Supporting Information

Novel antimicrobial polyglycidols: relationship between structure and properties

Fabian Marquardt, Cornelia Stöcker, Rita Gartzen, Elisabeth Heine, Helmut Keul*, Martin Möller*

Institute of Technical and Macromolecular Chemistry, RWTH Aachen University and DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, D-52056 Aachen, Germany; Marquardt@dwi.rwth-aachen.de (F. M.); Cornelia.stoecker@rwth-aachen.de (C. S.); Gartzen@dwi.rwth-aachen.de (R. G.); Heine@dwi.rwth-aachen.de (E. H.) * Correspondence: Keul@dwi.rwth-aachen.de (H. K.); Moeller@dwi.rwth-aachen.de (M. M.)

1. Synthesis of linear polyglycidol (1)

Figure S1. ¹H NMR spectrum of PG₂₇ (1) measured in DMSO-d₆.

Figure S2. ¹³C NMR spectrum of PG₂₇ (1) measured in DMSO-d₆.

Figure S3. DMF-SEC traces of PG₂₇ (1).

2. Synthetic pathway

Scheme S1: Synthetic pathway to $P(G^{TMAPA_{15}-CO}-G^{DDA_{12}})$ (5), $P(G^{APDEMA_{16}-CO}-G^{DDA_{11}})$ (6), $P(G^{DDA_{C},q})_{27}$ (10) and $P(G^{TMAPA_{14}-CO}-G^{DDADDA_{C_{13}}})$ (12).

3. Synthesis of $P(G^{TMAPA_{15}}-co-G^{DDA_{12}})$ (5) and $P(G^{APDEMA_{16}}-co-G^{DDA_{11}})$ (6)

Figure S4. ¹H NMR spectrum of P(G^{PC})₂₇ (2) measured in CDCl₃.

Figure S5. ¹³C NMR spectrum of P(G^{PC})₂₇ (2) measured in CDCl₃.

Figure S6. DMF-SEC traces of $P(G^{PC})_{27}$ (2).

Figure S7. ¹H NMR spectrum of P(G^{DMAPA15-CO-GDDA12}) (3) measured in CDCl₃.

Figure S8. ¹³C NMR spectrum of P(G^{DMAPA}15-co-G^{DDA}12) (3) measured in CDCl₃.

Figure S9. DMF-SEC traces of P(G^{DMAPA}₁₅-*co*-G^{DDA}₁₂) (3).

Figure S10. ¹H NMR spectrum of P(G^{APDEA}₁₆-*co*-G^{DDA}₁₁) (4) measured in MeOD.

Figure S11. ¹³C NMR spectrum of P(G^{APDEA}₁₆-*co*-G^{DDA}₁₁) (4) measured in MeOD.

Figure S12. DMF-SEC traces of P(GAPDEA16-co-GDDA11) (4).

Figure S13. ¹³C NMR spectrum of P(G^{TMAPA}₁₅-*co*-G^{DDA}₁₂) (5) measured in DMSO-*d*₆.

Figure S14. DMF-SEC traces of P(G^{TMAPA}15-*co*-G^{DDA}12) (5).

Figure S15. ¹³C NMR spectrum of P(G^{APDEMA}₁₆-*co*-G^{DDA}₁₁) (6) measured in MeOD.

4. Synthesis of P(G^{DDAc, q})₂₇ (10)

Figure S16. ¹H NMR spectrum of P(G^{NPC})₂₇ (7) measured in DMSO-*d*₆.

Figure S17. ¹³C NMR spectrum of P(G^{NPC})₂₇ (7) measured in DMSO-*d*₆.

Figure S18. DMF-SEC traces of $P(G^{NPC})_{27}$ (7).

Figure S19. ¹H NMR spectrum of P(G^{HCTL})₂₇ (8) measured in DMSO-*d*₆.

Figure S20. ¹³C NMR spectrum of P(G^{HCTL})₂₇ (8) measured in DMSO-*d*₆.

Figure S21. DMF-SEC traces of P(G^{HCTL})₂₇ (8).

Figure S22. ¹H NMR spectrum of P(G^{DDAc})₂₇ (9) measured in CDCl₃.

Figure S23. ¹³C NMR spectrum of P(G^{DDAc})₂₇ (9) measured in CDCl₃.

Figure S24. DMF-SEC traces of P(G^{DDAc})₂₇ (9).

Figure S25. ¹³C NMR spectrum of P(G^{DDAc, q})₂₇ (10) measured in CDCl₃.

Figure S26. DMF-SEC traces of P(G^{DDAc, q})27 (10).

5. Synthesis of P(G^{TMAPA}14-co-G^{DDADDAc}13) (12)

Figure S27. ¹H NMR spectrum of P(G^{DMAPA14-}co-G^{DDADDAc13}) (11) measured in CDCl₃/acetone-d₆.

Figure S28. ¹³C NMR spectrum of P(G^{DMAPA}₁₄-co-G^{DDADDAc}₁₃) (11) measured in CDCl₃/acetone-d₆.

Figure S29. DMF-SEC traces of P(G^{DMAPA14-}*co*-G^{DDADDAc13}) (11).

Figure S30. ¹³C NMR spectrum of P(G^{TMAPA}₁₄-*co*-G^{DDADDAc}₁₃) (12) measured in CDCl₃/acetone-*d*₆.

Figure S31. DMF-SEC traces of P(G^{TMAPA}₁₄-*co*-G^{DDADDAc}₁₃) (12).