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Abstract: Novel composite hydrogels based on the combination of alginate (Alg), soy protein
isolate (SPI) and bioactive glass (BG) nanoparticles were developed for soft tissue engineering.
Human umbilical vein endothelial cells (HUVEC) and normal human dermal fibroblasts were
cultivated on hydrogels for 7, 14 and 21 days. Cell morphology was visualized using fluorescent
staining at Days 7 and 14 for fibroblast cells and Days 14 and 21 for HUVEC. Metabolic activity of
cells was analyzed using a colorimetric assay (water soluble tetrazolium (WST) assay). Compared to
pure Alg, Alg/SPI and Alg/SPI/BG provided superior surfaces for both types of cells, supporting
their attachment, growth, spreading and metabolic activity. Fibroblasts showed better colonization
and growth on Alg/SPI/BG hydrogels compared to Alg/SPI hydrogels. The results indicate that
such novel composite hydrogels might find applications in soft tissue regeneration.

Keywords: soy protein isolate; composite hydrogels; bioactive glass nanoparticles; biocompatibility;
human cells; tissue engineering

1. Introduction

The failure of organs or tissues and the inadequate availability of tissue donors are frequent,
difficult and costly issues in human healthcare. Tissue engineering and regenerative medicine
are alternative approaches to support, rehabilitate and improve the functionality of damaged
tissue by developing engineered biomaterials and biological substitutes [1]. Hydrogels are gaining
increasing interest in different biomedical applications such as tissue scaffolds [2], drug delivery [3],
cell encapsulation [4] and biofabrication [5] due to their biocompatibility and structural similarity to
the extracellular matrix (ECM) [6]. Hydrogels provide an aqueous environment for the cells, having
the capability of forwarding nutrients to cells and transporting waste products from cells. Hydrogels
may be combined with cell adhesion ligands to promote better cell adhesion and proliferation [7].
Among naturally-derived hydrogel-forming materials, alginate is one of the most popular ones,
as it exhibits rapid ionic gelation in moderate pH and temperature conditions, which is suitable for
encapsulating cells and different biomolecules such as proteins [8]. However, alginate has a relatively
slow degradation profile, and it does not promote efficient cell attachment [9–11]. In an attempt to
overcome these restrictions of alginate, soy protein isolate (SPI) was considered in this study as a
potential biopolymer partner to be combined with alginate. In a previous study, mouse fibroblasts
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(L929) were cultured on chitosan/SPI films showing better cellular adhesion properties compared
to pure chitosan membrane after three days of incubation [12]. The result showed that L929 cells on
chitosan films were spherical after three days of incubation; on the other hand, for chitosan/SPI films,
due to the incorporation of SPI providing more protein-binding sites, cells were able to attach and
proliferate [12]. The alginate/SPI hydrogel films and microcapsules were investigated previously by
our group (Tansaz et al. [13]). Cell study results on hydrogel films (with mouse embryotic fibroblast
cells) demonstrated the ability of this hybrid hydrogel to promote cell viability and attachment in
comparison to pure Alg films [13]. Bioactive glass (BG) particles are being increasingly considered
for soft tissue regeneration and wound healing applications [14–16]. For instance, Ostomel et al. [17]
used silicate glasses as hemostasis-inducing materials for blood clot formation, demonstrating that
Ca+2 ions releasing from BG can reinforce the coagulation cascade. Also in our previous study [18],
the clotting assay on soy protein-BG nanoparticle composite films indicated a higher clotting rate for the
composite films compared to the control. Silver-doped mesoporous BG-containing biopolymers induce
antibacterial effects and are therefore an alternative choice for healing burn wounds [19]. Moreover,
BGs exhibit angiogenic capacity due to the effect of ionic dissolution products’ release [20] and can
hence be applied as wound healing materials [15,16]. Jebahi et al. [21] also indicated the positive
biological effects of BG containing strontium (Sr) for skin wound repair and regeneration. The results
showed that ion release from BG-Sr might have an antioxidant effect. Consequently, a protective
action against reactive oxygen species (ROS) was observed in soft tissue surrounding BG-Sr discs
and the wounded skin, which resulted in rapid restoration of the structure and functional properties
of muscle [21]. In the present study, different silicate nBG particles and also strontium-doped nBG
particles were used for the preparation of the composite films.

The main goal of this study was the fabrication and characterization of a new family of composite
hydrogels based on alginate/SPI/BG films for soft tissue engineering. Given the non-animal origin of
this polymer blend, less immunogenicity is expected, and alginate/SPI thus represents an alternative
biomaterial to animal-derived proteins, which may show immunogenicity and the risk of diseases
transmission [22–25]. Moreover, the effect of incorporating BG nanoparticles into alginate/SPI hydrogel
films on their degradation behavior and cytocompatibility with fibroblasts and human umbilical vein
endothelial cells (HUVECs) was assessed.

