized at a higher Tc, the degree of supercooling was
relatively low and the nucleation was accordingly slow, which enabled the crystals to have enough
time to form stable crystals. Thus, a single melting peak was observed, which corresponded to the
melting of the stable crystals. A single melting peak was observed for the samples after isothermal
melt crystallization at 115 and 120 ◦C. For the samples isothermally melt crystallized at 110 ◦C, a single
melting peak with a very tiny shoulder was detected in neat PLA, whereas the shoulder peaks were
more apparent in the PLA/PCL and PLA/PCL/LACL blends, which was related to the enhanced chain
mobility (and thus the enhanced crystallization/nucleation rate, as verified by the reduced t1/2 shown
in Figure 3) of PLA influenced by PCL and LACL in the blend. Besides, the endothermic areas of the
second melting peak for the PLA/PCL/LACL blend at various Tc were larger than those of the neat
PLA and PLA/PCL blend, which indicates that the PLA chain mobility in the PLA/PCL/LACL blend
was more active than that in the PLA/PCL, which was also attributed to the compatibilization effect of
LACL between PLA and PCL. The crystallinity values of the samples after isothermal crystallization at
various temperatures were calculated from the melting enthalpy and are listed in Table 2. Since only
PLA molecules can melt at around 150 ◦C, the crystallinity calculated was from the PLA component in
the samples. From Table 2, it is obvious that the crystallinity of all the samples increased gradually with
increased isothermal crystallization temperature. Moreover, the crystallinity of PLA/PCL/LACL was
higher than that of PLA/PCL and PLA after isothermal crystallization at each temperature, indicating
that the chain mobility of PLA molecules was enhanced by PCL, further improved by incorporating
LACL, finally leading to increased crystallinity of PLA in blends.
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Table 2. Melting enthalpy and crystallinity of PLA, PLA/PCL and PLA/PCL/LACL after isothermal
crystallization at various temperatures.

Samples Tc (◦C) 4H (J·g−1) χ α

PLA

90 23.4 25.2%
95 24.4 26.3%

100 24.8 26.6%
105 25.8 27.8%
110 27.0 29.0%
115 27.2 29.2%
120 29.3 31.5%

PLA/PCL

90 19.5 26.2%
95 20.2 27.2%

100 20.6 27.7%
105 21.1 28.4%
110 22.1 29.7%
115 23.9 32.1%
120 24.7 33.2%

PLA/PCL/LACL

90 19.5 27.5%
95 20.4 28.8%

100 20.8 29.3%
105 21.5 30.3%
110 21.8 30.7%
115 24.1 33.9%
120 25.0 35.3%

α Crystallinity χ = (∆H/∆H*)/ΦPLA;4H is the melting enthalpy calculated by integrating the melting peak in the
DSC heating shown in Figure 4; ∆H* = 93 J·g−1 is the melting enthalpy of a 100% crystalline PLA; and ΦPLA is the
weight fraction of PLA in the samples.

Observing spherulite formation through an optical microscope allows us to trace the crystallization
behavior of the samples. Figure 5 shows the POM micrographs of PLA, PLA/PCL, and
PLA/PCL/LACL isothermally melt crystallized at 105 ◦C for different times. The samples formed
well-defined spherulites that exhibited the classical Maltese-cross extinction pattern, as observed from
the POM micrographs at 20 min. The size of the spherulites increased with the crystallization time.
The addition of PCL increased the nuclei density, and as a result the spherulite size became smaller
than that of the neat PLA. The reason for the increased nuclei density was that the addition of PCL
increased the molecular chain mobility of PLA, which promoted the nucleation ability of PLA. The
nuclei density in the PLA/PCL/LACL blend was much higher than that of the PLA and PLA/PCL
samples, indicating that LACL had a compatibilization effect between PLA and PCL, and promoted
the nucleation of PLA. As a result, the spherulites were prone to impinge on their neighbors to hinder
further growth, resulting in smaller spherulites. Thus, the spherulite morphology of the samples was
rough and it was hard to identify the Maltese-cross extinction pattern at 80 min.
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isothermally melt crystallized at 105 ◦C for 20, 40, and 80 min.

The POM micrographs of PLA, PLA/PCL, and PLA/PCL/LACL isothermally melt crystallized
at 95, 105, and 115 ◦C are displayed in Figure 6. It is obvious that the size of the spherulites increased
with the increasing crystallization temperature due to the decrease in nucleation density. When the
samples melt crystallized at lower temperature of 95 and 105 ◦C, the nuclei density was too high to
observe the spherulites with Maltese-cross morphology. The nuclei density of the spherulites in the
PLA/PCL and PLA/PCL/LACL blend was higher than that of PLA in the whole temperature range,
which indicates that the addition of PCL promoted the nucleation of PLA. For neat PLA isothermally
melt crystallized at 115 ◦C, spherulites with a typical Maltese-cross extinction pattern were formed.
However, in the PLA/PCL blend, the spherulites exhibited a smeared and rough morphology, and
their size was smaller than that of PLA. This is associated with the fact that PCL molecules migrated
to the PLA spherulitic surface during the crystallization of PLA. For the PLA/PCL/LACL blend, the
spherulites also showed a rough morphology, but much clearer than that of PLA/PCL.
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4. Conclusions

The isothermal melt crystallization behavior and crystalline morphology of PLA, PLA/PCL, and
PLA/PCL/LACL were studied with DSC and POM. The crystallization time for the samples decreased
with increasing temperature up to 105 ◦C. When the samples melt crystallized at temperatures higher
than 105 ◦C, the crystallization time increased with increasing temperature. The overall isothermal melt
crystallization kinetics of PLA, PLA/PCL, and PLA/PCL/LACL were studied using the Avrami theory.
The melt crystallization mechanism of PLA corresponded to three-dimensional spherulitic growth
and heterogeneous nucleation, and the addition of PCL and LACL did not change the crystallization
mechanism and the geometry of the crystal growth of PLA. The addition of PCL accelerated the
crystallization rate of PLA, but the further addition of LACL had little effect on the melt crystallization
rate of PLA. The crystallinity of PLA was enhanced by PCL, and further improved by incorporating
LACL. The addition of PCL increased the nuclei density and decreased the spherulite size of PLA.
The nuclei density in the PLA/PCL/LACL blend was much higher than that of the PLA and PLA/PCL
samples, indicating that LACL had a compatibilization effect between PLA and PCL, and promoted the
nucleation of PLA. The spherulites in the PLA/PCL and PLA/PCL/LACL blend exhibited a smeared
and rough morphology, and the size was smaller than that of PLA, which was because PCL molecules
migrated to the PLA spherulitic surface during the crystallization process.
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