2. Experimental Section

2.1. Materials

Sodium alginate (sodium salt of alginic acid from brown algae, suitable for immobilization of
micro-organisms, MW 100,000–200,000 g·mol−1, guluronic acid content 65–70%) was obtained from
Sigma-Aldrich, Munich, Germany. Soy protein isolate was acquired from MP Biomedicals (Eschwege,
Germany). Glycerol and calcium chloride di-hydrate (CaCl2·2H2O) were purchased from VWR
international, Belgium. Three different kinds of nanosized bioactive glass (nBG) particles were tested
(mean particle size 20–80 nm). The composition of the nBG was very close to (i) 45S5 composition
(45 wt % SiO2, 24.5 wt % CaO, 24.5 wt % Na2O, 6 wt % P2O5) [26], (ii) 13-93 BG (53 wt % SiO2, 20 wt %
CaO, 6 wt % Na2O, 4 wt % P2O5, 12 wt % K2O, 5 wt % MgO) and (iii) 13-93-5Sr (mean particle size
30–35 nm) composition (53 wt % SiO2, 15 wt % CaO, 6 wt % Na2O, 4 wt % P2O5, 12 wt % K2O, 5 wt %
MgO, 5 wt % SrO). These glass nanopowders were fabricated by the flame spray method [26], and they
were characterized in previous studies [27].

2.1.1. Sonochemical Preparation of Hydrogels

According to the protocol reported by Silva et al. [28], soy protein isolate (SPI) 2% (w/v) was
dissolved in ultrapure water with glycerol (2 wt %) at 60 ◦C for approximately 45 min. Meanwhile,
2% (w/v) sodium alginate (Alg) was dissolved in Dulbecco’s Phosphate-Buffered Saline (PBS), (Gibco,
Germany) with a pH range between 7.0 and 7.3 at 37 ◦C. It should be mentioned that 2% (w/v) SPI
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in water at pH around 7 was almost the maximum concentration of SPI that can be dissolved in
water, whereas for higher concentration of SPI, the increase or decrease of the pH value of the solution
is inevitable. In our study, 2% (w/v) SPI was used to keep the pH appropriate for the cell culture
experiments. Moreover, a lower concentration of glycerol was used here in comparison to the study of
Silva et al. [28], due to the previously reported inhibition of cell proliferation by higher concentration of
glycerol [29]. After adding different compositions of alginate and soy protein solutions, the ultrasound
treatment was performed. This was carried out for three minutes with a pulse duty cycle of “8 s on,
2 s off” according to a previous investigation [28]. The ultrasonic treatment was applied with the probe
type ultrasound source “20 kHz Vibracell CV33” from Sonics & Materials, Newtown, CT, USA.

2.1.2. Preparation of Hydrogel Films

The blend solution was transferred into an 8-cm glass Petri dish and left at 37 ◦C for approximately
30 min to achieve a slight drying of the surface of the hydrogels. This was done to prevent the surface
of the hydrogel films from becoming uneven by the addition of CaCl2. Afterwards, 0.1 M of calcium
chloride solution was poured on the formed hydrogel films and left for 15 min to allow ionic gelation
according to the previous protocol [28]. Subsequently, films were washed several times with ultrapure
water. Samples that were fitted to the wells of 24-well plates were punched out with a stainless steel
cutter with a diameter of 13.5 mm.

2.1.3. Physico-Chemical Characterization of Films

2.1.3.1. Water Uptake

Water uptake is one of the most important properties of hydrogel-based biomaterials. It shows
the ability of the hydrogel to absorb and diffuse water or body fluid, which is vital for cells to transfer
nutrients and metabolites [30].

For water uptake measurements, the films were previously dried using a critical point dryer
(Leica EM CPD300, Leica Microsystems, Wetzlar, Germany). The water uptake ability of the hydrogels
was determined by soaking them in Hanks’ balanced salt solution (HBSS, Sigma-Aldrich, Steinheim,
Germany). This measurement was carried out up to 3 days at 37 ◦C, i.e., until the water uptake ability
of hydrogel films became steady or started decreasing due to the degradation. The swollen hydrogels
were removed at predetermined time points. After washing with ultrapure water and removing the
excess water using a filter paper, the hydrogels were weighed with an analytical balance (A&D GX-600,
A&D instruments LTD., Tokyo, Japan). The water uptake was calculated according to Equation (1),
where Ww and Wd are the weights of swollen and dried hydrogels, respectively:

water uptake (%) =
Ww − Wd

Wd
× 100 (1)

Every experiment was repeated three times (n = 3) and, after calculating the water uptake for
each sample, the average value was determined.

2.1.3.2. Swelling and Degradation Behavior

The degradation of different composite hydrogels was determined by soaking them in 2 mL HBSS
(containing 2% (v/v) antibiotic to eliminate the risk of bacterial contamination) at 37 ◦C for a period
up to 21 days according to previous studies [28,31,32]. The hydrogels were removed at selected time
points (t = 1 d, 3 d, 7 d, 14 d, 21 d). The hydrogels were first washed with ultrapure water, and after
removing the excess water using a filter paper, the hydrogels were weighed using an analytical balance.
The percentage of swelling and degradation was calculated using Equation (2), where Wt and Wi are
the swollen/degraded weight and the initial weight, respectively:

weight loss (%) =
(Wt − Wi)

Wi
× 100 (2)
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where positive values are considered as swelling (wt %) and negative values as degradation (wt %).
Each experiment was repeated three times (n = 3), and after calculating the swelling and degradation
for each sample, the average values were determined.

2.1.4. Fourier Transform Infrared Spectroscopy

The chemical structure of the samples was assessed by a Fourier transform infrared (FTIR)
spectrometer (Nicolet 6700, Thermo Scientific, Waltham, MA, USA). The analysis was performed
under the following conditions: spectral range between 4000 and 530 cm−1; the window material
was CsI; 32 scans at a resolution of 4 cm−1 were recorded. Hydrogel films of Alg and Alg/SPI of
different compositions were used to record attenuated total reflectance Fourier transform infrared
(ATR FTIR) spectra.

2.1.5. Scanning Electron Microscopy

The morphological analysis of the hydrogel films was performed using scanning electron
microscopy (SEM) (Auriga-Zeiss, Jena, Germany). The samples for SEM analysis were dried with a
critical point dryer (Leica EM CPD300, Wetzlar, Germany). The samples were sputter coated with gold
before SEM examination.

2.1.6. Nano-Indentation

A Piuma nanoindenter instrument (Amsterdam, The Netherlands) was used for the analysis of
the effective Young’s modulus of the prepared hydrogels with different Alg(2%)/SPI(2%) ratios
(30/70, 50/50, 70/30) on zero day and after 7 and 14 days after immersion in buffer solution.
The nano-indentation was carried out with a nano-indentation probe having a cantilever spring
constant of 18.200 N/m and a tip radius of 39.00 µm. HBSS was used as medium for the probe
calibration. For each hydrogel, several readings were taken at different X, Y positions with
a 50–100-µm distance between the points of testing. The results were expressed as the mean
value ± standard deviation.

2.1.7. Effect of Incorporation of Bioactive Glass into Alg/SPI Hydrogel Films

The effect of incorporating nBG particles into the Alg/SPI hydrogel on the degradation and cellular
response of the films was investigated. Hydrogel films containing nBG were prepared as explained
above; however, the addition of 0.5% (w/v) nBG into the solution was done before performing
ultrasound treatment. This concentration of BG was used according to previous studies [28,33].
Moreover, due to the lower viscosity of the blend Alg/SPI solution, this concentration was appropriate
to obtain a homogenous solution for the fabrication of hydrogel films. At a higher concentration of
nBG, their agglomeration and sedimentation was observed at the bottom of the solution. The effect
of nBG particles on water uptake and degradation was assessed. The cytocompatibility of nBG
(13-93-5Sr)-containing hydrogels was investigated as described in the next section.

2.1.8. Cell Response to Hydrogels

2.1.8.1. Cells

Primary human fibroblasts (Promocell, Heidelberg, Germany) were cultured in DMEM
supplemented with 10% (v/v) fetal calf serum (FCS) and 1% (v/v) antibiotic-antimycotic, at 37 ◦C,
with a controlled atmosphere of 5% CO2 and 95% relative humidity. A monolayer of fibroblasts in their
growth phase (~90% confluence) was detached using trypsin/1 mM ethylenediaminetetraacetic acid
(EDTA) (Life Tech., Darmstadt, Germany) in PBS, centrifuged and resuspended in complete cell culture
medium. Cells were counted using the trypan blue exclusion method (Sigma-Aldrich) before seeding
on hydrogels. Human umbilical vein endothelial cells (HUVECs) were isolated from freshly-collected
umbilical cords by a standard technique [34] and grown in ECs growth medium with a growth



Polymers 2018, 10, 1159 5 of 19

supplement containing 5% FCS, 4 µL/mL heparin, 10 ng/mL epidermal growth factor, 1 µg/mL
hydrocortisone, 50 µg/mL gentamycin sulfate and 50 ng/mL amphotericin B, in a humidified 7.5%
CO2 atmosphere. The use of human material was approved by the Institutional Ethical Committee on
Human Research at the University Hospital Erlangen (Ethical Review Number 85_14 B, from 10 April
2014). All subjects enrolled in this research have given informed consent according to the ethical
guidelines. In all experiments, ECs at passage 1–2 were used.

2.1.8.2. Cell Seeding onto 2D Hydrogels

For the cell-compatibility study, circular hydrogel films were prepared using sterilized solution,
in a laminar flow hood. To facilitate handling during the cell seeding and assay procedures, the control
hydrogels contained 2.5% Alg. Four different sample types were compared, as summarized in Table 1.

Table 1. Composition of hydrogel films used in the cell compatibility studies. Alg, alginate; SPI, soy
protein isolate; nBG, nanosized bioactive glass.

Formulation Compound 1 Compound 2 Compound 3 Final Composition

Alg Alg 2.5% - - 100 (2.5%)
Alg/SPI (70/30) Alg 5% SPI 2% - 50/50 (2.5%/1%)
Alg/SPI (50/50) Alg 2% SPI 2% - 50/50 (1%/1%)

Alg/SPI (50/50) + nBG Alg 2% SPI 2% nBG 50/50 (1%/1%) + 0.5% (w/v)

The prepared circular hydrogel films were placed in 24-well plates and pre-incubated in DMEM,
10% fetal calf serum (FCS) and 1% antibiotic (penicillin and streptomycin) over night. Afterwards,
fibroblasts (75,000 cells/film) or HUVECs (150,000 cells/film) were seeded on top of the hydrogels and
incubated in a humidified atmosphere at 95% relative humidity and 7.5% CO2 at 37 ◦C for 7, 14 and
21 days.

2.1.8.3. Metabolic Activity of Cells

The metabolic activity of both cell types grown on hydrogel films was assessed through the
enzymatic conversion of tetrazolium salt (WST-8 assay kit, Sigma Aldrich) after 7, 14 and 21 days
of cultivation. Culture medium was completely removed from the samples, and freshly-prepared
culture medium was added containing 1 vol% water soluble tetrazolium (WST)-8 solution, followed
by incubation for 2 h. Subsequently, 100 mL of supernatant from each sample were transferred into a
96-well plate, and the absorbance was measured at 450 nm in triplicate using a microplate reader.

2.1.8.4. Cell Staining

To assess the morphology of cells after 7, 14 and 21 days of cultivation, cells were washed,
fixed and stained with rhodamine phalloidin (Invitrogen, Schwerte, Germany), which selectively stains
F-actin, and nuclei were visualized with green nucleic acid stain, SYTOX (Invitrogen, Carlsbad, CA,
USA). Fluorescent images were taken with a fluorescence microscope (FM) (Axio Scope A.1, Carl Zeiss
Microimaging GmbH, Jena, Germany).

3. Results and Discussion

3.1. Physico-Chemical Characterization

3.1.1. Water Uptake Behavior

The water uptake of hydrogel films of different compositions was analyzed in HBSS. As shown
in Figure 1, the water uptake ability for all films increased in the first hours and then became stable.
The water uptake was highest for Alg films and decreased with a growing concentration of SPI.
This behavior could be due to the higher hydrophilicity of Alg compared to SPI.
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Figure 1. Water uptake ability of different compositions of Alg/SPI hydrogel films in HBSS. 
Statistically significant differences are indicated in comparison to alginate hydrogel (at 72 h):  
*** p < 0.001 (Bonferroni’s post-hoc test). 
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Figure 2 shows the results of swelling and degradation measurement on different composition 
of Alg/SPI hydrogel films. At the beginning of incubation, we observed the swelling of all hydrogels, 
and this ability continued for Alg and Alg/SPI (70/30) until 21 and 14 days, respectively. Alg/SPI 
(30/70) started to lose weight after three days, and the other compositions started losing weight after 
14 days; however, the measured values were still positive, thus showing weight gain. One 
considerable source of error is the presence of water on the films despite efforts to remove it, and the 
fact that the produced films are very thin and light, which hinders the accurate measurement in the 
presence of water. Nevertheless, results clearly showed higher weight loss for Alg/SPI films, 
especially for the films with a higher concentration of SPI in comparison to the pure alginate films, 
which is likely due to the release of SPI during the incubation period. 

 
Figure 2. Swelling behavior of different compositions of Alg/SPI hydrogel films. 

Figure 1. Water uptake ability of different compositions of Alg/SPI hydrogel films in HBSS. Statistically
significant differences are indicated in comparison to alginate hydrogel (at 72 h): *** p < 0.001
(Bonferroni’s post-hoc test).

3.1.2. Swelling and Degradation Behavior

Figure 2 shows the results of swelling and degradation measurement on different composition of
Alg/SPI hydrogel films. At the beginning of incubation, we observed the swelling of all hydrogels,
and this ability continued for Alg and Alg/SPI (70/30) until 21 and 14 days, respectively. Alg/SPI
(30/70) started to lose weight after three days, and the other compositions started losing weight after
14 days; however, the measured values were still positive, thus showing weight gain. One considerable
source of error is the presence of water on the films despite efforts to remove it, and the fact that the
produced films are very thin and light, which hinders the accurate measurement in the presence of
water. Nevertheless, results clearly showed higher weight loss for Alg/SPI films, especially for the
films with a higher concentration of SPI in comparison to the pure alginate films, which is likely due to
the release of SPI during the incubation period.
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3.1.3. FTIR

Figure 3 shows typical FTIR spectra of alginate and all different compositions of Alg/SPI films that
were crosslinked by CaCl2. The spectrum of the alginate film shows the characteristic absorption bands
of the polysaccharide structure. The first relevant peaks are at 1588 cm−1 and 1413 cm−1, which are
assigned to asymmetric and symmetric stretching peaks of carboxylate salt groups of alginate [35].
In addition, the bands around 1316 cm−1 (C–O stretching), 1119 cm−1 (C–C stretching), 1022 cm−1

(C–O–C stretching) and 942 cm−1 (C–O stretching) are attributed to the saccharide structure [36,37].
For the Alg/SPI blend spectrum, the typical peaks for SPI are marked in the figure. The SPI spectrum
has an absorption band around 3320 cm−1, which is related to the stretching vibration of the N–H group
(Amide A) [38], and the absorption band at 1670 cm−1 is attributed to Amide I (C=O), while Amide
II (N–H bending) leads to a peak at 1540 cm−1 and Amide III at 1230 cm−1 [39,40]. As is observed
for Alg/SPI films, the peak of Amide I with small shift is present at 1618 cm−1 after the sonication
treatment. This effect is likely due to the change of protein conformation to a beta sheet structure,
which is usually reported around 1638 cm−1 [41]. Silva et al. [28] reported that after sonication
treatment, the heating induced by ultrasound could lead to a change in the protein conformation and
may allow the soy protein subunits to interact with alginate and form robust networks.
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3.1.4. SEM Analysis

As observed in Figure 4, Alg films exhibited the typical morphology with a folded structure in a
regular pattern. All different Alg/SPI compositions showed different morphologies compared to Alg.
The surface of Alg/SPI (70/30) films had an uneven and rough folded morphology, whereas it was
flat and ordered in Alg/SPI (60/40). Alg/SPI (50/50) showed nearly a homogenous porous structure.
However, by increasing the concentration of SPI to 60% or 70%, again an uneven and disordered
morphology of the film surfaces was observed, which is expected due to the relatively high amount
of SPI.

After 21 days of immersion in HBSS, the surface of Alg/SPI (50/50) hydrogel film was observed
by SEM again. As presented in Figure 5, the surface of this hydrogel became smoother, with large voids,
which are likely due to the degradation and the release of the soy protein component. These voids are
beneficial for cell anchoring and penetration.



Polymers 2018, 10, 1159 8 of 19
Polymers 2018, 10, x FOR PEER REVIEW  8 of 19 

 

 
Figure 4. SEM images of different compositions of Alg/SPI hydrogel films: (a) Alg, (b) 70/30, (c) 60/40, 
(d) 50/50, (e) 40/60 and (f) 30/70 showing different surface morphologies. 

 

Figure 5. SEM image of Alg/SPI (50/50) hydrogel film after 21 days’ immersion in HBSS showing 
porosity development. 

Figure 4. SEM images of different compositions of Alg/SPI hydrogel films: (a) Alg, (b) 70/30, (c) 60/40,
(d) 50/50, (e) 40/60 and (f) 30/70 showing different surface morphologies.

Polymers 2018, 10, x FOR PEER REVIEW  8 of 19 

 

 
Figure 4. SEM images of different compositions of Alg/SPI hydrogel films: (a) Alg, (b) 70/30, (c) 60/40, 
(d) 50/50, (e) 40/60 and (f) 30/70 showing different surface morphologies. 

 

Figure 5. SEM image of Alg/SPI (50/50) hydrogel film after 21 days’ immersion in HBSS showing 
porosity development. 
Figure 5. SEM image of Alg/SPI (50/50) hydrogel film after 21 days’ immersion in HBSS showing
porosity development.



Polymers 2018, 10, 1159 9 of 19

3.1.5. Nano Indentation

Nano indentation tests were performed on selected, samples and the effective Young’s modulus of
Alg and Alg/SPI hydrogels is plotted in Figure 6. As shown, the incorporation of SPI led to significantly
higher stiffness of hydrogel films compared to the pure Alg films. As the amount of SPI increased
from 30–50 wt %, there was an increase in Young’s modulus from ~400 kPa–600 kPa. The maximum
stiffness was achieved by the Alg/SPI (50/50) film. With a further increase of SPI concentration,
stiffness decreased. This is due to the poor miscibility of SPI with Alg, leading to inhomogeneities
and to excessive protein content, especially in the case of Alg/SPI (30/70). After seven and 14 days,
a reduction of strength can be seen for all different films owing to the hydrogel degradation during
time. Degradation was higher for films containing SPI compared to pure Alg films due to the release
of SPI.
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Figure 6. Effective Young’s modulus of prepared hydrogel films with different Alg/SPI ratios on Days
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hydrogel (day zero): *** p < 0.001 (Bonferroni’s post-hoc test).

3.2. Effect of Incorporation of Bioactive Glass Nanoparticles into the Alginate/SPI Films

3.2.1. Water Uptake

Water uptake reflects the ability of the materials to retain and diffuse water, which is an important
property of hydrogel-based materials for wound management applications [42]. Figure 7 shows the
water uptake behavior of the films either without nBGs or with different kinds of nBGs, over time.
Generally, a strong gain of weight can be observed, with an increase of up to 2600% after 8 h for the
Alg/SPI (50/50) films. However, the addition of nBG led to a reduction in water uptake capacity
compared to the control (pure Alg/SPI (50/50) films). These results are in agreement with the findings
of Silva et al. [28]. The observed differences in water uptake ability may be due to strong interactions
between Alg/SPI with nBG. Moreover, a decrease in pore size of hydrogel films due to the addition of
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nBG could lead to reduced water uptake. The addition of nBG in the hydrogel films might fill up the
hydrogel porosity, thus providing less space for absorbing water.Polymers 2018, 10, x FOR PEER REVIEW  10 of 19 
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Figure 7. Water uptake of Alg/SPI (50/50) hydrogel films containing different kinds of nBGs (45S5,
13-93 and 13-93-5Sr) up to 8 h. (nBG content = 0.5% (w/v)). Statistically significant differences are
indicated in comparison to Alg/SPI (50/50) hydrogel (after 8 h): * p < 0.05 (Bonferroni’s post-hoc test).

3.2.2. Swelling and Degradation Behavior

The swelling and degradation behavior of samples were studied over a period of 15 days.
Degradation was determined according to Equation (2); positive values indicate swelling, and negative
value are considered as degradation. As shown in Figure 8, there was an average weight gain in all
samples until Day 3 (positive weight value), followed by a degradation effect observed from Day
7, which increased at Day 15. After two weeks of incubation in HBSS, the degradation of all films
was similar, which might be due to the measurement error owing to the presence of water on the
very thin and light films despite efforts to remove it. Glass 13-93 has a comparatively higher SiO2

content compared to 45S5 BG, and also due to the additional network modifiers, such as K2O and
MgO, 13-93 BG is less reactive than 45S5 BG, which leads to a reduced degradation behavior of films
containing 13-93 BG. Moreover, due to the release of strontium ions from hydrogel films containing
13-93-5Sr BG into the medium, a higher degradation was observed in these samples as compared with
the hydrogel films containing 13-93 BG. Sr-containing 13-93 BG was previously shown to degrade
more rapidly than 13-93 BG in cell culture medium [27].

To assess (qualitatively) the mechanical stability of Alg/SPI (50/50) hydrogels containing nBG,
a stretching force was applied manually using tweezers, as shown in Figure 9. The film had an
acceptable mechanical strength and deformation capability, which indicates suitability to be used as
wound dressing material.
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Figure 9. Alg/SPI (50/50) hydrogel film containing nBG (13-93-5Sr) before and after applying a
stretching force manually using tweezers. Red dashed lines show the qualitative elongation of the
hydrogel film.

3.3. Cell-Material Interactions Using Fibroblasts and HUVECs

To test the in vitro biocompatibility of the developed SPI-based hydrogel films, cell–material
interactions were investigated using primary human cells, fibroblasts and HUVECs.
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Gorustovich et al. [20] have indicated that BG can stimulate fibroblast cells to secret angiogenic
growth factors, and dissolution products from BG can promote endothelial cell proliferation [43–47].
To investigate the metabolism of the cells on hydrogel films containing Alg, Alg/SPI and Alg/SPI
containing nBG after 7, 14 and 21 days of incubation, the WST-8 assay was performed. As presented in
Figure 10, the metabolic activity of fibroblasts grown on Alg/SPI hydrogel films at both concentrations
of 50/50 and 70/30 was significantly higher compared to that of cells grown on pure Alg over 21 days
of culture. This effect was not unexpected, as Alg does not support cell adhesion, and the presence of
protein isolate in Alg/SPI hydrogels provides binding motifs for cells. Interestingly, in fibroblasts
grown on Alg/SPI films containing nBG, the metabolic activity was further increased at later time
points (Day 14 and Day 21), both in comparison to pure Alg and to Alg/SPI without nBG.
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Figure 10. Metabolic activity of fibroblasts on Alg (2.5%), Alg/SPI (70/30), Alg/SPI (50/50) and
Alg/SPI (50/50) + nBG hydrogel films after 7, 14 and 21 days of cultivation. * p < 0.05 versus pure
Alg on the respective day; # p < 0.05 versus the same type of hydrogel on Day 7; ‡ p < 0.05 versus
Alg50/SPI50 without nBG on Day 14. One-way ANOVA on ranks with pairwise comparison using the
Student–Newman–Keuls test.

Also in case of HUVECs, as shown in Figure 11, Alg/SPI hydrogel films with and without BG
supported metabolic activity of cells in comparison to pure Alg films, which was likely due to the
presence of cell binding peptide in the Alg/SPI films. Notably, the presence on nBG in the Alg/SPI
hydrogels did not further increase metabolic activity of HUVECs. Compared to fibroblasts, HUVECs
showed the largest increase in metabolic activity after 21 days of cultivation. The reason for this result
could be that the gradual degradation of the hydrogel during incubation causes an increased exposure
of SPI, which, in parallel with the altered surface topography of the hydrogel, enables better cell
proliferation and activity.
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Figure 11. Metabolic activity of HUVECs on Alg (2.5%), Alg/SPI (70/30), Alg/SPI (50/50) and Alg/SPI
(50/50) + nBG hydrogel films after 7, 14 and 21 days of cultivation. * p < 0.05 versus pure Alg on the
respective day; # p < 0.05 versus the same type of hydrogel on Day 14; ‡ p < 0.05 versus Alg50/SPI50
and Alg50/SPI50 + nBG on Day 21. One-way ANOVA on ranks with pairwise comparison using
Student–Newman–Keuls test.

The cell morphology was visualized by actin cytoskeleton staining, using rhodamine phalloidin,
as shown in Figures 12 and 13. As expected from the metabolic activity results, poor anchorage and
clustering of fibroblasts were observed on pure alginate hydrogels due to the reduced cell-material
interaction. This effect was more pronounced in HUVECs, where very low numbers of cells were
detected on Alg hydrogel, as compared to Alg/SPI (both concentrations) and to Alg/SPI + nBG films.

Over seven days of cultivation, the most desirable conditions for fibroblast growth and spreading
were observed on Alg/SPI + nBG. Fibroblasts showed (Figure 12) the best surface coverage and
spindle-like morphology on these hydrogels and formed multilayers similar to fibroblasts grown
on standard cell culture plastic. Correspondingly, their metabolic activity was significantly higher
than on pure Alg and Alg/SPI (both concentrations). This effect became even more evident after
14 days. Although no SEM images were taken after the addition of nBG, we observed that upon
the addition of SPI to Alg films, soy protein filled the porosity of alginate structures. As can be
seen in Figure 4, a smoother surface was achieved for the Alg/SPI (50/50). Because nBG can fill
in the pores, the addition of nBG is expected to enhance this effect, which may promote the initial
attachment of fibroblasts [48,49]. Interestingly, although after seven days of cultivation, there were
fewer cells observed on the surface of both concentrations of Alg/SPI hydrogels in comparison to
the Alg/SPI + nBG, after 14 days of cultivation, fibroblasts covered the surface of Alg/SPI hydrogels
in a similar way to Alg/SPI + nBG. Cultivated cells proliferated and covered the whole surface of
the hydrogel films. This behavior can be ascribed to the ion release from nBG inside the hydrogel
films over the incubation time, which may promote cell proliferation [46]. Furthermore, Day et al. [47]
demonstrated higher cell proliferation for poly(D,L-lactide-co-glycolide) composite foams containing
BG compared to the foams without BG. Moreover, due to the progressive release of SPI and BG
dissolution over the cultivation period, the porosity and surface topography gradually increased,
reaching micrometer range, which can facilitate cell growth.
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(50/50) and (d,h) Alg/SPI (50/50) + 0.5%(w/v) BG after seven days (left column) and 14 days (right 
column) of cultivation. The cells were stained for F-actin (red) and nuclei (green). 

Figure 12. FM images of fibroblasts adhered on (a,e) Alg (2.5%), (b,f) Alg/SPI (~70/30), (c,g) Alg/SPI
(50/50) and (d,h) Alg/SPI (50/50) + 0.5%(w/v) BG after seven days (left column) and 14 days
(right column) of cultivation. The cells were stained for F-actin (red) and nuclei (green).
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Figure 13. FM images of HUVECs adhered on (a,e) Alg (2.5%), (b,f) Alg/SPI (~70/30), (c,g) Alg/SPI
(50/50) and (d,h) Alg/SPI (50/50) + 0.5%(w/v) BG after 14 days (left column) and 21 days (right column)
of cultivation. The cells were stained for F-actin (red) and nuclei (green).
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Similar results were observed for HUVECs. After 14 days, the surface of the Alg/SPI (50/50)
hydrogel films was covered completely with HUVECs. Moreover, addition of nBG showed no toxicity
for this type of cells, as also demonstrated by the results of the viability assay. In addition to the
higher cell viability on Alg/SPI films, the density of HUVECs that covered the surface of the composite
hydrogels was higher than that on alginate films. This suggests the superior cell-material interaction,
which is likely due to the chemical bonding between peptides of SPI biomolecules and cells. The same
results have been observed for hybrid Alg/protein hydrogel films such as gelatin, silk fibroin and
keratin compared to pure Alg hydrogel films [31,32,50]. In comparison to pure Alg hydrogel films,
Alg/keratin, Alg/gelatin and Alg/silk fibroin hydrogel films provided superb surfaces for HUVEC,
supporting their attachment and proliferation.

Silva et al. have combined alginate with keratin [31], silk fibroin [32] and elastin [51] for tissue
engineering applications. Compared with the hybrid hydrogel based on alginate/keratin, alginate/silk
fibroin and alginate/elastin, the degradation rate for both SPI containing hydrogel films in this study
was found to be lower than that of alginate films over 21 days (less than 40%). However, in the
present study, the weight loss of Alg/SPI (50/50) films was higher than that of alginate films, and it
was around 60% and 90% over 21 days in HBSS and DMEM, respectively. This result indicates that
due to the presence of soy protein in the films, the drawback of an unfavorable slow degradation
kinetic of alginate can be overcome by the release of soy protein and providing voids, as shown in
Figure 5. The release kinetics of soy protein from the hybrid hydrogel films over the incubation time
in HBSS was also described by Silva et al. [28]. It must be noted that this process was shown to
occur gradually, whereby about 25% of protein is released within seven days and about 37% within
21 days of incubation. Moreover, cytocompatibility studies of both HUVECs and fibroblasts cultured
on the Alg/SPI hydrogel films indicated higher cell-compatibility compared to pure Alg, similar to
the result of other hybrid Alg/proteins (silk fibroin, keratin, gelatin and elastin) hydrogel films [50].
Therefore, according to the low immunogenicity and long storage capability of SPI and also its being
inexpensive and abundant, this plant-derived protein represents an attractive alternative to overcome
the limitations of Alg for tissue engineering applications such as inappropriate stiffness, lack of cellular
adhesion motifs and very slow and uncontrolled degradation kinetics.

4. Conclusions

Hydrogel films based on the combination of alginate and soy protein isolate were successfully
prepared. The results illustrated that Alg/SPI biopolymer had higher degradability than pure
Alg owing to the SPI release of the soy protein component. Nano indentation confirmed that the
incorporation of SPI to the Alg hydrogel increases the effective Young’s modulus. Furthermore, cell
studies on hydrogel films demonstrated the ability of these hybrid hydrogels to promote cell viability,
attachment and proliferation in comparison to pure Alg films, which can be ascribed to cell adhesive
molecules present in soy protein. The addition of BG to the hydrogel films enhanced cell viability and
cell proliferation for fibroblasts and HUVECs compared to Alg/SPI films. The results of the present
study show that the combination of alginate with soy protein isolate leads to better degradability
of pure alginate. Moreover, improved fibroblast attachment compared to pure alginate was further
positively affected by the presence of nBG. Hence, this combination of biopolymers and nBG represents
an attractive system for wound dressing applications and soft tissue engineering.
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